/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** \class ParticlePropagator * * Propagates charged and neutral particles * from a given vertex to a cylinder defined by its radius, * its half-length, centered at (0,0,0) and with its axis * oriented along the z-axis. * * \author P. Demin - UCL, Louvain-la-Neuve * */ #include "modules/ParticlePropagator.h" #include "classes/DelphesClasses.h" #include "classes/DelphesFactory.h" #include "classes/DelphesFormula.h" #include "ExRootAnalysis/ExRootClassifier.h" #include "ExRootAnalysis/ExRootFilter.h" #include "ExRootAnalysis/ExRootResult.h" #include "TDatabasePDG.h" #include "TFormula.h" #include "TLorentzVector.h" #include "TMath.h" #include "TObjArray.h" #include "TRandom3.h" #include "TString.h" #include #include #include #include using namespace std; //------------------------------------------------------------------------------ ParticlePropagator::ParticlePropagator() : fItInputArray(0) { } //------------------------------------------------------------------------------ ParticlePropagator::~ParticlePropagator() { } //------------------------------------------------------------------------------ void ParticlePropagator::Init() { fRadius = GetDouble("Radius", 1.0); fRadius2 = fRadius * fRadius; fHalfLength = GetDouble("HalfLength", 3.0); fBz = GetDouble("Bz", 0.0); if(fRadius < 1.0E-2) { cout << "ERROR: magnetic field radius is too low\n"; return; } if(fHalfLength < 1.0E-2) { cout << "ERROR: magnetic field length is too low\n"; return; } fRadiusMax = GetDouble("RadiusMax", fRadius); fHalfLengthMax = GetDouble("HalfLengthMax", fHalfLength); // import array with output from filter/classifier module fInputArray = ImportArray(GetString("InputArray", "Delphes/stableParticles")); fItInputArray = fInputArray->MakeIterator(); // import beamspot try { fBeamSpotInputArray = ImportArray(GetString("BeamSpotInputArray", "BeamSpotFilter/beamSpotParticle")); } catch(runtime_error &e) { fBeamSpotInputArray = 0; } // create output arrays fOutputArray = ExportArray(GetString("OutputArray", "stableParticles")); fNeutralOutputArray = ExportArray(GetString("NeutralOutputArray", "neutralParticles")); fChargedHadronOutputArray = ExportArray(GetString("ChargedHadronOutputArray", "chargedHadrons")); fElectronOutputArray = ExportArray(GetString("ElectronOutputArray", "electrons")); fMuonOutputArray = ExportArray(GetString("MuonOutputArray", "muons")); } //------------------------------------------------------------------------------ void ParticlePropagator::Finish() { if(fItInputArray) delete fItInputArray; } //------------------------------------------------------------------------------ void ParticlePropagator::Process() { Candidate *candidate, *mother, *particle; TLorentzVector particlePosition, particleMomentum, beamSpotPosition; Double_t px, py, pz, pt, pt2, e, q; Double_t x, y, z, t, r; Double_t x_c, y_c, r_c, phi_0; Double_t x_t, y_t, z_t, r_t, phi_t; Double_t t_r, t_z; Double_t tmp; Double_t gammam, omega; Double_t xd, yd, zd; Double_t l, d0, dz, ctgTheta, alpha; Double_t bsx, bsy, bsz; Double_t td, pio, phid, vz; const Double_t c_light = 2.99792458E8; if(!fBeamSpotInputArray || fBeamSpotInputArray->GetSize() == 0) { beamSpotPosition.SetXYZT(0.0, 0.0, 0.0, 0.0); } else { Candidate &beamSpotCandidate = *((Candidate *)fBeamSpotInputArray->At(0)); beamSpotPosition = beamSpotCandidate.Position; } fItInputArray->Reset(); while((candidate = static_cast(fItInputArray->Next()))) { if(candidate->GetCandidates()->GetEntriesFast() == 0) { particle = candidate; } else { particle = static_cast(candidate->GetCandidates()->At(0)); } particlePosition = particle->Position; particleMomentum = particle->Momentum; x = particlePosition.X() * 1.0E-3; y = particlePosition.Y() * 1.0E-3; z = particlePosition.Z() * 1.0E-3; bsx = beamSpotPosition.X() * 1.0E-3; bsy = beamSpotPosition.Y() * 1.0E-3; bsz = beamSpotPosition.Z() * 1.0E-3; q = particle->Charge; // check that particle position is inside the cylinder if(TMath::Hypot(x, y) > fRadiusMax || TMath::Abs(z) > fHalfLengthMax) { continue; } px = particleMomentum.Px(); py = particleMomentum.Py(); pz = particleMomentum.Pz(); pt = particleMomentum.Pt(); pt2 = particleMomentum.Perp2(); e = particleMomentum.E(); if(pt2 < 1.0E-9) { continue; } if(TMath::Hypot(x, y) > fRadius || TMath::Abs(z) > fHalfLength) { mother = candidate; candidate = static_cast(candidate->Clone()); candidate->InitialPosition = particlePosition; candidate->Position = particlePosition; candidate->L = 0.0; candidate->Momentum = particleMomentum; candidate->AddCandidate(mother); fOutputArray->Add(candidate); } else if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9) { // solve pt2*t^2 + 2*(px*x + py*y)*t - (fRadius2 - x*x - y*y) = 0 tmp = px * y - py * x; t_r = (TMath::Sqrt(pt2 * fRadius2 - tmp * tmp) - px * x - py * y) / pt2; t_z = (TMath::Sign(fHalfLength, pz) - z) / pz; t = TMath::Min(t_r, t_z); x_t = x + px * t; y_t = y + py * t; z_t = z + pz * t; l = TMath::Sqrt((x_t - x) * (x_t - x) + (y_t - y) * (y_t - y) + (z_t - z) * (z_t - z)); mother = candidate; candidate = static_cast(candidate->Clone()); candidate->InitialPosition = particlePosition; candidate->Position.SetXYZT(x_t * 1.0E3, y_t * 1.0E3, z_t * 1.0E3, particlePosition.T() + t * e * 1.0E3); candidate->L = l * 1.0E3; candidate->Momentum = particleMomentum; candidate->AddCandidate(mother); fOutputArray->Add(candidate); if(TMath::Abs(q) > 1.0E-9) { switch(TMath::Abs(candidate->PID)) { case 11: fElectronOutputArray->Add(candidate); break; case 13: fMuonOutputArray->Add(candidate); break; default: fChargedHadronOutputArray->Add(candidate); } } else { fNeutralOutputArray->Add(candidate); } } else { // 1. initial transverse momentum p_{T0}: Part->pt // initial transverse momentum direction phi_0 = -atan(p_{X0} / p_{Y0}) // relativistic gamma: gamma = E / mc^2; gammam = gamma * m // gyration frequency omega = q * Bz / (gammam) // helix radius r = p_{T0} / (omega * gammam) gammam = e * 1.0E9 / (c_light * c_light); // gammam in [eV/c^2] omega = q * fBz / gammam; // omega is here in [89875518/s] r = pt / (q * fBz) * 1.0E9 / c_light; // in [m] phi_0 = TMath::ATan2(py, px); // [rad] in [-pi, pi] // 2. helix axis coordinates x_c = x + r * TMath::Sin(phi_0); y_c = y - r * TMath::Cos(phi_0); r_c = TMath::Hypot(x_c, y_c); // time of closest approach td = (phi_0 + TMath::ATan2(x_c, y_c)) / omega; // remove all the modulo pi that might have come from the atan pio = TMath::Abs(TMath::Pi() / omega); while(TMath::Abs(td) > 0.5 * pio) { td -= TMath::Sign(1.0, td) * pio; } vz = pz * c_light / e; // calculate coordinates of closest approach to z axis phid = phi_0 - omega * td; xd = x_c - r * TMath::Sin(phid); yd = y_c + r * TMath::Cos(phid); zd = z + vz * td; // momentum at closest approach px = pt * TMath::Cos(phid); py = pt * TMath::Sin(phid); particleMomentum.SetPtEtaPhiE(pt, particleMomentum.Eta(), phid, particleMomentum.E()); // calculate additional track parameters (correct for beamspot position) d0 = ((xd - bsx) * py - (yd - bsy) * px) / pt; dz = zd - bsz; ctgTheta = 1.0 / TMath::Tan(particleMomentum.Theta()); // 3. time evaluation t = TMath::Min(t_r, t_z) // t_r : time to exit from the sides // t_z : time to exit from the front or the back t_z = (vz == 0.0) ? 1.0E99 : (TMath::Sign(fHalfLength, pz) - z) / vz; if(r_c + TMath::Abs(r) < fRadius) { // helix does not cross the cylinder sides t = t_z; } else { alpha = TMath::ACos((r * r + r_c * r_c - fRadius * fRadius) / (2 * TMath::Abs(r) * r_c)); t_r = td + TMath::Abs(alpha / omega); t = TMath::Min(t_r, t_z); } // 4. position in terms of x(t), y(t), z(t) phi_t = phi_0 - omega * t; x_t = x_c - r * TMath::Sin(phi_t); y_t = y_c + r * TMath::Cos(phi_t); z_t = z + vz * t; r_t = TMath::Hypot(x_t, y_t); // lenght of the path from production to tracker l = t * TMath::Hypot(vz, r * omega); if(r_t > 0.0) { // store these variables before cloning if(particle == candidate) { particle->D0 = d0 * 1.0E3; particle->DZ = dz * 1.0E3; particle->P = particleMomentum.P(); particle->PT = pt; particle->CtgTheta = ctgTheta; particle->Phi = particleMomentum.Phi(); } mother = candidate; candidate = static_cast(candidate->Clone()); candidate->InitialPosition = particlePosition; candidate->Position.SetXYZT(x_t * 1.0E3, y_t * 1.0E3, z_t * 1.0E3, particlePosition.T() + t * c_light * 1.0E3); candidate->Momentum = particleMomentum; candidate->L = l * 1.0E3; candidate->Xd = xd * 1.0E3; candidate->Yd = yd * 1.0E3; candidate->Zd = zd * 1.0E3; candidate->AddCandidate(mother); fOutputArray->Add(candidate); switch(TMath::Abs(candidate->PID)) { case 11: fElectronOutputArray->Add(candidate); break; case 13: fMuonOutputArray->Add(candidate); break; default: fChargedHadronOutputArray->Add(candidate); } } } } } //------------------------------------------------------------------------------