/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class ParticlePropagator
*
* Propagates charged and neutral particles
* from a given vertex to a cylinder defined by its radius,
* its half-length, centered at (0,0,0) and with its axis
* oriented along the z-axis.
*
* \author P. Demin - UCL, Louvain-la-Neuve
*
*/
#include "modules/ParticlePropagator.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesFormula.h"
#include "ExRootAnalysis/ExRootClassifier.h"
#include "ExRootAnalysis/ExRootFilter.h"
#include "ExRootAnalysis/ExRootResult.h"
#include "TDatabasePDG.h"
#include "TFormula.h"
#include "TLorentzVector.h"
#include "TMath.h"
#include "TObjArray.h"
#include "TRandom3.h"
#include "TString.h"
#include
#include
#include
#include
using namespace std;
//------------------------------------------------------------------------------
ParticlePropagator::ParticlePropagator() :
fItInputArray(0)
{
}
//------------------------------------------------------------------------------
ParticlePropagator::~ParticlePropagator()
{
}
//------------------------------------------------------------------------------
void ParticlePropagator::Init()
{
fRadius = GetDouble("Radius", 1.0);
fRadius2 = fRadius * fRadius;
fHalfLength = GetDouble("HalfLength", 3.0);
fBz = GetDouble("Bz", 0.0);
if(fRadius < 1.0E-2)
{
cout << "ERROR: magnetic field radius is too low\n";
return;
}
if(fHalfLength < 1.0E-2)
{
cout << "ERROR: magnetic field length is too low\n";
return;
}
fRadiusMax = GetDouble("RadiusMax", fRadius);
fHalfLengthMax = GetDouble("HalfLengthMax", fHalfLength);
// import array with output from filter/classifier module
fInputArray = ImportArray(GetString("InputArray", "Delphes/stableParticles"));
fItInputArray = fInputArray->MakeIterator();
// import beamspot
try
{
fBeamSpotInputArray = ImportArray(GetString("BeamSpotInputArray", "BeamSpotFilter/beamSpotParticle"));
}
catch(runtime_error &e)
{
fBeamSpotInputArray = 0;
}
// create output arrays
fOutputArray = ExportArray(GetString("OutputArray", "stableParticles"));
fNeutralOutputArray = ExportArray(GetString("NeutralOutputArray", "neutralParticles"));
fChargedHadronOutputArray = ExportArray(GetString("ChargedHadronOutputArray", "chargedHadrons"));
fElectronOutputArray = ExportArray(GetString("ElectronOutputArray", "electrons"));
fMuonOutputArray = ExportArray(GetString("MuonOutputArray", "muons"));
}
//------------------------------------------------------------------------------
void ParticlePropagator::Finish()
{
if(fItInputArray) delete fItInputArray;
}
//------------------------------------------------------------------------------
void ParticlePropagator::Process()
{
Candidate *candidate, *mother, *particle;
TLorentzVector particlePosition, particleMomentum, beamSpotPosition;
Double_t px, py, pz, pt, pt2, e, q;
Double_t x, y, z, t, r;
Double_t x_c, y_c, r_c, phi_c, phi_0;
Double_t x_t, y_t, z_t, r_t;
Double_t t_z, t_r;
Double_t discr;
Double_t gammam, omega;
Double_t xd, yd, zd;
Double_t l, d0, dz, ctgTheta, alpha;
Double_t bsx, bsy, bsz;
Double_t rxp, rdp, t_R;
Double_t td, pio, phid, sign_pz, vz;
const Double_t c_light = 2.99792458E8;
if(!fBeamSpotInputArray || fBeamSpotInputArray->GetSize() == 0)
beamSpotPosition.SetXYZT(0.0, 0.0, 0.0, 0.0);
else
{
Candidate &beamSpotCandidate = *((Candidate *)fBeamSpotInputArray->At(0));
beamSpotPosition = beamSpotCandidate.Position;
}
fItInputArray->Reset();
while((candidate = static_cast(fItInputArray->Next())))
{
if(candidate->GetCandidates()->GetEntriesFast() == 0)
{
particle = candidate;
}
else
{
particle = static_cast(candidate->GetCandidates()->At(0));
}
particlePosition = particle->Position;
particleMomentum = particle->Momentum;
// Constants
x = particlePosition.X() * 1.0E-3;
y = particlePosition.Y() * 1.0E-3;
z = particlePosition.Z() * 1.0E-3;
bsx = beamSpotPosition.X() * 1.0E-3;
bsy = beamSpotPosition.Y() * 1.0E-3;
bsz = beamSpotPosition.Z() * 1.0E-3;
q = particle->Charge;
// check that particle position is inside the cylinder
if(TMath::Hypot(x, y) > fRadiusMax || TMath::Abs(z) > fHalfLengthMax)
{
continue;
}
px = particleMomentum.Px();
py = particleMomentum.Py();
pz = particleMomentum.Pz();
pt = particleMomentum.Pt();
pt2 = particleMomentum.Perp2();
e = particleMomentum.E();
if(pt2 < 1.0E-9)
{
continue;
}
if(TMath::Hypot(x, y) > fRadius || TMath::Abs(z) > fHalfLength)
{
mother = candidate;
candidate = static_cast(candidate->Clone());
candidate->InitialPosition = particlePosition;
candidate->Position = particlePosition;
candidate->L = 0.0;
candidate->Momentum = particleMomentum;
candidate->AddCandidate(mother);
fOutputArray->Add(candidate);
}
else if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9)
{
rxp = x*py - y*px;
rdp = x*px + y*py;
discr = fRadius*fRadius*pt*pt - rxp*rxp;
t_R = e * (sqrt(discr) - rdp) / (c_light * pt * pt);
t_z = e * (TMath::Sign(fHalfLengthMax, pz) - z) / ( c_light * pz);
t = TMath::Min(t_R, t_z);
x_t = x + px*t*c_light/e;
y_t = y + py*t*c_light/e;
z_t = z + pz*t*c_light/e;
r_t = TMath::Hypot(x_t, y_t);
l = TMath::Sqrt( (x_t - x)*(x_t - x) + (y_t - y)*(y_t - y) + (z_t - z)*(z_t - z));
mother = candidate;
candidate = static_cast(candidate->Clone());
candidate->InitialPosition = particlePosition;
candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, particlePosition.T() + t*c_light*1.0E3);
candidate->L = l*1.0E3;
candidate->Momentum = particleMomentum;
candidate->AddCandidate(mother);
fOutputArray->Add(candidate);
if(TMath::Abs(q) > 1.0E-9)
{
switch(TMath::Abs(candidate->PID))
{
case 11:
fElectronOutputArray->Add(candidate);
break;
case 13:
fMuonOutputArray->Add(candidate);
break;
default:
fChargedHadronOutputArray->Add(candidate);
}
}
else
{
fNeutralOutputArray->Add(candidate);
}
}
else
{
// 1. initial transverse momentum p_{T0}: Part->pt
// initial transverse momentum direction phi_0 = -atan(p_X0/p_Y0)
// relativistic gamma: gamma = E/mc^2; gammam = gamma * m
// gyration frequency omega = q/(gamma m) fBz
// helix radius r = p_{T0} / (omega gamma m)
gammam = e*1.0E9 / (c_light*c_light); // gammam in [eV/c^2]
omega = q * fBz / (gammam); // omega is here in [89875518/s]
r = pt / (q * fBz) * 1.0E9/c_light; // in [m]
phi_0 = TMath::ATan2(py, px); // [rad] in [-pi, pi]
// 2. helix axis coordinates
x_c = x + r*TMath::Sin(phi_0);
y_c = y - r*TMath::Cos(phi_0);
r_c = TMath::Hypot(x_c, y_c);
phi_c = TMath::ATan(y_c/x_c);
if(x_c < 0.0) phi_c -= TMath::Sign(1., phi_c)*TMath::Pi();
//Find the time of closest approach
td = (phi_0 - TMath::ATan(-x_c/y_c))/omega;
//Remove all the modulo pi that might have come from the atan
pio = fabs(TMath::Pi()/omega);
while(fabs(td) > 0.5*pio)
{
td -= TMath::Sign(1., td)*pio;
}
//Compute the coordinate of closed approach to z axis
//if wants wtr beamline need to be changedto re-center with a traslation of the z axis
phid = phi_0 - omega*td;
xd = x_c - r*TMath::Sin(phid);
yd = y_c + r*TMath::Cos(phid);
zd = z + c_light*(pz/e)*td;
//Compute momentum at closest approach (perigee??)
px = pt*TMath::Cos(phid);
py = pt*TMath::Sin(phid);
particleMomentum.SetPtEtaPhiE(pt, particleMomentum.Eta(), phid, particleMomentum.E());
// calculate additional track parameters (correct for beamspot position)
d0 = ((xd - bsx) * py - (yd - bsy) * px) / pt;
dz = zd - bsz;
ctgTheta = 1.0 / TMath::Tan (particleMomentum.Theta());
// 3. time evaluation t = TMath::Min(t_r, t_z)
// t_r : time to exit from the sides
// t_z : time to exit from the front or the back
t = 0;
t_z = 0;
sign_pz = (pz > 0.0) ? 1 : -1;
if(pz == 0.0) t_z = 1.0E99;
else t_z = gammam / (pz*1.0E9/c_light) * (-z + fHalfLength*sign_pz);
if(r_c + TMath::Abs(r) < fRadius) // helix does not cross the cylinder sides
{
t = t_z;
}
else
{
alpha = -(fRadius*fRadius - r*r - r_c*r_c)/(2*fabs(r)*r_c);
alpha = fabs(TMath::ACos(alpha));
t_r = td + alpha/fabs(omega);
t = TMath::Min(t_r, t_z);
}
x_t = x_c - r*TMath::Sin(phi_0 - omega*t);
y_t = y_c + r*TMath::Cos(phi_0 - omega*t);
z_t = z + c_light*t*pz/e;
r_t = TMath::Hypot(x_t, y_t);
// compute path length for an helix
vz = pz*1.0E9 / c_light / gammam;
//lenght of the path from production to tracker
l = t * TMath::Sqrt(vz*vz + r*r*omega*omega);
if(r_t > 0.0)
{
// store these variables before cloning
if(particle == candidate)
{
particle->D0 = d0 * 1.0E3;
particle->DZ = dz * 1.0E3;
particle->P = particleMomentum.P();
particle->PT = pt;
particle->CtgTheta = ctgTheta;
particle->Phi = particleMomentum.Phi();
}
mother = candidate;
candidate = static_cast(candidate->Clone());
candidate->InitialPosition = particlePosition;
candidate->Position.SetXYZT(x_t * 1.0E3, y_t * 1.0E3, z_t * 1.0E3, particlePosition.T() + t * c_light * 1.0E3);
candidate->Momentum = particleMomentum;
candidate->L = l * 1.0E3;
candidate->Xd = xd * 1.0E3;
candidate->Yd = yd * 1.0E3;
candidate->Zd = zd * 1.0E3;
candidate->AddCandidate(mother);
fOutputArray->Add(candidate);
switch(TMath::Abs(candidate->PID))
{
case 11:
fElectronOutputArray->Add(candidate);
break;
case 13:
fMuonOutputArray->Add(candidate);
break;
default:
fChargedHadronOutputArray->Add(candidate);
}
}
}
}
}
//------------------------------------------------------------------------------