/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class Isolation
*
* Sums transverse momenta of isolation objects (tracks, calorimeter towers, etc)
* within a DeltaR cone around a candidate and calculates fraction of this sum
* to the candidate's transverse momentum. outputs candidates that have
* the transverse momenta fraction within (PTRatioMin, PTRatioMax].
*
* $Date$
* $Revision$
*
*
* \author P. Demin - UCL, Louvain-la-Neuve
*
*/
#include "modules/Isolation.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesFormula.h"
#include "ExRootAnalysis/ExRootResult.h"
#include "ExRootAnalysis/ExRootFilter.h"
#include "ExRootAnalysis/ExRootClassifier.h"
#include "TMath.h"
#include "TString.h"
#include "TFormula.h"
#include "TRandom3.h"
#include "TObjArray.h"
#include "TDatabasePDG.h"
#include "TLorentzVector.h"
#include
#include
#include
#include
using namespace std;
//------------------------------------------------------------------------------
class IsolationClassifier : public ExRootClassifier
{
public:
IsolationClassifier() {}
Int_t GetCategory(TObject *object);
Double_t fPTMin;
};
//------------------------------------------------------------------------------
Int_t IsolationClassifier::GetCategory(TObject *object)
{
Candidate *track = static_cast(object);
const TLorentzVector &momentum = track->Momentum;
if(momentum.Pt() < fPTMin) return -1;
return 0;
}
//------------------------------------------------------------------------------
Isolation::Isolation() :
fClassifier(0), fFilter(0),
fItIsolationInputArray(0), fItCandidateInputArray(0),
fItRhoInputArray(0)
{
fClassifier = new IsolationClassifier;
}
//------------------------------------------------------------------------------
Isolation::~Isolation()
{
}
//------------------------------------------------------------------------------
void Isolation::Init()
{
const char *rhoInputArrayName;
fDeltaRMax = GetDouble("DeltaRMax", 0.5);
fPTRatioMax = GetDouble("PTRatioMax", 0.1);
fPTSumMax = GetDouble("PTSumMax", 5.0);
fUsePTSum = GetBool("UsePTSum", false);
fClassifier->fPTMin = GetDouble("PTMin", 0.5);
// import input array(s)
fIsolationInputArray = ImportArray(GetString("IsolationInputArray", "Delphes/partons"));
fItIsolationInputArray = fIsolationInputArray->MakeIterator();
fFilter = new ExRootFilter(fIsolationInputArray);
fCandidateInputArray = ImportArray(GetString("CandidateInputArray", "Calorimeter/electrons"));
fItCandidateInputArray = fCandidateInputArray->MakeIterator();
rhoInputArrayName = GetString("RhoInputArray", "");
if(rhoInputArrayName[0] != '\0')
{
fRhoInputArray = ImportArray(rhoInputArrayName);
fItRhoInputArray = fRhoInputArray->MakeIterator();
}
else
{
fRhoInputArray = 0;
}
// create output array
fOutputArray = ExportArray(GetString("OutputArray", "electrons"));
}
//------------------------------------------------------------------------------
void Isolation::Finish()
{
if(fItRhoInputArray) delete fItRhoInputArray;
if(fFilter) delete fFilter;
if(fItCandidateInputArray) delete fItCandidateInputArray;
if(fItIsolationInputArray) delete fItIsolationInputArray;
}
//------------------------------------------------------------------------------
void Isolation::Process()
{
Candidate *candidate, *isolation, *object;
TObjArray *isolationArray;
Double_t sum, ratio;
Int_t counter;
Double_t eta = 0.0;
Double_t rho = 0.0;
if(fRhoInputArray && fRhoInputArray->GetEntriesFast() > 0)
{
candidate = static_cast(fRhoInputArray->At(0));
rho = candidate->Momentum.Pt();
}
// select isolation objects
fFilter->Reset();
isolationArray = fFilter->GetSubArray(fClassifier, 0);
if(isolationArray == 0) return;
TIter itIsolationArray(isolationArray);
// loop over all input jets
fItCandidateInputArray->Reset();
while((candidate = static_cast(fItCandidateInputArray->Next())))
{
const TLorentzVector &candidateMomentum = candidate->Momentum;
eta = TMath::Abs(candidateMomentum.Eta());
// loop over all input tracks
sum = 0.0;
counter = 0;
itIsolationArray.Reset();
while((isolation = static_cast(itIsolationArray.Next())))
{
const TLorentzVector &isolationMomentum = isolation->Momentum;
if(candidateMomentum.DeltaR(isolationMomentum) <= fDeltaRMax &&
!candidate->Overlaps(isolation))
{
sum += isolationMomentum.Pt();
++counter;
}
}
// find rho
rho = 0.0;
if(fRhoInputArray)
{
fItRhoInputArray->Reset();
while((object = static_cast(fItRhoInputArray->Next())))
{
if(eta >= object->Edges[0] && eta < object->Edges[1])
{
rho = object->Momentum.Pt();
}
}
}
// correct sum for pile-up contamination
sum = sum - rho*fDeltaRMax*fDeltaRMax*TMath::Pi();
ratio = sum/candidateMomentum.Pt();
if((fUsePTSum && sum > fPTSumMax) || ratio > fPTRatioMax) continue;
fOutputArray->Add(candidate);
}
}
//------------------------------------------------------------------------------