/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** \class FastJetFinder * * Finds jets using FastJet library. * * \author P. Demin - UCL, Louvain-la-Neuve * */ #include "modules/FastJetFinder.h" #include "classes/DelphesClasses.h" #include "classes/DelphesFactory.h" #include "classes/DelphesFormula.h" #include "ExRootAnalysis/ExRootResult.h" #include "ExRootAnalysis/ExRootFilter.h" #include "ExRootAnalysis/ExRootClassifier.h" #include "TMath.h" #include "TString.h" #include "TFormula.h" #include "TRandom3.h" #include "TObjArray.h" #include "TDatabasePDG.h" #include "TLorentzVector.h" #include #include #include #include #include #include "fastjet/PseudoJet.hh" #include "fastjet/JetDefinition.hh" #include "fastjet/ClusterSequence.hh" #include "fastjet/Selector.hh" #include "fastjet/ClusterSequenceArea.hh" #include "fastjet/tools/JetMedianBackgroundEstimator.hh" #include "fastjet/plugins/SISCone/fastjet/SISConePlugin.hh" #include "fastjet/plugins/CDFCones/fastjet/CDFMidPointPlugin.hh" #include "fastjet/plugins/CDFCones/fastjet/CDFJetCluPlugin.hh" #include "fastjet/contribs/Nsubjettiness/Nsubjettiness.hh" #include "fastjet/contribs/Nsubjettiness/Njettiness.hh" #include "fastjet/contribs/Nsubjettiness/NjettinessPlugin.hh" #include "fastjet/contribs/Nsubjettiness/ExtraRecombiners.hh" #include "fastjet/tools/Filter.hh" #include "fastjet/tools/Pruner.hh" #include "fastjet/contribs/RecursiveTools/SoftDrop.hh" using namespace std; using namespace fastjet; using namespace fastjet::contrib; //------------------------------------------------------------------------------ FastJetFinder::FastJetFinder() : fPlugin(0), fRecomb(0), fAxesDef(0), fMeasureDef(0), fNjettinessPlugin(0), fDefinition(0), fAreaDefinition(0), fItInputArray(0) { } //------------------------------------------------------------------------------ FastJetFinder::~FastJetFinder() { } //------------------------------------------------------------------------------ void FastJetFinder::Init() { JetDefinition::Plugin *plugin = 0; JetDefinition::Recombiner *recomb = 0; ExRootConfParam param; Long_t i, size; Double_t etaMin, etaMax; TEstimatorStruct estimatorStruct; // define algorithm fJetAlgorithm = GetInt("JetAlgorithm", 6); fParameterR = GetDouble("ParameterR", 0.5); fConeRadius = GetDouble("ConeRadius", 0.5); fSeedThreshold = GetDouble("SeedThreshold", 1.0); fConeAreaFraction = GetDouble("ConeAreaFraction", 1.0); fMaxIterations = GetInt("MaxIterations", 100); fMaxPairSize = GetInt("MaxPairSize", 2); fIratch = GetInt("Iratch", 1); fAdjacencyCut = GetInt("AdjacencyCut", 2); fOverlapThreshold = GetDouble("OverlapThreshold", 0.75); fJetPTMin = GetDouble("JetPTMin", 10.0); //-- N(sub)jettiness parameters -- fComputeNsubjettiness = GetBool("ComputeNsubjettiness", false); fBeta = GetDouble("Beta", 1.0); fAxisMode = GetInt("AxisMode", 1); fRcutOff = GetDouble("RcutOff", 0.8); // used only if Njettiness is used as jet clustering algo (case 8) fN = GetInt("N", 2); // used only if Njettiness is used as jet clustering algo (case 8) fMeasureDef = new NormalizedMeasure(fBeta, fParameterR); switch(fAxisMode) { default: case 1: fAxesDef = new WTA_KT_Axes(); break; case 2: fAxesDef = new OnePass_WTA_KT_Axes(); break; case 3: fAxesDef = new KT_Axes(); break; case 4: fAxesDef = new OnePass_KT_Axes(); } //-- Trimming parameters -- fComputeTrimming = GetBool("ComputeTrimming", false); fRTrim = GetDouble("RTrim", 0.2); fPtFracTrim = GetDouble("PtFracTrim", 0.05); //-- Pruning parameters -- fComputePruning = GetBool("ComputePruning", false); fZcutPrun = GetDouble("ZcutPrun", 0.1); fRcutPrun = GetDouble("RcutPrun", 0.5); fRPrun = GetDouble("RPrun", 0.8); //-- SoftDrop parameters -- fComputeSoftDrop = GetBool("ComputeSoftDrop", false); fBetaSoftDrop = GetDouble("BetaSoftDrop", 0.0); fSymmetryCutSoftDrop = GetDouble("SymmetryCutSoftDrop", 0.1); fR0SoftDrop= GetDouble("R0SoftDrop=", 0.8); // --- Jet Area Parameters --- fAreaAlgorithm = GetInt("AreaAlgorithm", 0); fComputeRho = GetBool("ComputeRho", false); // - ghost based areas - fGhostEtaMax = GetDouble("GhostEtaMax", 5.0); fRepeat = GetInt("Repeat", 1); fGhostArea = GetDouble("GhostArea", 0.01); fGridScatter = GetDouble("GridScatter", 1.0); fPtScatter = GetDouble("PtScatter", 0.1); fMeanGhostPt = GetDouble("MeanGhostPt", 1.0E-100); // - voronoi based areas - fEffectiveRfact = GetDouble("EffectiveRfact", 1.0); switch(fAreaAlgorithm) { case 1: fAreaDefinition = new AreaDefinition(active_area_explicit_ghosts, GhostedAreaSpec(fGhostEtaMax, fRepeat, fGhostArea, fGridScatter, fPtScatter, fMeanGhostPt)); break; case 2: fAreaDefinition = new AreaDefinition(one_ghost_passive_area, GhostedAreaSpec(fGhostEtaMax, fRepeat, fGhostArea, fGridScatter, fPtScatter, fMeanGhostPt)); break; case 3: fAreaDefinition = new AreaDefinition(passive_area, GhostedAreaSpec(fGhostEtaMax, fRepeat, fGhostArea, fGridScatter, fPtScatter, fMeanGhostPt)); break; case 4: fAreaDefinition = new AreaDefinition(VoronoiAreaSpec(fEffectiveRfact)); break; case 5: fAreaDefinition = new AreaDefinition(active_area, GhostedAreaSpec(fGhostEtaMax, fRepeat, fGhostArea, fGridScatter, fPtScatter, fMeanGhostPt)); break; default: case 0: fAreaDefinition = 0; break; } switch(fJetAlgorithm) { case 1: plugin = new CDFJetCluPlugin(fSeedThreshold, fConeRadius, fAdjacencyCut, fMaxIterations, fIratch, fOverlapThreshold); fDefinition = new JetDefinition(plugin); break; case 2: plugin = new CDFMidPointPlugin(fSeedThreshold, fConeRadius, fConeAreaFraction, fMaxPairSize, fMaxIterations, fOverlapThreshold); fDefinition = new JetDefinition(plugin); break; case 3: plugin = new SISConePlugin(fConeRadius, fOverlapThreshold, fMaxIterations, fJetPTMin); fDefinition = new JetDefinition(plugin); break; case 4: fDefinition = new JetDefinition(kt_algorithm, fParameterR); break; case 5: fDefinition = new JetDefinition(cambridge_algorithm, fParameterR); break; default: case 6: fDefinition = new JetDefinition(antikt_algorithm, fParameterR); break; case 7: recomb = new WinnerTakeAllRecombiner(); fDefinition = new JetDefinition(antikt_algorithm, fParameterR, recomb, Best); break; case 8: fNjettinessPlugin = new NjettinessPlugin(fN, Njettiness::wta_kt_axes, Njettiness::unnormalized_cutoff_measure, fBeta, fRcutOff); fDefinition = new JetDefinition(fNjettinessPlugin); break; } fPlugin = plugin; fRecomb = recomb; ClusterSequence::print_banner(); if(fComputeRho && fAreaDefinition) { // read eta ranges param = GetParam("RhoEtaRange"); size = param.GetSize(); fEstimators.clear(); for(i = 0; i < size/2; ++i) { etaMin = param[i*2].GetDouble(); etaMax = param[i*2 + 1].GetDouble(); estimatorStruct.estimator = new JetMedianBackgroundEstimator(SelectorRapRange(etaMin, etaMax), *fDefinition, *fAreaDefinition); estimatorStruct.etaMin = etaMin; estimatorStruct.etaMax = etaMax; fEstimators.push_back(estimatorStruct); } } // import input array fInputArray = ImportArray(GetString("InputArray", "Calorimeter/towers")); fItInputArray = fInputArray->MakeIterator(); // create output arrays fOutputArray = ExportArray(GetString("OutputArray", "jets")); fRhoOutputArray = ExportArray(GetString("RhoOutputArray", "rho")); } //------------------------------------------------------------------------------ void FastJetFinder::Finish() { vector< TEstimatorStruct >::iterator itEstimators; for(itEstimators = fEstimators.begin(); itEstimators != fEstimators.end(); ++itEstimators) { if(itEstimators->estimator) delete itEstimators->estimator; } if(fItInputArray) delete fItInputArray; if(fDefinition) delete fDefinition; if(fAreaDefinition) delete fAreaDefinition; if(fPlugin) delete static_cast(fPlugin); if(fRecomb) delete static_cast(fRecomb); if(fNjettinessPlugin) delete static_cast(fNjettinessPlugin); if(fAxesDef) delete fAxesDef; if(fMeasureDef) delete fMeasureDef; } //------------------------------------------------------------------------------ void FastJetFinder::Process() { Candidate *candidate, *constituent; TLorentzVector momentum; Double_t deta, dphi, detaMax, dphiMax; Double_t time, timeWeight; Int_t number, ncharged, nneutrals; Int_t charge; Double_t rho = 0.0; PseudoJet jet, area; ClusterSequence *sequence; vector< PseudoJet > inputList, outputList, subjets; vector< PseudoJet >::iterator itInputList, itOutputList; vector< TEstimatorStruct >::iterator itEstimators; DelphesFactory *factory = GetFactory(); inputList.clear(); // loop over input objects fItInputArray->Reset(); number = 0; while((candidate = static_cast(fItInputArray->Next()))) { momentum = candidate->Momentum; jet = PseudoJet(momentum.Px(), momentum.Py(), momentum.Pz(), momentum.E()); jet.set_user_index(number); inputList.push_back(jet); ++number; } // construct jets if(fAreaDefinition) { sequence = new ClusterSequenceArea(inputList, *fDefinition, *fAreaDefinition); } else { sequence = new ClusterSequence(inputList, *fDefinition); } // compute rho and store it if(fComputeRho && fAreaDefinition) { for(itEstimators = fEstimators.begin(); itEstimators != fEstimators.end(); ++itEstimators) { itEstimators->estimator->set_particles(inputList); rho = itEstimators->estimator->rho(); candidate = factory->NewCandidate(); candidate->Momentum.SetPtEtaPhiE(rho, 0.0, 0.0, rho); candidate->Edges[0] = itEstimators->etaMin; candidate->Edges[1] = itEstimators->etaMax; fRhoOutputArray->Add(candidate); } } outputList.clear(); outputList = sorted_by_pt(sequence->inclusive_jets(fJetPTMin)); // loop over all jets and export them detaMax = 0.0; dphiMax = 0.0; for(itOutputList = outputList.begin(); itOutputList != outputList.end(); ++itOutputList) { jet = *itOutputList; if(fJetAlgorithm == 7) jet = join(jet.constituents()); momentum.SetPxPyPzE(jet.px(), jet.py(), jet.pz(), jet.E()); area.reset(0.0, 0.0, 0.0, 0.0); if(fAreaDefinition) area = itOutputList->area_4vector(); candidate = factory->NewCandidate(); time = 0.0; timeWeight = 0.0; charge = 0; ncharged = 0; nneutrals = 0; inputList.clear(); inputList = sequence->constituents(*itOutputList); for(itInputList = inputList.begin(); itInputList != inputList.end(); ++itInputList) { if(itInputList->user_index() < 0) continue; constituent = static_cast(fInputArray->At(itInputList->user_index())); deta = TMath::Abs(momentum.Eta() - constituent->Momentum.Eta()); dphi = TMath::Abs(momentum.DeltaPhi(constituent->Momentum)); if(deta > detaMax) detaMax = deta; if(dphi > dphiMax) dphiMax = dphi; if(constituent->Charge == 0) nneutrals++; else ncharged++; time += TMath::Sqrt(constituent->Momentum.E())*(constituent->Position.T()); timeWeight += TMath::Sqrt(constituent->Momentum.E()); charge += constituent->Charge; candidate->AddCandidate(constituent); } candidate->Momentum = momentum; candidate->Position.SetT(time/timeWeight); candidate->Area.SetPxPyPzE(area.px(), area.py(), area.pz(), area.E()); candidate->DeltaEta = detaMax; candidate->DeltaPhi = dphiMax; candidate->Charge = charge; candidate->NNeutrals = nneutrals; candidate->NCharged = ncharged; //------------------------------------ // Trimming //------------------------------------ if(fComputeTrimming) { fastjet::Filter trimmer(fastjet::JetDefinition(fastjet::kt_algorithm,fRTrim),fastjet::SelectorPtFractionMin(fPtFracTrim)); fastjet::PseudoJet trimmed_jet = trimmer(*itOutputList); trimmed_jet = join(trimmed_jet.constituents()); candidate->TrimmedP4[0].SetPtEtaPhiM(trimmed_jet.pt(), trimmed_jet.eta(), trimmed_jet.phi(), trimmed_jet.m()); // four hardest subjets subjets.clear(); subjets = trimmed_jet.pieces(); subjets = sorted_by_pt(subjets); candidate->NSubJetsTrimmed = subjets.size(); for (size_t i = 0; i < subjets.size() and i < 4; i++) { if(subjets.at(i).pt() < 0) continue ; candidate->TrimmedP4[i+1].SetPtEtaPhiM(subjets.at(i).pt(), subjets.at(i).eta(), subjets.at(i).phi(), subjets.at(i).m()); } } //------------------------------------ // Pruning //------------------------------------ if(fComputePruning) { fastjet::Pruner pruner(fastjet::JetDefinition(fastjet::cambridge_algorithm,fRPrun),fZcutPrun,fRcutPrun); fastjet::PseudoJet pruned_jet = pruner(*itOutputList); candidate->PrunedP4[0].SetPtEtaPhiM(pruned_jet.pt(), pruned_jet.eta(), pruned_jet.phi(), pruned_jet.m()); // four hardest subjet subjets.clear(); subjets = pruned_jet.pieces(); subjets = sorted_by_pt(subjets); candidate->NSubJetsPruned = subjets.size(); for (size_t i = 0; i < subjets.size() and i < 4; i++) { if(subjets.at(i).pt() < 0) continue ; candidate->PrunedP4[i+1].SetPtEtaPhiM(subjets.at(i).pt(), subjets.at(i).eta(), subjets.at(i).phi(), subjets.at(i).m()); } } //------------------------------------ // SoftDrop //------------------------------------ if(fComputeSoftDrop) { contrib::SoftDrop softDrop(fBetaSoftDrop,fSymmetryCutSoftDrop,fR0SoftDrop); fastjet::PseudoJet softdrop_jet = softDrop(*itOutputList); candidate->SoftDroppedP4[0].SetPtEtaPhiM(softdrop_jet.pt(), softdrop_jet.eta(), softdrop_jet.phi(), softdrop_jet.m()); // four hardest subjet subjets.clear(); subjets = softdrop_jet.pieces(); subjets = sorted_by_pt(subjets); candidate->NSubJetsSoftDropped = softdrop_jet.pieces().size(); for (size_t i = 0; i < subjets.size() and i < 4; i++) { if(subjets.at(i).pt() < 0) continue ; candidate->SoftDroppedP4[i+1].SetPtEtaPhiM(subjets.at(i).pt(), subjets.at(i).eta(), subjets.at(i).phi(), subjets.at(i).m()); } } // --- compute N-subjettiness with N = 1,2,3,4,5 ---- if(fComputeNsubjettiness) { Nsubjettiness nSub1(1, *fAxesDef, *fMeasureDef); Nsubjettiness nSub2(2, *fAxesDef, *fMeasureDef); Nsubjettiness nSub3(3, *fAxesDef, *fMeasureDef); Nsubjettiness nSub4(4, *fAxesDef, *fMeasureDef); Nsubjettiness nSub5(5, *fAxesDef, *fMeasureDef); candidate->Tau[0] = nSub1(*itOutputList); candidate->Tau[1] = nSub2(*itOutputList); candidate->Tau[2] = nSub3(*itOutputList); candidate->Tau[3] = nSub4(*itOutputList); candidate->Tau[4] = nSub5(*itOutputList); } fOutputArray->Add(candidate); } delete sequence; }