/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** \class EICPIDDetector * * Applies complex photon Id. Reconstructed photon candidtes are first separated into matched and non-matched to gen particles. * Non-matched pass the "fake" efficiency. Matched photons get further splitted into isolated and non-isolated (user can choose criterion for isolation) * Isolated photons pass the "prompt" efficiency while the non-isolated pass the "non-prompt" efficiency * * \author M. Selvaggi CERN * */ #include "modules/EICPIDDetector.h" #include "classes/DelphesClasses.h" #include "classes/DelphesFactory.h" #include "classes/DelphesFormula.h" #include "ExRootAnalysis/ExRootClassifier.h" #include "ExRootAnalysis/ExRootFilter.h" #include "ExRootAnalysis/ExRootResult.h" #include "TDatabasePDG.h" #include "TFormula.h" #include "TLorentzVector.h" #include "TMath.h" #include "TObjArray.h" #include "TRandom3.h" #include "TString.h" #include "Math/PdfFuncMathCore.h" #include "Math/ProbFuncMathCore.h" #include "pid/barrelDIRC/src/barrelDirc.h" #include "pid/quintRICH/src/CF4rich.h" #include "pid/mRICH/src/mRICH.h" #include "pid/tofBarrel/src/tofBarrel.h" #include "pid/dRICH/dualRICH.h" #include #include #include #include using namespace std; //------------------------------------------------------------------------------ EICPIDDetector::EICPIDDetector() : fItInputArray(0) { } //------------------------------------------------------------------------------ EICPIDDetector::~EICPIDDetector() { } //------------------------------------------------------------------------------ void EICPIDDetector::Init() { // import input arrays fInputArray = ImportArray(GetString("InputArray", "ParticlePropagator/stableParticles")); fItInputArray = fInputArray->MakeIterator(); // PID Pair to be assessed ExRootConfParam param; Int_t size; param = GetParam("Hypotheses"); size = param.GetSize(); fHypo = static_cast(0); if (size == 2) { fPDG1 = abs(param[0].GetInt()); fPDG2 = abs(param[1].GetInt()); if (fPDG1 == 321) { if (fPDG2 == 211) { fHypo = PID::pi_k; } else if (fPDG2 == 2212) { fHypo = PID::k_p; } } } else { // Bad parameter - do something intelligent here. std::cout << "Unable to retrieve Particle ID hypothesis pair." << std::endl; } fDetectorName = std::string(GetString("DetectorName", "barrelDirc")); // Common PID Detector parameters fTrackResolution = GetDouble("TrackResolution", 0.5); // mrad fTimeResolution = GetDouble("TimeResolution", 0.1); //ns fDetectorLength = GetDouble("DetectorLength", 1500); // mm fetaLow = GetDouble("EtaLow", -8.0); fetaHigh = GetDouble("EtaHigh", 8.0); // Barrel DIRC Parameters fQE = GetDouble("QuantumEfficiency", 0.0); // 0 = 27% for barrelDirc, 1 = 22% for barrelDirc // mRICH Parameters fPixelSize = GetDouble("PixelSize", 1.0); // 1.0 mm // CF4RICH Parameters // Build the detector object if (fDetectorName == "barrelDirc") { fPIDDetector = new barrelDirc(fTrackResolution,fTimeResolution,fQE,fetaLow,fetaHigh); } else if (fDetectorName == "mRICH") { fPIDDetector = new mRICH(fTrackResolution,fTimeResolution, fPixelSize, fetaLow, fetaHigh); //fPIDDetector = new mRICH(0.00175, 1, 3); } else if (fDetectorName == "CF4rich") { fPIDDetector = new CF4rich(fDetectorLength/10, fetaLow, fetaHigh, fPixelSize, fTrackResolution); } else if (fDetectorName == "tofBarrel") { fPIDDetector = new tofBarrel(100, fetaLow, fetaHigh, 10); } else if (fDetectorName == "dualRICH_aerogel") { fPIDDetector = new dualRICH_aerogel(); } else if (fDetectorName == "dualRICH_C2F6") { fPIDDetector = new dualRICH_C2F6(); } else { std::cout << "No valid EIC PID Detector technology was specified!" << std::endl; assert(1==0); } fPIDDetector->description(); // create output array fOutputArray = ExportArray(GetString("OutputArray", "tracks")); } //------------------------------------------------------------------------------ void EICPIDDetector::Finish() { if(fItInputArray) delete fItInputArray; if(fPIDDetector) delete fPIDDetector; } //------------------------------------------------------------------------------ void EICPIDDetector::Process() { Candidate *candidate, *mother; Double_t pt, eta; Int_t true_id; fItInputArray->Reset(); while((candidate = static_cast(fItInputArray->Next()))) { mother = candidate; candidate = static_cast(candidate->Clone()); candidate->AddCandidate(mother); const TLorentzVector &candidateMomentum = candidate->Momentum; eta = candidateMomentum.Eta(); pt = candidateMomentum.Pt(); true_id = candidate->PID; Float_t p = pt * TMath::CosH(eta); // Obtain the number of sigma separation for a given hypothesis pair for this track Bool_t valid = fPIDDetector->valid(eta, p); Double_t nsigma = -1.0; if (valid) { nsigma = fPIDDetector->numSigma(eta, p, fHypo); // Assume that Nsigma_Hypo1 = N_sigma_Hypo2, so that Nsigma_HypoX = Nsigma/Sqrt(2). nsigma = nsigma/TMath::Sqrt(2.0); //std::cout << std::scientific << "EICDetector nsigma = " << nsigma << std::fixed << std::endl; } int pid_reco = 0; int pid_true = TMath::Abs(candidate->PID); if (!valid || TMath::IsNaN(nsigma) || !TMath::Finite(nsigma)) { pid_reco = 0; } else { // Use accept/reject to assign a PID-detector identity to this track Double_t probability = 0.0; if (TMath::Abs(true_id) == fPDG1) { // We are selecting FOR this hypothesis, so use the core of a Gaussian as the probability probability = 1.0 - ROOT::Math::gaussian_pdf(nsigma); } else if (TMath::Abs(true_id) == fPDG2) { // We are trying to reject these using this detector, so the one-sided tail of the Gaussian probability applies probability = 1.0 - ROOT::Math::normal_cdf(nsigma); } // std::cout << "True ID = " << true_id << ", |eta| = " << TMath::Abs(eta) << ", p = " << pt*TMath::CosH(eta) // <<", nsigma = " << std::scientific << nsigma << ", probability = " << std::fixed // << std::scientific << probability << std::fixed << std::endl; // Create a PID value that is the concatenation of two 16-bit numbers. // The lowest 16 bits are the reconstructed PID // The highest 16 bits are the truth PID // Bitmasking and shifting can be used to get these separately. // For example, do the following to get the ... : // // * True PID: (Track.PID & 0xffff0000) >> 16) (Mask-select the highest 16 bits and shift right by 16 bits. // * Reco PID: (Track.PID & 0xffff) (Mask-select the lowest 16 bits) if (gRandom->Uniform(0, 1) < probability) { candidate = static_cast(candidate->Clone()); pid_reco = TMath::Abs(fPDG1); pid_true = TMath::Abs(candidate->PID); } else { pid_reco = TMath::Abs(fPDG2); pid_true = TMath::Abs(candidate->PID); } } int pid_all = pid_reco + (pid_true << 16); candidate->PID = pid_all; fOutputArray->Add(candidate); } }