/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class CscClusterId
*
* This module is specific to the CMS paper searching for neutral LLPs in the CMS endcap muon detectors: https://arxiv.org/abs/2107.04838
* It is implemented based on the cut_based_id.py function provided in the HEPData entry of the paper: https://www.hepdata.net/record/104408
* to reproduce the cut-based ID efficiency of the CMS paper.
*
* \author Christina Wang
*
*/
#include "modules/CscClusterId.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesCscClusterFormula.h"
#include "ExRootAnalysis/ExRootClassifier.h"
#include "ExRootAnalysis/ExRootFilter.h"
#include "ExRootAnalysis/ExRootResult.h"
#include "TDatabasePDG.h"
#include "TFormula.h"
#include "TLorentzVector.h"
#include "TMath.h"
#include "TObjArray.h"
#include "TRandom3.h"
#include "TString.h"
#include
#include
#include
#include
#include "assert.h"
using namespace std;
//------------------------------------------------------------------------------
CscClusterId::CscClusterId() :
fFormula(0), fEtaFormula(0), fItInputArray(0)
{
fFormula = new DelphesCscClusterFormula;
fEtaFormula = new DelphesCscClusterFormula;
}
//------------------------------------------------------------------------------
CscClusterId::~CscClusterId()
{
if(fFormula) delete fFormula;
if(fEtaFormula) delete fEtaFormula;
}
//------------------------------------------------------------------------------
void CscClusterId::Init()
{
// read efficiency formula
fFormula->Compile(GetString("EfficiencyFormula", "1.0"));
fEtaFormula->Compile(GetString("EtaCutFormula", "1.0"));
fEtaCutMax = GetDouble("EtaCutMax", 999.0);
// import input array
fInputArray = ImportArray(GetString("InputArray", "ParticlePropagator/stableParticles"));
fItInputArray = fInputArray->MakeIterator();
// create output array
fOutputArray = ExportArray(GetString("OutputArray", "stableParticles"));
}
//------------------------------------------------------------------------------
void CscClusterId::Finish()
{
if(fItInputArray) delete fItInputArray;
}
//------------------------------------------------------------------------------
void CscClusterId::Process()
{
Candidate *candidate;
Double_t Ehad, Eem, decayR, decayZ, NStationEff, eta, eta_cut;
Int_t avgStation;
Double_t signPz, cosTheta;
fItInputArray->Reset();
while((candidate = static_cast(fItInputArray->Next())))
{
const TLorentzVector &momentum = candidate->Momentum;
const TLorentzVector &candidateDecayPosition = candidate->DecayPosition;
decayZ = abs(candidateDecayPosition.Z());
decayR = sqrt(pow(candidateDecayPosition.X(),2)+pow(candidateDecayPosition.Y(),2));
Ehad = candidate->Ehad;
Eem = candidate->Eem;
cosTheta = TMath::Abs(momentum.CosTheta());
signPz = (momentum.Pz() >= 0.0) ? 1.0 : -1.0;
eta = (cosTheta == 1.0 ? signPz * 999.9 : momentum.Eta());
// calculate the NStation > 1 efficiency, implemented according to Additional Figure 8 in HEPData
NStationEff = fFormula->Eval(decayR, decayZ, Ehad);
// depending on the decay region (station Number), different eta cut is applied, implemented based on cut_based_id.py in HEPData
float eta_cut = fEtaFormula->Eval(decayR, decayZ);
if(gRandom->Uniform() > NStationEff*(abs(eta)Add(candidate);
}
}
//------------------------------------------------------------------------------