/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** \class CscClusterId * * This module is specific to the CMS paper searching for neutral LLPs in the CMS endcap muon detectors: https://arxiv.org/abs/2107.04838 * It is implemented based on the cut_based_id.py function provided in the HEPData entry of the paper: https://www.hepdata.net/record/104408 * to reproduce the cut-based ID efficiency of the CMS paper. * * \author Christina Wang * */ #include "modules/CscClusterId.h" #include "classes/DelphesClasses.h" #include "classes/DelphesFactory.h" #include "classes/DelphesCscClusterFormula.h" #include "ExRootAnalysis/ExRootClassifier.h" #include "ExRootAnalysis/ExRootFilter.h" #include "ExRootAnalysis/ExRootResult.h" #include "TDatabasePDG.h" #include "TFormula.h" #include "TLorentzVector.h" #include "TMath.h" #include "TObjArray.h" #include "TRandom3.h" #include "TString.h" #include #include #include #include #include "assert.h" using namespace std; //------------------------------------------------------------------------------ CscClusterId::CscClusterId() : fFormula(0), fEtaFormula(0), fItInputArray(0) { fFormula = new DelphesCscClusterFormula; fEtaFormula = new DelphesCscClusterFormula; } //------------------------------------------------------------------------------ CscClusterId::~CscClusterId() { if(fFormula) delete fFormula; if(fEtaFormula) delete fEtaFormula; } //------------------------------------------------------------------------------ void CscClusterId::Init() { // read efficiency formula fFormula->Compile(GetString("EfficiencyFormula", "1.0")); fEtaFormula->Compile(GetString("EtaCutFormula", "1.0")); fEtaCutMax = GetDouble("EtaCutMax", 999.0); // import input array fInputArray = ImportArray(GetString("InputArray", "ParticlePropagator/stableParticles")); fItInputArray = fInputArray->MakeIterator(); // create output array fOutputArray = ExportArray(GetString("OutputArray", "stableParticles")); } //------------------------------------------------------------------------------ void CscClusterId::Finish() { if(fItInputArray) delete fItInputArray; } //------------------------------------------------------------------------------ void CscClusterId::Process() { Candidate *candidate; Double_t Ehad, Eem, decayR, decayZ, NStationEff, eta, eta_cut; Int_t avgStation; Double_t signPz, cosTheta; fItInputArray->Reset(); while((candidate = static_cast(fItInputArray->Next()))) { const TLorentzVector &momentum = candidate->Momentum; const TLorentzVector &candidateDecayPosition = candidate->DecayPosition; decayZ = abs(candidateDecayPosition.Z()); decayR = sqrt(pow(candidateDecayPosition.X(),2)+pow(candidateDecayPosition.Y(),2)); Ehad = candidate->Ehad; Eem = candidate->Eem; cosTheta = TMath::Abs(momentum.CosTheta()); signPz = (momentum.Pz() >= 0.0) ? 1.0 : -1.0; eta = (cosTheta == 1.0 ? signPz * 999.9 : momentum.Eta()); // calculate the NStation > 1 efficiency, implemented according to Additional Figure 8 in HEPData NStationEff = fFormula->Eval(decayR, decayZ, Ehad); // depending on the decay region (station Number), different eta cut is applied, implemented based on cut_based_id.py in HEPData float eta_cut = fEtaFormula->Eval(decayR, decayZ); if(gRandom->Uniform() > NStationEff*(abs(eta)Add(candidate); } } //------------------------------------------------------------------------------