/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2020 Universite catholique de Louvain (UCLouvain), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** \class ClusterCounting * * Counts ionisation clusters of energy loss in drift chambers * * \authors F. Bedeschi - INFN Pisa * P. Demin - UCLouvain, Louvain-la-Neuve * M. Selvaggi - CERN * * */ #include "modules/ClusterCounting.h" #include "classes/DelphesClasses.h" #include "TrackCovariance/TrkUtil.h" #include "TLorentzVector.h" #include "TVectorD.h" #include "TMath.h" #include "TObjArray.h" #include #include using namespace std; //------------------------------------------------------------------------------ ClusterCounting::ClusterCounting() : fTrackUtil(0) { fTrackUtil = new TrkUtil(); } //------------------------------------------------------------------------------ ClusterCounting::~ClusterCounting() { if(fTrackUtil) delete fTrackUtil; } //------------------------------------------------------------------------------ void ClusterCounting::Init() { // geometric acceptance fRmin = GetDouble("Rmin", 0.); fRmax = GetDouble("Rmax", 0.); fZmin = GetDouble("Zmin", 0.); fZmax = GetDouble("Zmax", 0.); // magnetic field fBz = GetDouble("Bz", 0.); // gas mix option: 0 // 0: Helium 90 - Isobutane 10 // 1: Helium 100 // 2: Argon 50 - Ethane 50 // 3: Argon 100 fGasOption = GetInt("GasOption", 0); // initialize drift chamber geometry and gas mix fTrackUtil->SetBfield(fBz); fTrackUtil->SetDchBoundaries(fRmin, fRmax, fZmin, fZmax); fTrackUtil->SetGasMix(fGasOption); // import input array fInputArray = ImportArray(GetString("InputArray", "TrackMerger/tracks")); fItInputArray = fInputArray->MakeIterator(); // create output array fOutputArray = ExportArray(GetString("OutputArray", "tracks")); } //------------------------------------------------------------------------------ void ClusterCounting::Finish() { if(fItInputArray) delete fItInputArray; } //------------------------------------------------------------------------------ void ClusterCounting::Process() { Candidate *candidate, *mother, *particle; Double_t mass, trackLength, Ncl; fItInputArray->Reset(); while((candidate = static_cast(fItInputArray->Next()))) { // converting to meters particle = static_cast(candidate->GetCandidates()->At(0)); // converting to meters const TLorentzVector &candidatePosition = particle->Position*1e-03; const TLorentzVector &candidateMomentum = particle->Momentum; TVectorD Par = TrkUtil::XPtoPar(candidatePosition.Vect(), candidateMomentum.Vect(), candidate->Charge, fBz); mass = candidateMomentum.M(); trackLength = fTrackUtil->TrkLen(Par); mother = candidate; candidate = static_cast(candidate->Clone()); Ncl = 0.; if (fTrackUtil->IonClusters(Ncl, mass, Par)) { candidate->Nclusters = Ncl; candidate->dNdx = (trackLength > 0.) ? Ncl/trackLength : -1; } candidate->AddCandidate(mother); fOutputArray->Add(candidate); } } //------------------------------------------------------------------------------