/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2020 Universite catholique de Louvain (UCLouvain), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class ClusterCounting
*
* Counts ionisation clusters of energy loss in drift chambers
*
* \authors F. Bedeschi - INFN Pisa
* P. Demin - UCLouvain, Louvain-la-Neuve
* M. Selvaggi - CERN
*
*
*/
#include "modules/ClusterCounting.h"
#include "classes/DelphesClasses.h"
#include "TrackCovariance/TrkUtil.h"
#include "TLorentzVector.h"
#include "TVectorD.h"
#include "TMath.h"
#include "TObjArray.h"
#include
#include
using namespace std;
//------------------------------------------------------------------------------
ClusterCounting::ClusterCounting() :
fTrackUtil(0)
{
fTrackUtil = new TrkUtil();
}
//------------------------------------------------------------------------------
ClusterCounting::~ClusterCounting()
{
if(fTrackUtil) delete fTrackUtil;
}
//------------------------------------------------------------------------------
void ClusterCounting::Init()
{
// geometric acceptance
fRmin = GetDouble("Rmin", 0.);
fRmax = GetDouble("Rmax", 0.);
fZmin = GetDouble("Zmin", 0.);
fZmax = GetDouble("Zmax", 0.);
// magnetic field
fBz = GetDouble("Bz", 0.);
// gas mix option: 0
// 0: Helium 90 - Isobutane 10
// 1: Helium 100
// 2: Argon 50 - Ethane 50
// 3: Argon 100
fGasOption = GetInt("GasOption", 0);
// initialize drift chamber geometry and gas mix
fTrackUtil->SetBfield(fBz);
fTrackUtil->SetDchBoundaries(fRmin, fRmax, fZmin, fZmax);
fTrackUtil->SetGasMix(fGasOption);
// import input array
fInputArray = ImportArray(GetString("InputArray", "TrackMerger/tracks"));
fItInputArray = fInputArray->MakeIterator();
// create output array
fOutputArray = ExportArray(GetString("OutputArray", "tracks"));
}
//------------------------------------------------------------------------------
void ClusterCounting::Finish()
{
if(fItInputArray) delete fItInputArray;
}
//------------------------------------------------------------------------------
void ClusterCounting::Process()
{
Candidate *candidate, *mother, *particle;
Double_t mass, trackLength, Ncl;
fItInputArray->Reset();
while((candidate = static_cast(fItInputArray->Next())))
{
// converting to meters
particle = static_cast(candidate->GetCandidates()->At(0));
// converting to meters
const TLorentzVector &candidatePosition = particle->Position*1e-03;
const TLorentzVector &candidateMomentum = particle->Momentum;
TVectorD Par = TrkUtil::XPtoPar(candidatePosition.Vect(), candidateMomentum.Vect(), candidate->Charge, fBz);
mass = candidateMomentum.M();
trackLength = fTrackUtil->TrkLen(Par);
mother = candidate;
candidate = static_cast(candidate->Clone());
Ncl = 0.;
if (fTrackUtil->IonClusters(Ncl, mass, Par))
{
candidate->Nclusters = Ncl;
candidate->dNdx = (trackLength > 0.) ? Ncl/trackLength : -1;
}
candidate->AddCandidate(mother);
fOutputArray->Add(candidate);
}
}
//------------------------------------------------------------------------------