/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/** \class Calorimeter
*
* Fills calorimeter towers, performs calorimeter resolution smearing,
* and creates energy flow objects (tracks, photons, and neutral hadrons).
*
* \author P. Demin - UCL, Louvain-la-Neuve
*
*/
#include "modules/Calorimeter.h"
#include "classes/DelphesClasses.h"
#include "classes/DelphesFactory.h"
#include "classes/DelphesFormula.h"
#include "ExRootAnalysis/ExRootResult.h"
#include "ExRootAnalysis/ExRootFilter.h"
#include "ExRootAnalysis/ExRootClassifier.h"
#include "TMath.h"
#include "TString.h"
#include "TFormula.h"
#include "TRandom3.h"
#include "TObjArray.h"
#include "TDatabasePDG.h"
#include "TLorentzVector.h"
#include
#include
#include
#include
using namespace std;
//------------------------------------------------------------------------------
Calorimeter::Calorimeter() :
fECalResolutionFormula(0), fHCalResolutionFormula(0),
fItParticleInputArray(0), fItTrackInputArray(0)
{
fECalResolutionFormula = new DelphesFormula;
fHCalResolutionFormula = new DelphesFormula;
fECalTowerTrackArray = new TObjArray;
fItECalTowerTrackArray = fECalTowerTrackArray->MakeIterator();
fHCalTowerTrackArray = new TObjArray;
fItHCalTowerTrackArray = fHCalTowerTrackArray->MakeIterator();
}
//------------------------------------------------------------------------------
Calorimeter::~Calorimeter()
{
if(fECalResolutionFormula) delete fECalResolutionFormula;
if(fHCalResolutionFormula) delete fHCalResolutionFormula;
if(fECalTowerTrackArray) delete fECalTowerTrackArray;
if(fItECalTowerTrackArray) delete fItECalTowerTrackArray;
if(fHCalTowerTrackArray) delete fHCalTowerTrackArray;
if(fItHCalTowerTrackArray) delete fItHCalTowerTrackArray;
}
//------------------------------------------------------------------------------
void Calorimeter::Init()
{
ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
Long_t i, j, k, size, sizeEtaBins, sizePhiBins;
Double_t ecalFraction, hcalFraction;
TBinMap::iterator itEtaBin;
set< Double_t >::iterator itPhiBin;
vector< Double_t > *phiBins;
// read eta and phi bins
param = GetParam("EtaPhiBins");
size = param.GetSize();
fBinMap.clear();
fEtaBins.clear();
fPhiBins.clear();
for(i = 0; i < size/2; ++i)
{
paramEtaBins = param[i*2];
sizeEtaBins = paramEtaBins.GetSize();
paramPhiBins = param[i*2 + 1];
sizePhiBins = paramPhiBins.GetSize();
for(j = 0; j < sizeEtaBins; ++j)
{
for(k = 0; k < sizePhiBins; ++k)
{
fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
}
}
}
// for better performance we transform map of sets to parallel vectors:
// vector< double > and vector< vector< double >* >
for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
{
fEtaBins.push_back(itEtaBin->first);
phiBins = new vector< double >(itEtaBin->second.size());
fPhiBins.push_back(phiBins);
phiBins->clear();
for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
{
phiBins->push_back(*itPhiBin);
}
}
// read energy fractions for different particles
param = GetParam("EnergyFraction");
size = param.GetSize();
// set default energy fractions values
fFractionMap.clear();
fFractionMap[0] = make_pair(0.0, 1.0);
for(i = 0; i < size/2; ++i)
{
paramFractions = param[i*2 + 1];
ecalFraction = paramFractions[0].GetDouble();
hcalFraction = paramFractions[1].GetDouble();
fFractionMap[param[i*2].GetInt()] = make_pair(ecalFraction, hcalFraction);
}
// read min E value for timing measurement in ECAL
fTimingEnergyMin = GetDouble("TimingEnergyMin",4.);
// For timing
// So far this flag needs to be false
// Curved extrapolation not supported
fElectronsFromTrack = false;
// read min E value for towers to be saved
fECalEnergyMin = GetDouble("ECalEnergyMin", 0.0);
fHCalEnergyMin = GetDouble("HCalEnergyMin", 0.0);
fECalEnergySignificanceMin = GetDouble("ECalEnergySignificanceMin", 0.0);
fHCalEnergySignificanceMin = GetDouble("HCalEnergySignificanceMin", 0.0);
// switch on or off the dithering of the center of calorimeter towers
fSmearTowerCenter = GetBool("SmearTowerCenter", true);
// read resolution formulas
fECalResolutionFormula->Compile(GetString("ECalResolutionFormula", "0"));
fHCalResolutionFormula->Compile(GetString("HCalResolutionFormula", "0"));
// import array with output from other modules
fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
fItParticleInputArray = fParticleInputArray->MakeIterator();
fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
fItTrackInputArray = fTrackInputArray->MakeIterator();
// create output arrays
fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
fPhotonOutputArray = ExportArray(GetString("PhotonOutputArray", "photons"));
fEFlowTrackOutputArray = ExportArray(GetString("EFlowTrackOutputArray", "eflowTracks"));
fEFlowPhotonOutputArray = ExportArray(GetString("EFlowPhotonOutputArray", "eflowPhotons"));
fEFlowNeutralHadronOutputArray = ExportArray(GetString("EFlowNeutralHadronOutputArray", "eflowNeutralHadrons"));
}
//------------------------------------------------------------------------------
void Calorimeter::Finish()
{
vector< vector< Double_t >* >::iterator itPhiBin;
if(fItParticleInputArray) delete fItParticleInputArray;
if(fItTrackInputArray) delete fItTrackInputArray;
for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
{
delete *itPhiBin;
}
}
//------------------------------------------------------------------------------
void Calorimeter::Process()
{
Candidate *particle, *track;
TLorentzVector position, momentum;
Short_t etaBin, phiBin, flags;
Int_t number;
Long64_t towerHit, towerEtaPhi, hitEtaPhi;
Double_t ecalFraction, hcalFraction;
Double_t ecalEnergy, hcalEnergy;
Int_t pdgCode;
TFractionMap::iterator itFractionMap;
vector< Double_t >::iterator itEtaBin;
vector< Double_t >::iterator itPhiBin;
vector< Double_t > *phiBins;
vector< Long64_t >::iterator itTowerHits;
DelphesFactory *factory = GetFactory();
fTowerHits.clear();
fECalTowerFractions.clear();
fHCalTowerFractions.clear();
fECalTrackFractions.clear();
fHCalTrackFractions.clear();
// loop over all particles
fItParticleInputArray->Reset();
number = -1;
while((particle = static_cast(fItParticleInputArray->Next())))
{
const TLorentzVector &particlePosition = particle->Position;
++number;
pdgCode = TMath::Abs(particle->PID);
itFractionMap = fFractionMap.find(pdgCode);
if(itFractionMap == fFractionMap.end())
{
itFractionMap = fFractionMap.find(0);
}
ecalFraction = itFractionMap->second.first;
hcalFraction = itFractionMap->second.second;
fECalTowerFractions.push_back(ecalFraction);
fHCalTowerFractions.push_back(hcalFraction);
if(ecalFraction < 1.0E-9 && hcalFraction < 1.0E-9) continue;
// find eta bin [1, fEtaBins.size - 1]
itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
etaBin = distance(fEtaBins.begin(), itEtaBin);
// phi bins for given eta bin
phiBins = fPhiBins[etaBin];
// find phi bin [1, phiBins.size - 1]
itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
phiBin = distance(phiBins->begin(), itPhiBin);
flags = 0;
flags |= (pdgCode == 11 || pdgCode == 22) << 1;
// make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
fTowerHits.push_back(towerHit);
}
// loop over all tracks
fItTrackInputArray->Reset();
number = -1;
while((track = static_cast(fItTrackInputArray->Next())))
{
const TLorentzVector &trackPosition = track->Position;
++number;
pdgCode = TMath::Abs(track->PID);
itFractionMap = fFractionMap.find(pdgCode);
if(itFractionMap == fFractionMap.end())
{
itFractionMap = fFractionMap.find(0);
}
ecalFraction = itFractionMap->second.first;
hcalFraction = itFractionMap->second.second;
fECalTrackFractions.push_back(ecalFraction);
fHCalTrackFractions.push_back(hcalFraction);
// find eta bin [1, fEtaBins.size - 1]
itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
etaBin = distance(fEtaBins.begin(), itEtaBin);
// phi bins for given eta bin
phiBins = fPhiBins[etaBin];
// find phi bin [1, phiBins.size - 1]
itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
phiBin = distance(phiBins->begin(), itPhiBin);
flags = 1;
// make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
fTowerHits.push_back(towerHit);
}
// all hits are sorted first by eta bin number, then by phi bin number,
// then by flags and then by particle or track number
sort(fTowerHits.begin(), fTowerHits.end());
// loop over all hits
towerEtaPhi = 0;
fTower = 0;
for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
{
towerHit = (*itTowerHits);
flags = (towerHit >> 24) & 0x00000000000000FFLL;
number = (towerHit) & 0x0000000000FFFFFFLL;
hitEtaPhi = towerHit >> 32;
if(towerEtaPhi != hitEtaPhi)
{
// switch to next tower
towerEtaPhi = hitEtaPhi;
// finalize previous tower
FinalizeTower();
// create new tower
fTower = factory->NewCandidate();
phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
// phi bins for given eta bin
phiBins = fPhiBins[etaBin];
// calculate eta and phi of the tower's center
fTowerEta = 0.5*(fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
fTowerPhi = 0.5*((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
fTowerEdges[0] = fEtaBins[etaBin - 1];
fTowerEdges[1] = fEtaBins[etaBin];
fTowerEdges[2] = (*phiBins)[phiBin - 1];
fTowerEdges[3] = (*phiBins)[phiBin];
fECalTowerEnergy = 0.0;
fHCalTowerEnergy = 0.0;
fECalTrackEnergy = 0.0;
fHCalTrackEnergy = 0.0;
fECalTrackSigma = 0.0;
fHCalTrackSigma = 0.0;
fTowerTrackHits = 0;
fTowerPhotonHits = 0;
fECalTowerTrackArray->Clear();
fHCalTowerTrackArray->Clear();
}
// check for track hits
if(flags & 1)
{
++fTowerTrackHits;
track = static_cast(fTrackInputArray->At(number));
momentum = track->Momentum;
position = track->Position;
ecalEnergy = momentum.E() * fECalTrackFractions[number];
hcalEnergy = momentum.E() * fHCalTrackFractions[number];
if(ecalEnergy > fTimingEnergyMin && fTower)
{
if(fElectronsFromTrack)
{
fTower->ECalEnergyTimePairs.push_back(make_pair(ecalEnergy, track->Position.T()));
}
}
if(fECalTrackFractions[number] > 1.0E-9 && fHCalTrackFractions[number] < 1.0E-9)
{
fECalTrackEnergy += ecalEnergy;
fECalTrackSigma += (track->TrackResolution)*momentum.E()*(track->TrackResolution)*momentum.E();
fECalTowerTrackArray->Add(track);
}
else if(fECalTrackFractions[number] < 1.0E-9 && fHCalTrackFractions[number] > 1.0E-9)
{
fHCalTrackEnergy += hcalEnergy;
fHCalTrackSigma += (track->TrackResolution)*momentum.E()*(track->TrackResolution)*momentum.E();
fHCalTowerTrackArray->Add(track);
}
else if(fECalTrackFractions[number] < 1.0E-9 && fHCalTrackFractions[number] < 1.0E-9)
{
fEFlowTrackOutputArray->Add(track);
}
continue;
}
// check for photon and electron hits in current tower
if(flags & 2) ++fTowerPhotonHits;
particle = static_cast(fParticleInputArray->At(number));
momentum = particle->Momentum;
position = particle->Position;
// fill current tower
ecalEnergy = momentum.E() * fECalTowerFractions[number];
hcalEnergy = momentum.E() * fHCalTowerFractions[number];
fECalTowerEnergy += ecalEnergy;
fHCalTowerEnergy += hcalEnergy;
if(ecalEnergy > fTimingEnergyMin && fTower)
{
if (abs(particle->PID) != 11 || !fElectronsFromTrack)
{
fTower->ECalEnergyTimePairs.push_back(make_pair(ecalEnergy, particle->Position.T()));
}
}
fTower->AddCandidate(particle);
}
// finalize last tower
FinalizeTower();
}
//------------------------------------------------------------------------------
void Calorimeter::FinalizeTower()
{
Candidate *track, *tower, *mother;
Double_t energy, pt, eta, phi;
Double_t ecalEnergy, hcalEnergy;
Double_t ecalNeutralEnergy, hcalNeutralEnergy;
Double_t ecalSigma, hcalSigma;
Double_t ecalNeutralSigma, hcalNeutralSigma;
Double_t weightTrack, weightCalo, bestEnergyEstimate, rescaleFactor;
TLorentzVector momentum;
TFractionMap::iterator itFractionMap;
Float_t weight, sumWeightedTime, sumWeight;
if(!fTower) return;
ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fECalTowerEnergy);
hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fHCalTowerEnergy);
ecalEnergy = LogNormal(fECalTowerEnergy, ecalSigma);
hcalEnergy = LogNormal(fHCalTowerEnergy, hcalSigma);
ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, ecalEnergy);
hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, hcalEnergy);
if(ecalEnergy < fECalEnergyMin || ecalEnergy < fECalEnergySignificanceMin*ecalSigma) ecalEnergy = 0.0;
if(hcalEnergy < fHCalEnergyMin || hcalEnergy < fHCalEnergySignificanceMin*hcalSigma) hcalEnergy = 0.0;
energy = ecalEnergy + hcalEnergy;
if(fSmearTowerCenter)
{
eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
}
else
{
eta = fTowerEta;
phi = fTowerPhi;
}
pt = energy / TMath::CosH(eta);
// Time calculation for tower
fTower->NTimeHits = 0;
sumWeightedTime = 0.0;
sumWeight = 0.0;
for(size_t i = 0; i < fTower->ECalEnergyTimePairs.size(); ++i)
{
weight = TMath::Sqrt(fTower->ECalEnergyTimePairs[i].first);
sumWeightedTime += weight * fTower->ECalEnergyTimePairs[i].second;
sumWeight += weight;
fTower->NTimeHits++;
}
if(sumWeight > 0.0)
{
fTower->Position.SetPtEtaPhiE(1.0, eta, phi, sumWeightedTime/sumWeight);
}
else
{
fTower->Position.SetPtEtaPhiE(1.0, eta, phi, 999999.9);
}
fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
fTower->Eem = ecalEnergy;
fTower->Ehad = hcalEnergy;
fTower->Edges[0] = fTowerEdges[0];
fTower->Edges[1] = fTowerEdges[1];
fTower->Edges[2] = fTowerEdges[2];
fTower->Edges[3] = fTowerEdges[3];
if(energy > 0.0)
{
if(fTowerPhotonHits > 0 && fTowerTrackHits == 0)
{
fPhotonOutputArray->Add(fTower);
}
fTowerOutputArray->Add(fTower);
}
// fill energy flow candidates
fECalTrackSigma = TMath::Sqrt(fECalTrackSigma);
fHCalTrackSigma = TMath::Sqrt(fHCalTrackSigma);
//compute neutral excesses
ecalNeutralEnergy = max( (ecalEnergy - fECalTrackEnergy) , 0.0);
hcalNeutralEnergy = max( (hcalEnergy - fHCalTrackEnergy) , 0.0);
ecalNeutralSigma = ecalNeutralEnergy / TMath::Sqrt(fECalTrackSigma*fECalTrackSigma + ecalSigma*ecalSigma);
hcalNeutralSigma = hcalNeutralEnergy / TMath::Sqrt(fHCalTrackSigma*fHCalTrackSigma + hcalSigma*hcalSigma);
// if ecal neutral excess is significant, simply create neutral EflowPhoton tower and clone each track into eflowtrack
if(ecalNeutralEnergy > fECalEnergyMin && ecalNeutralSigma > fECalEnergySignificanceMin)
{
// create new photon tower
tower = static_cast(fTower->Clone());
pt = ecalNeutralEnergy / TMath::CosH(eta);
tower->Momentum.SetPtEtaPhiE(pt, eta, phi, ecalNeutralEnergy);
tower->Eem = ecalNeutralEnergy;
tower->Ehad = 0.0;
fEFlowPhotonOutputArray->Add(tower);
//clone tracks
fItECalTowerTrackArray->Reset();
while((track = static_cast(fItECalTowerTrackArray->Next())))
{
mother = track;
track = static_cast(track->Clone());
track->AddCandidate(mother);
fEFlowTrackOutputArray->Add(track);
}
}
// if neutral excess is not significant, rescale eflow tracks, such that the total charged equals the best measurement given by the calorimeter and tracking
else if(fECalTrackEnergy > 0.0)
{
weightTrack = (fECalTrackSigma > 0.0) ? 1 / (fECalTrackSigma*fECalTrackSigma) : 0.0;
weightCalo = (ecalSigma > 0.0) ? 1 / (ecalSigma*ecalSigma) : 0.0;
bestEnergyEstimate = (weightTrack*fECalTrackEnergy + weightCalo*ecalEnergy) / (weightTrack + weightCalo);
rescaleFactor = bestEnergyEstimate/fECalTrackEnergy;
//rescale tracks
fItECalTowerTrackArray->Reset();
while((track = static_cast(fItECalTowerTrackArray->Next())))
{
mother = track;
track = static_cast(track->Clone());
track->AddCandidate(mother);
track->Momentum *= rescaleFactor;
fEFlowTrackOutputArray->Add(track);
}
}
// if hcal neutral excess is significant, simply create neutral EflowNeutralHadron tower and clone each track into eflowtrack
if(hcalNeutralEnergy > fHCalEnergyMin && hcalNeutralSigma > fHCalEnergySignificanceMin)
{
// create new photon tower
tower = static_cast(fTower->Clone());
pt = hcalNeutralEnergy / TMath::CosH(eta);
tower->Momentum.SetPtEtaPhiE(pt, eta, phi, hcalNeutralEnergy);
tower->Ehad = hcalNeutralEnergy;
tower->Eem = 0.0;
fEFlowNeutralHadronOutputArray->Add(tower);
//clone tracks
fItHCalTowerTrackArray->Reset();
while((track = static_cast(fItHCalTowerTrackArray->Next())))
{
mother = track;
track = static_cast(track->Clone());
track->AddCandidate(mother);
fEFlowTrackOutputArray->Add(track);
}
}
// if neutral excess is not significant, rescale eflow tracks, such that the total charged equals the best measurement given by the calorimeter and tracking
else if(fHCalTrackEnergy > 0.0)
{
weightTrack = (fHCalTrackSigma > 0.0) ? 1 / (fHCalTrackSigma*fHCalTrackSigma) : 0.0;
weightCalo = (hcalSigma > 0.0) ? 1 / (hcalSigma*hcalSigma) : 0.0;
bestEnergyEstimate = (weightTrack*fHCalTrackEnergy + weightCalo*hcalEnergy) / (weightTrack + weightCalo);
rescaleFactor = bestEnergyEstimate / fHCalTrackEnergy;
//rescale tracks
fItECalTowerTrackArray->Reset();
while((track = static_cast(fItECalTowerTrackArray->Next())))
{
mother = track;
track = static_cast(track->Clone());
track->AddCandidate(mother);
track->Momentum *= rescaleFactor;
fEFlowTrackOutputArray->Add(track);
}
}
}
//------------------------------------------------------------------------------
Double_t Calorimeter::LogNormal(Double_t mean, Double_t sigma)
{
Double_t a, b;
if(mean > 0.0)
{
b = TMath::Sqrt(TMath::Log((1.0 + (sigma*sigma)/(mean*mean))));
a = TMath::Log(mean) - 0.5*b*b;
return TMath::Exp(a + b*gRandom->Gaus(0.0, 1.0));
}
else
{
return 0.0;
}
}