//FJSTARTHEADER // $Id: GridMedianBackgroundEstimator.cc 4354 2018-04-22 07:12:37Z salam $ // // Copyright (c) 2005-2018, Matteo Cacciari, Gavin P. Salam and Gregory Soyez // //---------------------------------------------------------------------- // This file is part of FastJet. // // FastJet is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // The algorithms that underlie FastJet have required considerable // development. They are described in the original FastJet paper, // hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use // FastJet as part of work towards a scientific publication, please // quote the version you use and include a citation to the manual and // optionally also to hep-ph/0512210. // // FastJet is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with FastJet. If not, see . //---------------------------------------------------------------------- //FJENDHEADER #include "fastjet/tools/GridMedianBackgroundEstimator.hh" using namespace std; FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh //---------------------------------------------------------------------- // setting a new event //---------------------------------------------------------------------- // tell the background estimator that it has a new event, composed // of the specified particles. void GridMedianBackgroundEstimator::set_particles(const vector & particles) { vector scalar_pt(n_tiles(), 0.0); #ifdef FASTJET_GMBGE_USEFJGRID assert(all_tiles_equal_area()); //assert(n_good_tiles() == n_tiles()); // not needed now that we have an implementation #endif // check if we need to compute only rho or both rho and rho_m if (_enable_rho_m){ // both rho and rho_m // // this requires a few other variables vector scalar_dt(n_tiles(), 0.0); double pt, dt; for (unsigned i = 0; i < particles.size(); i++) { int j = tile_index(particles[i]); if (j >= 0){ pt = particles[i].pt(); dt = particles[i].mt() - pt; if (_rescaling_class == 0){ scalar_pt[j] += pt; scalar_dt[j] += dt; } else { double r = (*_rescaling_class)(particles[i]); scalar_pt[j] += pt/r; scalar_dt[j] += dt/r; } } } // sort things for _percentile sort(scalar_dt.begin(), scalar_dt.end()); // compute rho_m and sigma_m (see comment below for the // normaliosation of sigma) double p50 = _percentile(scalar_dt, 0.5); _rho_m = p50 / mean_tile_area(); _sigma_m = (p50-_percentile(scalar_dt, (1.0-0.6827)/2.0))/sqrt(mean_tile_area()); } else { // only rho //fill(_scalar_pt.begin(), _scalar_pt.end(), 0.0); for (unsigned i = 0; i < particles.size(); i++) { int j = tile_index(particles[i]); if (j >= 0){ if (_rescaling_class == 0){ scalar_pt[j] += particles[i].pt(); } else { scalar_pt[j] += particles[i].pt()/(*_rescaling_class)(particles[i]); } } } } // if there are some "bad" tiles, then we need to exclude them from // the calculation of the median. We'll do this by condensing the // scalar_pt vector down to just the values for the tiles that are // good. // // tested answers look right in "issue" 2014-08-08-testing-rect-grid if (n_good_tiles() != n_tiles()) { int newn = 0; for (unsigned i = 0; i < scalar_pt.size(); i++) { if (tile_is_good(i)) { // clang gets confused with the SharedPtr swap if we don't // have std:: here std::swap(scalar_pt[i],scalar_pt[newn]); newn++; } } scalar_pt.resize(newn); } // in all cases, carry on with the computation of rho // // first sort sort(scalar_pt.begin(), scalar_pt.end()); // then compute rho // // watch out: by definition, our sigma is the standard deviation of // the pt density multiplied by the square root of the cell area double p50 = _percentile(scalar_pt, 0.5); _rho = p50 / mean_tile_area(); _sigma = (p50-_percentile(scalar_pt, (1.0-0.6827)/2.0))/sqrt(mean_tile_area()); _has_particles = true; } //---------------------------------------------------------------------- // retrieving fundamental information //---------------------------------------------------------------------- // get rho, the median background density per unit area double GridMedianBackgroundEstimator::rho() const { verify_particles_set(); return _rho; } //---------------------------------------------------------------------- // get sigma, the background fluctuations per unit area; must be // multipled by sqrt(area) to get fluctuations for a region of a // given area. double GridMedianBackgroundEstimator::sigma() const{ verify_particles_set(); return _sigma; } //---------------------------------------------------------------------- // get rho, the background density per unit area, locally at the // position of a given jet. Note that this is not const, because a // user may then wish to query other aspects of the background that // could depend on the position of the jet last used for a rho(jet) // determination. double GridMedianBackgroundEstimator::rho(const PseudoJet & jet) { //verify_particles_set(); double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet); return rescaling*rho(); } //---------------------------------------------------------------------- // get sigma, the background fluctuations per unit area, locally at // the position of a given jet. As for rho(jet), it is non-const. double GridMedianBackgroundEstimator::sigma(const PseudoJet & jet){ //verify_particles_set(); double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet); return rescaling*sigma(); } //---------------------------------------------------------------------- // returns rho_m (particle-masses contribution to the 4-vector density) double GridMedianBackgroundEstimator::rho_m() const { if (! _enable_rho_m){ throw Error("GridMediamBackgroundEstimator: rho_m requested but rho_m calculation has been disabled."); } verify_particles_set(); return _rho_m; } //---------------------------------------------------------------------- // returns sigma_m (particle-masses contribution to the 4-vector // density); must be multipled by sqrt(area) to get fluctuations // for a region of a given area. double GridMedianBackgroundEstimator::sigma_m() const{ if (! _enable_rho_m){ throw Error("GridMediamBackgroundEstimator: sigma_m requested but rho_m/sigma_m calculation has been disabled."); } verify_particles_set(); return _sigma_m; } //---------------------------------------------------------------------- // returns rho_m locally at the position of a given jet. As for // rho(jet), it is non-const. double GridMedianBackgroundEstimator::rho_m(const PseudoJet & jet) { //verify_particles_set(); double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet); return rescaling*rho_m(); } //---------------------------------------------------------------------- // returns sigma_m locally at the position of a given jet. As for // rho(jet), it is non-const. double GridMedianBackgroundEstimator::sigma_m(const PseudoJet & jet){ //verify_particles_set(); double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet); return rescaling*sigma_m(); } //---------------------------------------------------------------------- // verify that particles have been set and throw an error if not void GridMedianBackgroundEstimator::verify_particles_set() const { if (!_has_particles) throw Error("GridMedianBackgroundEstimator::rho() or sigma() called without particles having been set"); } //---------------------------------------------------------------------- // description //---------------------------------------------------------------------- string GridMedianBackgroundEstimator::description() const { ostringstream desc; #ifdef FASTJET_GMBGE_USEFJGRID desc << "GridMedianBackgroundEstimator, with " << RectangularGrid::description(); #else desc << "GridMedianBackgroundEstimator, with grid extension |y| < " << _ymax << ", and grid cells of size dy x dphi = " << _dy << " x " << _dphi << " (requested size = " << _requested_grid_spacing << ")"; #endif return desc.str(); } //---------------------------------------------------------------------- // configuring the behaviour //---------------------------------------------------------------------- // Set a pointer to a class that calculates the rescaling factor as // a function of the jet (position). Note that the rescaling factor // is used both in the determination of the "global" rho (the pt/A // of each jet is divided by this factor) and when asking for a // local rho (the result is multiplied by this factor). // // The BackgroundRescalingYPolynomial class can be used to get a // rescaling that depends just on rapidity. // // Note that this has to be called BEFORE any attempt to do an // actual computation void GridMedianBackgroundEstimator::set_rescaling_class(const FunctionOfPseudoJet * rescaling_class_in) { // The rescaling is taken into account when particles are set. So // you need to call set_particles again if you set the rescaling // class. We thus warn if there are already some available // particles if (_has_particles) _warning_rescaling.warn("GridMedianBackgroundEstimator::set_rescaling_class(): trying to set the rescaling class when there are already particles that have been set is dangerous: the rescaling will not affect the already existing particles resulting in mis-estimation of rho. You need to call set_particles() again before proceeding with any background estimation."); BackgroundEstimatorBase::set_rescaling_class(rescaling_class_in); } #ifndef FASTJET_GMBGE_USEFJGRID //---------------------------------------------------------------------- // protected material //---------------------------------------------------------------------- // configure the grid void GridMedianBackgroundEstimator::setup_grid() { // since we've exchanged the arguments of the grid constructor, // there's a danger of calls with exchanged ymax,spacing arguments -- // the following check should catch most such situations. assert(_ymax>0 && _ymax - _ymin >= _requested_grid_spacing); // this grid-definition code is becoming repetitive -- it should // probably be moved somewhere central... double ny_double = (_ymax-_ymin) / _requested_grid_spacing; _ny = int(ny_double+0.5); _dy = (_ymax-_ymin) / _ny; _nphi = int (twopi / _requested_grid_spacing + 0.5); _dphi = twopi / _nphi; // some sanity checking (could throw a fastjet::Error) assert(_ny >= 1 && _nphi >= 1); _ntotal = _nphi * _ny; //_scalar_pt.resize(_ntotal); _tile_area = _dy * _dphi; } //---------------------------------------------------------------------- // retrieve the grid tile index for a given PseudoJet int GridMedianBackgroundEstimator::tile_index(const PseudoJet & p) const { // directly taking int does not work for values between -1 and 0 // so use floor instead // double iy_double = (p.rap() - _ymin) / _dy; // if (iy_double < 0.0) return -1; // int iy = int(iy_double); // if (iy >= _ny) return -1; // writing it as below gives a huge speed gain (factor two!). Even // though answers are identical and the routine here is not the // speed-critical step. It's not at all clear why. int iy = int(floor( (p.rap() - _ymin) / _dy )); if (iy < 0 || iy >= _ny) return -1; int iphi = int( p.phi()/_dphi ); assert(iphi >= 0 && iphi <= _nphi); if (iphi == _nphi) iphi = 0; // just in case of rounding errors int index_res = iy*_nphi + iphi; assert (index_res >= 0 && index_res < _ny*_nphi); return index_res; } #endif // FASTJET_GMBGE_USEFJGRID FASTJET_END_NAMESPACE // defined in fastjet/internal/base.hh