//FJSTARTHEADER
// $Id: GridMedianBackgroundEstimator.cc 4442 2020-05-05 07:50:11Z soyez $
//
// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development. They are described in the original FastJet paper,
// hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
// FastJet as part of work towards a scientific publication, please
// quote the version you use and include a citation to the manual and
// optionally also to hep-ph/0512210.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//FJENDHEADER
#include "fastjet/tools/GridMedianBackgroundEstimator.hh"
using namespace std;
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
//----------------------------------------------------------------------
// setting a new event
//----------------------------------------------------------------------
// tell the background estimator that it has a new event, composed
// of the specified particles.
void GridMedianBackgroundEstimator::set_particles(const vector & particles) {
vector scalar_pt(n_tiles(), 0.0);
#ifdef FASTJET_GMBGE_USEFJGRID
assert(all_tiles_equal_area());
//assert(n_good_tiles() == n_tiles()); // not needed now that we have an implementation
#endif
// check if we need to compute only rho or both rho and rho_m
if (_enable_rho_m){
// both rho and rho_m
//
// this requires a few other variables
vector scalar_dt(n_tiles(), 0.0);
double pt, dt;
for (unsigned i = 0; i < particles.size(); i++) {
int j = tile_index(particles[i]);
if (j >= 0){
pt = particles[i].pt();
dt = particles[i].mt() - pt;
if (_rescaling_class == 0){
scalar_pt[j] += pt;
scalar_dt[j] += dt;
} else {
double r = (*_rescaling_class)(particles[i]);
scalar_pt[j] += pt/r;
scalar_dt[j] += dt/r;
}
}
}
// sort things for _percentile
sort(scalar_dt.begin(), scalar_dt.end());
// compute rho_m and sigma_m (see comment below for the
// normaliosation of sigma)
double p50 = _percentile(scalar_dt, 0.5);
_rho_m = p50 / mean_tile_area();
_sigma_m = (p50-_percentile(scalar_dt, (1.0-0.6827)/2.0))/sqrt(mean_tile_area());
} else {
// only rho
//fill(_scalar_pt.begin(), _scalar_pt.end(), 0.0);
for (unsigned i = 0; i < particles.size(); i++) {
int j = tile_index(particles[i]);
if (j >= 0){
if (_rescaling_class == 0){
scalar_pt[j] += particles[i].pt();
} else {
scalar_pt[j] += particles[i].pt()/(*_rescaling_class)(particles[i]);
}
}
}
}
// if there are some "bad" tiles, then we need to exclude them from
// the calculation of the median. We'll do this by condensing the
// scalar_pt vector down to just the values for the tiles that are
// good.
//
// tested answers look right in "issue" 2014-08-08-testing-rect-grid
if (n_good_tiles() != n_tiles()) {
int newn = 0;
for (unsigned i = 0; i < scalar_pt.size(); i++) {
if (tile_is_good(i)) {
// clang gets confused with the SharedPtr swap if we don't
// have std:: here
std::swap(scalar_pt[i],scalar_pt[newn]);
newn++;
}
}
scalar_pt.resize(newn);
}
// in all cases, carry on with the computation of rho
//
// first sort
sort(scalar_pt.begin(), scalar_pt.end());
// then compute rho
//
// watch out: by definition, our sigma is the standard deviation of
// the pt density multiplied by the square root of the cell area
double p50 = _percentile(scalar_pt, 0.5);
_rho = p50 / mean_tile_area();
_sigma = (p50-_percentile(scalar_pt, (1.0-0.6827)/2.0))/sqrt(mean_tile_area());
_has_particles = true;
}
//----------------------------------------------------------------------
// retrieving fundamental information
//----------------------------------------------------------------------
// get rho, the median background density per unit area
double GridMedianBackgroundEstimator::rho() const {
verify_particles_set();
return _rho;
}
//----------------------------------------------------------------------
// get sigma, the background fluctuations per unit area; must be
// multipled by sqrt(area) to get fluctuations for a region of a
// given area.
double GridMedianBackgroundEstimator::sigma() const{
verify_particles_set();
return _sigma;
}
//----------------------------------------------------------------------
// get rho, the background density per unit area, locally at the
// position of a given jet. Note that this is not const, because a
// user may then wish to query other aspects of the background that
// could depend on the position of the jet last used for a rho(jet)
// determination.
double GridMedianBackgroundEstimator::rho(const PseudoJet & jet) {
//verify_particles_set();
double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
return rescaling*rho();
}
//----------------------------------------------------------------------
// get sigma, the background fluctuations per unit area, locally at
// the position of a given jet. As for rho(jet), it is non-const.
double GridMedianBackgroundEstimator::sigma(const PseudoJet & jet){
//verify_particles_set();
double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
return rescaling*sigma();
}
//----------------------------------------------------------------------
// returns rho_m (particle-masses contribution to the 4-vector density)
double GridMedianBackgroundEstimator::rho_m() const {
if (! _enable_rho_m){
throw Error("GridMediamBackgroundEstimator: rho_m requested but rho_m calculation has been disabled.");
}
verify_particles_set();
return _rho_m;
}
//----------------------------------------------------------------------
// returns sigma_m (particle-masses contribution to the 4-vector
// density); must be multipled by sqrt(area) to get fluctuations
// for a region of a given area.
double GridMedianBackgroundEstimator::sigma_m() const{
if (! _enable_rho_m){
throw Error("GridMediamBackgroundEstimator: sigma_m requested but rho_m/sigma_m calculation has been disabled.");
}
verify_particles_set();
return _sigma_m;
}
//----------------------------------------------------------------------
// returns rho_m locally at the position of a given jet. As for
// rho(jet), it is non-const.
double GridMedianBackgroundEstimator::rho_m(const PseudoJet & jet) {
//verify_particles_set();
double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
return rescaling*rho_m();
}
//----------------------------------------------------------------------
// returns sigma_m locally at the position of a given jet. As for
// rho(jet), it is non-const.
double GridMedianBackgroundEstimator::sigma_m(const PseudoJet & jet){
//verify_particles_set();
double rescaling = (_rescaling_class == 0) ? 1.0 : (*_rescaling_class)(jet);
return rescaling*sigma_m();
}
//----------------------------------------------------------------------
// verify that particles have been set and throw an error if not
void GridMedianBackgroundEstimator::verify_particles_set() const {
if (!_has_particles) throw Error("GridMedianBackgroundEstimator::rho() or sigma() called without particles having been set");
}
//----------------------------------------------------------------------
// description
//----------------------------------------------------------------------
string GridMedianBackgroundEstimator::description() const {
ostringstream desc;
#ifdef FASTJET_GMBGE_USEFJGRID
desc << "GridMedianBackgroundEstimator, with " << RectangularGrid::description();
#else
desc << "GridMedianBackgroundEstimator, with grid extension |y| < " << _ymax
<< ", and grid cells of size dy x dphi = " << _dy << " x " << _dphi
<< " (requested size = " << _requested_grid_spacing << ")";
#endif
return desc.str();
}
//----------------------------------------------------------------------
// configuring the behaviour
//----------------------------------------------------------------------
// Set a pointer to a class that calculates the rescaling factor as
// a function of the jet (position). Note that the rescaling factor
// is used both in the determination of the "global" rho (the pt/A
// of each jet is divided by this factor) and when asking for a
// local rho (the result is multiplied by this factor).
//
// The BackgroundRescalingYPolynomial class can be used to get a
// rescaling that depends just on rapidity.
//
// Note that this has to be called BEFORE any attempt to do an
// actual computation
void GridMedianBackgroundEstimator::set_rescaling_class(const FunctionOfPseudoJet * rescaling_class_in) {
// The rescaling is taken into account when particles are set. So
// you need to call set_particles again if you set the rescaling
// class. We thus warn if there are already some available
// particles
if (_has_particles)
_warning_rescaling.warn("GridMedianBackgroundEstimator::set_rescaling_class(): trying to set the rescaling class when there are already particles that have been set is dangerous: the rescaling will not affect the already existing particles resulting in mis-estimation of rho. You need to call set_particles() again before proceeding with any background estimation.");
BackgroundEstimatorBase::set_rescaling_class(rescaling_class_in);
}
#ifndef FASTJET_GMBGE_USEFJGRID
//----------------------------------------------------------------------
// protected material
//----------------------------------------------------------------------
// configure the grid
void GridMedianBackgroundEstimator::setup_grid() {
// since we've exchanged the arguments of the grid constructor,
// there's a danger of calls with exchanged ymax,spacing arguments --
// the following check should catch most such situations.
assert(_ymax>0 && _ymax - _ymin >= _requested_grid_spacing);
// this grid-definition code is becoming repetitive -- it should
// probably be moved somewhere central...
double ny_double = (_ymax-_ymin) / _requested_grid_spacing;
_ny = int(ny_double+0.5);
_dy = (_ymax-_ymin) / _ny;
_nphi = int (twopi / _requested_grid_spacing + 0.5);
_dphi = twopi / _nphi;
// some sanity checking (could throw a fastjet::Error)
assert(_ny >= 1 && _nphi >= 1);
_ntotal = _nphi * _ny;
//_scalar_pt.resize(_ntotal);
_tile_area = _dy * _dphi;
}
//----------------------------------------------------------------------
// retrieve the grid tile index for a given PseudoJet
int GridMedianBackgroundEstimator::tile_index(const PseudoJet & p) const {
// directly taking int does not work for values between -1 and 0
// so use floor instead
// double iy_double = (p.rap() - _ymin) / _dy;
// if (iy_double < 0.0) return -1;
// int iy = int(iy_double);
// if (iy >= _ny) return -1;
// writing it as below gives a huge speed gain (factor two!). Even
// though answers are identical and the routine here is not the
// speed-critical step. It's not at all clear why.
int iy = int(floor( (p.rap() - _ymin) / _dy ));
if (iy < 0 || iy >= _ny) return -1;
int iphi = int( p.phi()/_dphi );
assert(iphi >= 0 && iphi <= _nphi);
if (iphi == _nphi) iphi = 0; // just in case of rounding errors
int index_res = iy*_nphi + iphi;
assert (index_res >= 0 && index_res < _ny*_nphi);
return index_res;
}
#endif // FASTJET_GMBGE_USEFJGRID
FASTJET_END_NAMESPACE // defined in fastjet/internal/base.hh