//FJSTARTHEADER
// $Id: SearchTree.hh 4442 2020-05-05 07:50:11Z soyez $
//
// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development. They are described in the original FastJet paper,
// hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
// FastJet as part of work towards a scientific publication, please
// quote the version you use and include a citation to the manual and
// optionally also to hep-ph/0512210.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//FJENDHEADER
#ifndef __FASTJET_SEARCHTREE_HH__
#define __FASTJET_SEARCHTREE_HH__
#include
#include
#include
#include "fastjet/internal/base.hh"
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
//======================================================================
/// \if internal_doc
/// @ingroup internal
/// \class SearchTree
/// Efficient class for a search tree
///
/// This is the class for a search tree designed to be especially efficient
/// when looking for successors and predecessors (to be used in Chan's
/// CP algorithm). It has the requirement that the maximum size of the
/// search tree must be known in advance.
/// \endif
template class SearchTree {
public:
class Node;
class circulator;
class const_circulator;
/// constructor for a search tree from an ordered vector
SearchTree(const std::vector & init);
/// constructor for a search tree from an ordered vector allowing
/// for future growth beyond the current size, up to max_size
SearchTree(const std::vector & init, unsigned int max_size);
/// remove the node corresponding to node_index from the search tree
void remove(unsigned node_index);
void remove(typename SearchTree::Node * node);
void remove(typename SearchTree::circulator & circ);
/// insert the supplied value into the tree and return a pointer to
/// the relevant SearchTreeNode.
//Node * insert(const T & value);
circulator insert(const T & value);
const Node & operator[](int i) const {return _nodes[i];};
/// return the number of elements currently in the search tree
unsigned int size() const {return _nodes.size() - _available_nodes.size();}
/// check that the structure we've obtained makes sense...
void verify_structure();
void verify_structure_linear() const;
void verify_structure_recursive(const Node * , const Node * , const Node * ) const;
/// print out all elements...
void print_elements();
// tracking the depth may have some speed overhead -- so leave it
// out for the time being...
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
/// the max depth the tree has ever reached
inline unsigned int max_depth() const {return _max_depth;};
#else
inline unsigned int max_depth() const {return 0;};
#endif
int loc(const Node * node) const ;
/// return predecessor by walking through the tree
Node * _find_predecessor(const Node *);
/// return successor by walking through the tree
Node * _find_successor(const Node *);
const Node & operator[](unsigned int i) const {return _nodes[i];};
/// return a circulator to some place in the tree (with a circulator
/// you don't care where...)
const_circulator somewhere() const;
circulator somewhere();
private:
void _initialize(const std::vector & init);
std::vector _nodes;
std::vector _available_nodes;
Node * _top_node;
unsigned int _n_removes;
/// recursive routine for doing the initial connections assuming things
/// are ordered. Assumes this_one's parent is labelled, and was
/// generated at a scale "scale" -- connections will be carried out
/// including left edge and excluding right edge
void _do_initial_connections(unsigned int this_one, unsigned int scale,
unsigned int left_edge, unsigned int right_edge,
unsigned int depth);
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
unsigned int _max_depth;
#endif
};
//======================================================================
/// \if internal_doc
/// @ingroup internal
/// \class SearchTree::Node
/// A node in the search tree
/// \endif
template class SearchTree::Node{
public:
Node() {}; /// default constructor
/// returns tree if all the tree-related links are set to null for this node
bool treelinks_null() const {
return ((parent==0) && (left==0) && (right==0));};
/// set all the tree-related links are set to null for this node
inline void nullify_treelinks() {
parent = NULL;
left = NULL;
right = NULL;
};
/// if my parent exists, determine whether I am it's left or right
/// node and set the relevant link equal to XX.
void reset_parents_link_to_me(Node * XX);
T value;
Node * left;
Node * right;
Node * parent;
Node * successor;
Node * predecessor;
};
//----------------------------------------------------------------------
template void SearchTree::Node::reset_parents_link_to_me(typename SearchTree::Node * XX) {
if (parent == NULL) {return;}
if (parent->right == this) {parent->right = XX;}
else {parent->left = XX;}
}
//======================================================================
/// \if internal_doc
/// @ingroup internal
/// \class SearchTree::circulator
/// circulator for the search tree
/// \endif
template class SearchTree::circulator{
public:
// so that it can access our _node object;
// note: "class U" needed for clang (v1.1 branches/release_27) compilation
// 2014-07-22: as reported by Torbjorn Sjostrand,
// the next line was giving a warning with Apple LLVM version 5.1 (clang-503.0.40) (based on LLVM 3.4svn)
// (dependent nested name specifier 'SearchTree::' for friend class declaration is not supported)
// Just commenting it out, things still seem to work; same with a template of type T
//template friend class SearchTree::const_circulator;
friend class SearchTree::const_circulator;
friend class SearchTree;
circulator() : _node(NULL) {}
circulator(Node * node) : _node(node) {}
const T * operator->() const {return &(_node->value);}
T * operator->() {return &(_node->value);}
const T & operator*() const {return _node->value;}
T & operator*() {return _node->value;}
/// prefix increment (structure copied from stl_bvector.h)
circulator & operator++() {
_node = _node->successor;
return *this;}
/// postfix increment ["int" argument tells compiler it's postfix]
/// (structure copied from stl_bvector.h)
circulator operator++(int) {
circulator tmp = *this;
_node = _node->successor;
return tmp;}
/// prefix decrement (structure copied from stl_bvector.h)
circulator & operator--() {
_node = _node->predecessor;
return *this;}
/// postfix decrement ["int" argument tells compiler it's postfix]
/// (structure copied from stl_bvector.h)
circulator operator--(int) {
circulator tmp = *this;
_node = _node->predecessor;
return tmp;}
/// return a circulator referring to the next node
circulator next() const {
return circulator(_node->successor);}
/// return a circulator referring to the previous node
circulator previous() const {
return circulator(_node->predecessor);}
bool operator!=(const circulator & other) const {return other._node != _node;}
bool operator==(const circulator & other) const {return other._node == _node;}
private:
Node * _node;
};
//======================================================================
/// \if internal_doc
/// @ingroup internal
/// \class SearchTree::const_circulator
/// A const_circulator for the search tree
/// \endif
template class SearchTree::const_circulator{
public:
const_circulator() : _node(NULL) {}
const_circulator(const Node * node) : _node(node) {}
const_circulator(const circulator & circ) :_node(circ._node) {}
const T * operator->() {return &(_node->value);}
const T & operator*() const {return _node->value;}
/// prefix increment (structure copied from stl_bvector.h)
const_circulator & operator++() {
_node = _node->successor;
return *this;}
/// postfix increment ["int" argument tells compiler it's postfix]
/// (structure copied from stl_bvector.h)
const_circulator operator++(int) {
const_circulator tmp = *this;
_node = _node->successor;
return tmp;}
/// prefix decrement (structure copied from stl_bvector.h)
const_circulator & operator--() {
_node = _node->predecessor;
return *this;}
/// postfix decrement ["int" argument tells compiler it's postfix]
/// (structure copied from stl_bvector.h)
const_circulator operator--(int) {
const_circulator tmp = *this;
_node = _node->predecessor;
return tmp;}
/// return a circulator referring to the next node
const_circulator next() const {
return const_circulator(_node->successor);}
/// return a circulator referring to the previous node
const_circulator previous() const {
return const_circulator(_node->predecessor);}
bool operator!=(const const_circulator & other) const {return other._node != _node;}
bool operator==(const const_circulator & other) const {return other._node == _node;}
private:
const Node * _node;
};
//----------------------------------------------------------------------
/// initialise from a sorted initial array allowing for a larger
/// maximum size of the array...
template SearchTree::SearchTree(const std::vector & init,
unsigned int max_size) :
_nodes(max_size) {
_available_nodes.reserve(max_size);
_available_nodes.resize(max_size - init.size());
for (unsigned int i = init.size(); i < max_size; i++) {
_available_nodes[i-init.size()] = &(_nodes[i]);
}
_initialize(init);
}
//----------------------------------------------------------------------
/// initialise from a sorted initial array
template SearchTree::SearchTree(const std::vector & init) :
_nodes(init.size()), _available_nodes(0) {
// reserve space for the list of available nodes
_available_nodes.reserve(init.size());
_initialize(init);
}
//----------------------------------------------------------------------
/// do the actual hard work of initialization
template void SearchTree::_initialize(const std::vector & init) {
_n_removes = 0;
unsigned n = init.size();
assert(n>=1);
// reserve space for the list of available nodes
//_available_nodes.reserve();
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
_max_depth = 0;
#endif
// validate the input
for (unsigned int i = 1; i inline int SearchTree::loc(const Node * node) const {return node == NULL?
-999 : node - &(_nodes[0]);}
//----------------------------------------------------------------------
/// Recursive creation of connections, assuming the _nodes vector is
/// completely filled and ordered
template void SearchTree::_do_initial_connections(
unsigned int this_one,
unsigned int scale,
unsigned int left_edge,
unsigned int right_edge,
unsigned int depth
) {
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
// keep track of tree depth for checking things stay reasonable...
_max_depth = max(depth, _max_depth);
#endif
//std::cout << this_one << " "<< scale<< std::endl;
unsigned int ref_new_scale = (scale+1)/2;
// work through children to our left
unsigned new_scale = ref_new_scale;
bool did_child = false;
while(true) {
int left = this_one - new_scale; // be careful here to use signed int...
// if there is something unitialised to our left, link to it
if (left >= static_cast(left_edge)
&& _nodes[left].treelinks_null() ) {
_nodes[left].parent = &(_nodes[this_one]);
_nodes[this_one].left = &(_nodes[left]);
// create connections between left_edge and this_one
_do_initial_connections(left, new_scale, left_edge, this_one, depth+1);
did_child = true;
break;
}
// reduce the scale so as to try again
unsigned int old_new_scale = new_scale;
new_scale = (old_new_scale + 1)/2;
// unless we've reached end of tree
if (new_scale == old_new_scale) break;
}
if (!did_child) {_nodes[this_one].left = NULL;}
// work through children to our right
new_scale = ref_new_scale;
did_child = false;
while(true) {
unsigned int right = this_one + new_scale;
if (right < right_edge && _nodes[right].treelinks_null()) {
_nodes[right].parent = &(_nodes[this_one]);
_nodes[this_one].right = &(_nodes[right]);
// create connections between this_one+1 and right_edge
_do_initial_connections(right, new_scale, this_one+1,right_edge,depth+1);
did_child = true;
break;
}
// reduce the scale so as to try again
unsigned int old_new_scale = new_scale;
new_scale = (old_new_scale + 1)/2;
// unless we've reached end of tree
if (new_scale == old_new_scale) break;
}
if (!did_child) {_nodes[this_one].right = NULL;}
}
//----------------------------------------------------------------------
template void SearchTree::remove(unsigned int node_index) {
remove(&(_nodes[node_index]));
}
//----------------------------------------------------------------------
template void SearchTree::remove(circulator & circ) {
remove(circ._node);
}
//----------------------------------------------------------------------
// Useful reference for this:
// http://en.wikipedia.org/wiki/Binary_search_tree#Deletion
template void SearchTree::remove(typename SearchTree::Node * node) {
// we don't remove things from the tree if we've reached the last
// elements... (is this wise?)
assert(size() > 1); // switch this to throw...?
assert(!node->treelinks_null());
// deal with relinking predecessor and successor
node->predecessor->successor = node->successor;
node->successor->predecessor = node->predecessor;
if (node->left == NULL && node->right == NULL) {
// node has no children, so remove it by nullifying the pointer
// from the parent
node->reset_parents_link_to_me(NULL);
} else if (node->left != NULL && node->right == NULL){
// make parent point to my child
node->reset_parents_link_to_me(node->left);
// and child to parent
node->left->parent = node->parent;
// sort out the top node...
if (_top_node == node) {_top_node = node->left;}
} else if (node->left == NULL && node->right != NULL){
// make parent point to my child
node->reset_parents_link_to_me(node->right);
// and child to parent
node->right->parent = node->parent;
// sort out the top node...
if (_top_node == node) {_top_node = node->right;}
} else {
// we have two children; we will put a replacement in our place
Node * replacement;
//SearchTree::Node * replacements_child;
// chose predecessor or successor (one, then other, then first, etc...)
bool use_predecessor = (_n_removes % 2 == 1);
if (use_predecessor) {
// Option 1: put predecessor in our place, and have its parent
// point to its left child (as a predecessor it has no right child)
replacement = node->predecessor;
assert(replacement->right == NULL); // guaranteed if it's our predecessor
// we have to be careful of replacing certain links when the
// replacement is this node's child
if (replacement != node->left) {
if (replacement->left != NULL) {
replacement->left->parent = replacement->parent;}
replacement->reset_parents_link_to_me(replacement->left);
replacement->left = node->left;
}
replacement->parent = node->parent;
replacement->right = node->right;
} else {
// Option 2: put successor in our place, and have its parent
// point to its right child (as a successor it has no left child)
replacement = node->successor;
assert(replacement->left == NULL); // guaranteed if it's our successor
if (replacement != node->right) {
if (replacement->right != NULL) {
replacement->right->parent = replacement->parent;}
replacement->reset_parents_link_to_me(replacement->right);
replacement->right = node->right;
}
replacement->parent = node->parent;
replacement->left = node->left;
}
node->reset_parents_link_to_me(replacement);
// make sure node's original children now point to the replacement
if (node->left != replacement) {node->left->parent = replacement;}
if (node->right != replacement) {node->right->parent = replacement;}
// sort out the top node...
if (_top_node == node) {_top_node = replacement;}
}
// make sure we leave something nice and clean...
node->nullify_treelinks();
node->predecessor = NULL;
node->successor = NULL;
// for bookkeeping (and choosing whether to use pred. or succ.)
_n_removes++;
// for when we next need access to a free node...
_available_nodes.push_back(node);
}
//----------------------------------------------------------------------
//template typename SearchTree::Node * SearchTree::insert(const T & value) {
//----------------------------------------------------------------------
template typename SearchTree::circulator SearchTree::insert(const T & value) {
// make sure we don't exceed allowed number of nodes...
assert(_available_nodes.size() > 0);
Node * node = _available_nodes.back();
_available_nodes.pop_back();
node->value = value;
Node * location = _top_node;
Node * old_location = NULL;
bool on_left = true; // (init not needed -- but soothes g++4)
// work through tree until we reach its end
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
unsigned int depth = 0;
#endif
while(location != NULL) {
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
depth++;
#endif
old_location = location;
on_left = value < location->value;
if (on_left) {location = location->left;}
else {location = location->right;}
}
#ifdef __FASTJET_SEARCHTREE_TRACK_DEPTH
_max_depth = max(depth, _max_depth);
#endif
// now create tree links
node->parent = old_location;
if (on_left) {node->parent->left = node;}
else {node->parent->right = node;}
node->left = NULL;
node->right = NULL;
// and create predecessor / successor links
node->predecessor = _find_predecessor(node);
if (node->predecessor != NULL) {
// it exists, so make use of its info (will include a cyclic case,
// when successor is round the bend)
node->successor = node->predecessor->successor;
node->predecessor->successor = node;
node->successor->predecessor = node;
} else {
// deal with case when we are left-most edge of tree (then successor
// will exist...)
node->successor = _find_successor(node);
assert(node->successor != NULL); // can only happen if we're sole element
// (but not allowed, since tree size>=1)
node->predecessor = node->successor->predecessor;
node->successor->predecessor = node;
node->predecessor->successor = node;
}
return circulator(node);
}
//----------------------------------------------------------------------
template void SearchTree::verify_structure() {
// do a check running through all elements
verify_structure_linear();
// do a recursive check down tree from top
// first establish the extremities
const Node * left_limit = _top_node;
while (left_limit->left != NULL) {left_limit = left_limit->left;}
const Node * right_limit = _top_node;
while (right_limit->right != NULL) {right_limit = right_limit->right;}
// then actually do recursion
verify_structure_recursive(_top_node, left_limit, right_limit);
}
//----------------------------------------------------------------------
template void SearchTree::verify_structure_recursive(
const typename SearchTree::Node * element,
const typename SearchTree::Node * left_limit,
const typename SearchTree::Node * right_limit) const {
assert(!(element->value < left_limit->value));
assert(!(right_limit->value < element->value));
const Node * left = element->left;
if (left != NULL) {
assert(!(element->value < left->value));
if (left != left_limit) {
// recurse down the tree with this element as the right-hand limit
verify_structure_recursive(left, left_limit, element);}
}
const Node * right = element->right;
if (right != NULL) {
assert(!(right->value < element->value));
if (right != right_limit) {
// recurse down the tree with this element as the left-hand limit
verify_structure_recursive(right, element, right_limit);}
}
}
//----------------------------------------------------------------------
template void SearchTree::verify_structure_linear() const {
//print_elements();
unsigned n_top = 0;
unsigned n_null = 0;
for(unsigned i = 0; i < _nodes.size(); i++) {
const typename SearchTree::Node * node = &(_nodes[i]);
// make sure node is defined
if (node->treelinks_null()) {n_null++; continue;}
// make sure of the number of "top" nodes
if (node->parent == NULL) {
n_top++;
//assert(node->left != NULL);
//assert(node->right != NULL);
} else {
// make sure that I am a child of my parent...
//assert((node->parent->left == node) || (node->parent->right == node));
assert((node->parent->left == node) ^ (node->parent->right == node));
}
// when there is a left child make sure it's value is ordered
// (note use of !(bleft != NULL) {
assert(!(node->value < node->left->value ));}
// when there is a right child make sure it's value is ordered
if (node->right != NULL) {
assert(!(node->right->value < node->value ));}
}
assert(n_top == 1 || (n_top == 0 && size() <= 1) );
assert(n_null == _available_nodes.size() ||
(n_null == _available_nodes.size() + 1 && size() == 1));
}
//----------------------------------------------------------------------
template typename SearchTree::Node * SearchTree::_find_predecessor(const typename SearchTree::Node * node) {
typename SearchTree::Node * newnode;
if (node->left != NULL) {
// go down left, and then down right as far as possible.
newnode = node->left;
while(newnode->right != NULL) {newnode = newnode->right;}
return newnode;
} else {
const typename SearchTree::Node * lastnode = node;
newnode = node->parent;
// go up the tree as long as we're going right (when we go left then
// we've found something smaller, so stop)
while(newnode != NULL) {
if (newnode->right == lastnode) {return newnode;}
lastnode = newnode;
newnode = newnode->parent;
}
return newnode;
}
}
//----------------------------------------------------------------------
template typename SearchTree::Node * SearchTree::_find_successor(const typename SearchTree::Node * node) {
typename SearchTree::Node * newnode;
if (node->right != NULL) {
// go down right, and then down left as far as possible.
newnode = node->right;
while(newnode->left != NULL) {newnode = newnode->left;}
return newnode;
} else {
const typename SearchTree::Node * lastnode = node;
newnode = node->parent;
// go up the tree as long as we're going left (when we go right then
// we've found something larger, so stop)
while(newnode != NULL) {
if (newnode->left == lastnode) {return newnode;}
lastnode = newnode;
newnode = newnode->parent;
}
return newnode;
}
}
//----------------------------------------------------------------------
// print out all the elements for visual checking...
template void SearchTree::print_elements() {
typename SearchTree::Node * base_node = &(_nodes[0]);
typename SearchTree::Node * node = base_node;
int n = _nodes.size();
for(; node - base_node < n ; node++) {
printf("%4d parent:%4d left:%4d right:%4d pred:%4d succ:%4d value:%10.6f\n",loc(node), loc(node->parent), loc(node->left), loc(node->right), loc(node->predecessor),loc(node->successor),node->value);
}
}
//----------------------------------------------------------------------
template typename SearchTree::circulator SearchTree::somewhere() {
return circulator(_top_node);
}
//----------------------------------------------------------------------
template typename SearchTree::const_circulator SearchTree::somewhere() const {
return const_circulator(_top_node);
}
FASTJET_END_NAMESPACE
#endif // __FASTJET_SEARCHTREE_HH__