// $Id: RecursiveSoftDrop.cc 1111 2018-04-04 10:06:11Z gsoyez $ // // Copyright (c) 2017-, Gavin P. Salam, Gregory Soyez, Jesse Thaler, // Kevin Zhou, Frederic Dreyer // //---------------------------------------------------------------------- // This file is part of FastJet contrib. // // It is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the // Free Software Foundation; either version 2 of the License, or (at // your option) any later version. // // It is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this code. If not, see . //---------------------------------------------------------------------- #include "RecursiveSoftDrop.hh" #include "fastjet/ClusterSequence.hh" using namespace std; FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh namespace contrib{ namespace internal_recursive_softdrop{ //======================================================================== /// \class RSDHistoryElement /// a helper class to help keeping track od the RSD tree /// /// The element is created at the top of a branch and updated each /// time one grooms something away. class RSDHistoryElement{ public: RSDHistoryElement(const PseudoJet &jet, const RecursiveSoftDrop* rsd_ptr, double R0sqr) : R0_squared(R0sqr), child1_in_history(-1), child2_in_history(-1), symmetry(-1.0), mu2(-1.0){ reset(jet, rsd_ptr); } void reset(const PseudoJet &jet, const RecursiveSoftDrop* rsd_ptr){ current_in_ca_tree = jet.cluster_hist_index(); PseudoJet piece1, piece2; theta_squared = (jet.has_parents(piece1, piece2)) ? rsd_ptr->squared_geometric_distance(piece1,piece2) : 0.0; } int current_in_ca_tree; ///< (history) index of the current particle in the C/A tree double theta_squared; ///< squared angle at which this decays double R0_squared; ///< squared angle at the top of the branch ///< (used for RSD with dynamic_R0) int child1_in_history; ///< hardest of the 2 decay products (-1 if untagged) int child2_in_history; ///< softest of the 2 decay products (-1 if untagged) // info about what has been dropped and the local substructure vector dropped_delta_R; vector dropped_symmetry; vector dropped_mu; double symmetry, mu2; }; /// \class OrderRSDHistoryElements /// angular ordering of (pointers to) the history elements /// /// our priority queue will use pointers to these elements that are /// ordered in angle (of the objects they point to) class OrderRSDHistoryElements{ public: bool operator()(const RSDHistoryElement *e1, const RSDHistoryElement *e2) const { return e1->theta_squared < e2->theta_squared; } }; } // internal_recursive_softdrop //======================================================================== // initialise all the flags and parameters to their default value void RecursiveSoftDrop::set_defaults(){ set_fixed_depth_mode(false); set_dynamical_R0(false); set_hardest_branch_only(false); set_min_deltaR_squared(-1.0); } // description of the tool string RecursiveSoftDrop::description() const{ ostringstream res; res << "recursive application of [" << RecursiveSymmetryCutBase::description() << "]"; if (_fixed_depth){ res << ", recursively applied down to a maximal depth of N="; if (_n==-1) res << "infinity"; else res << _n; } else { res << ", applied N="; if (_n==-1) res << "infinity"; else res << _n; res << " times"; } if (_dynamical_R0) res << ", with R0 dynamically scaled"; else res << ", with R0 kept fixed"; if (_hardest_branch_only) res << ", following only the hardest branch"; if (_min_dR2>0) res << ", with minimal angle (squared) = " << _min_dR2; return res.str(); } // action on a single jet with RecursiveSoftDrop. // // uses "result_fixed_tags" by default (i.e. recurse from R0 to // smaller angles until n SD conditions have been met), or // "result_fixed_depth" where each of the previous SD branches are // recirsed into down to a depth of n. PseudoJet RecursiveSoftDrop::result(const PseudoJet &jet) const{ return _fixed_depth ? result_fixed_depth(jet) : result_fixed_tags(jet); } // this routine applies the Soft Drop criterion recursively on the // CA tree until we find n subjets (or until it converges), and // adds them together into a groomed PseudoJet PseudoJet RecursiveSoftDrop::result_fixed_tags(const PseudoJet &jet) const { // start by reclustering jet with C/A algorithm PseudoJet ca_jet = _recluster_if_needed(jet); if (! ca_jet.has_valid_cluster_sequence()){ throw Error("RecursiveSoftDrop can only be applied to jets associated to a (valid) cluster sequence"); } const ClusterSequence *cs = ca_jet.validated_cluster_sequence(); const vector &cs_history = cs->history(); const vector &cs_jets = cs->jets(); // initialize counter to 1 subjet (i.e. the full ca_jet) int n_tagged = 0; int max_njet = ca_jet.constituents().size(); // create the list of branches unsigned int max_history_size = 2*max_njet; if ((_n>0) && (_n history; history.reserve(max_history_size); // could be one shorter history.push_back(internal_recursive_softdrop::RSDHistoryElement(ca_jet, this, _R0sqr)); // create a priority queue containing the subjets and a comparison definition // initialise to the full ca_jet priority_queue, internal_recursive_softdrop::OrderRSDHistoryElements> active_branches; active_branches.push(& (history[0])); PseudoJet parent, piece1, piece2; double sym, mu2; // which R0 to use //double R0sqr = _R0sqr; // loop over C/A tree until we reach the appropriate number of subjets while ((continue_grooming(n_tagged)) && (active_branches.size())) { // get the element corresponding to the max dR // and the associated PJ internal_recursive_softdrop::RSDHistoryElement * elm = active_branches.top(); PseudoJet parent = cs_jets[cs_history[elm->current_in_ca_tree].jetp_index]; // do one step of SD RecursionStatus status = recurse_one_step(parent, piece1, piece2, sym, mu2, &elm->R0_squared); // check if we passed the SD condition if (status==recursion_success){ // check for the optional angular cut if ((_min_dR2 > 0) && (squared_geometric_distance(piece1,piece2) < _min_dR2)) break; // both subjets are kept in the list for potential further de-clustering elm->child1_in_history = history.size(); elm->child2_in_history = history.size()+1; elm->symmetry = sym; elm->mu2 = mu2; active_branches.pop(); // update the history double next_R0_squared = (_dynamical_R0) ? piece1.squared_distance(piece2) : elm->R0_squared; internal_recursive_softdrop::RSDHistoryElement elm1(piece1, this, next_R0_squared); history.push_back(elm1); active_branches.push(&(history.back())); internal_recursive_softdrop::RSDHistoryElement elm2(piece2, this, next_R0_squared); history.push_back(elm2); if (!_hardest_branch_only){ active_branches.push(&(history.back())); } ++n_tagged; } else if (status==recursion_dropped){ // check for the optional angular cut if ((_min_dR2 > 0) && (squared_geometric_distance(piece1,piece2) < _min_dR2)) break; active_branches.pop(); // tagging failed and the softest branch should be dropped // keep track of what has een groomed away max_njet -= piece2.constituents().size(); elm->dropped_delta_R .push_back((elm->theta_squared >= 0) ? sqrt(elm->theta_squared) : -sqrt(elm->theta_squared)); elm->dropped_symmetry.push_back(sym); elm->dropped_mu .push_back((mu2>=0) ? sqrt(mu2) : -sqrt(mu2)); // keep the hardest bhanch in the recursion elm->reset(piece1, this); active_branches.push(elm); } else if (status==recursion_no_parents){ if (_min_dR2 > 0) break; active_branches.pop(); // nothing specific to do: we just keep the curent jet as a "leaf" } else { // recursion_issue active_branches.pop(); // we've met an issue // if the piece2 is null as well, it means we've had a critical problem. // In that case, return an empty PseudoJet if (piece2 == 0) return PseudoJet(); // otherwise, we should consider "piece2" as a final particle // not to be recursed into if (_min_dR2 > 0) break; max_njet -= (piece2.constituents().size()-1); break; } // If the missing number of tags is exactly the number of objects // we have left in the recursion, stop if (n_tagged == max_njet) break; } // now we have a bunch of history elements that we can use to build the final jet vector mapped_to_history(history.size()); unsigned int history_index = history.size(); do { --history_index; const internal_recursive_softdrop::RSDHistoryElement & elm = history[history_index]; // two kinds of events: either just a final leave, poteitially with grooming // or a brandhing (also with potential grooming at the end) if (elm.child1_in_history<0){ // this is a leaf, i.e. with no further sustructure PseudoJet & subjet = mapped_to_history[history_index] = cs_jets[cs_history[elm.current_in_ca_tree].jetp_index]; StructureType * structure = new StructureType(subjet); if (has_verbose_structure()){ structure->set_verbose(true); structure->set_dropped_delta_R (elm.dropped_delta_R); structure->set_dropped_symmetry(elm.dropped_symmetry); structure->set_dropped_mu (elm.dropped_mu); } subjet.set_structure_shared_ptr(SharedPtr(structure)); } else { PseudoJet & subjet = mapped_to_history[history_index] = join(mapped_to_history[elm.child1_in_history], mapped_to_history[elm.child2_in_history]); StructureType * structure = new StructureType(subjet, sqrt(elm.theta_squared), elm.symmetry, sqrt(elm.mu2)); if (has_verbose_structure()){ structure->set_verbose(true); structure->set_dropped_delta_R (elm.dropped_delta_R); structure->set_dropped_symmetry(elm.dropped_symmetry); structure->set_dropped_mu (elm.dropped_mu); } subjet.set_structure_shared_ptr(SharedPtr(structure)); } } while (history_index>0); return mapped_to_history[0]; } // this routine applies the Soft Drop criterion recursively on the // CA tree, recursing into all the branches found during the previous iteration // until n layers have been found (or until it converges) PseudoJet RecursiveSoftDrop::result_fixed_depth(const PseudoJet &jet) const { // start by reclustering jet with C/A algorithm PseudoJet ca_jet = _recluster_if_needed(jet); if (! ca_jet.has_valid_cluster_sequence()){ throw Error("RecursiveSoftDrop can only be applied to jets associated to a (valid) cluster sequence"); } const ClusterSequence *cs = ca_jet.validated_cluster_sequence(); const vector &cs_history = cs->history(); const vector &cs_jets = cs->jets(); // initialize counter to 1 subjet (i.e. the full ca_jet) int n_depth = 0; int max_njet = ca_jet.constituents().size(); // create the list of branches unsigned int max_history_size = 2*max_njet; //if ((_n>0) && (_n history; history.reserve(max_history_size); // could be one shorter history.push_back(internal_recursive_softdrop::RSDHistoryElement(ca_jet, this, _R0sqr)); history.back().theta_squared = _R0sqr; // create a priority queue containing the subjets and a comparison definition // initialize counter to 1 subjet (i.e. the full ca_jet) list active_branches; active_branches.push_back(& (history[0])); PseudoJet parent, piece1, piece2; while ((continue_grooming(n_depth)) && (active_branches.size())) { // loop over all the branches and look for substructure list::iterator hist_it=active_branches.begin(); while (hist_it!=active_branches.end()){ // get the element corresponding to the max dR // and the associated PJ internal_recursive_softdrop::RSDHistoryElement * elm = (*hist_it); PseudoJet parent = cs_jets[cs_history[elm->current_in_ca_tree].jetp_index]; // we need to iterate this branch until we find some substructure PseudoJet result_sd; if (_dynamical_R0){ SoftDrop sd(_beta, _symmetry_cut, symmetry_measure(), sqrt(elm->theta_squared), mu_cut(), recursion_choice(), subtractor()); sd.set_reclustering(false); sd.set_verbose_structure(has_verbose_structure()); result_sd = sd(parent); } else { result_sd = SoftDrop::result(parent); } // if we had an empty PJ, that means we ran into some problems. // just return an empty PJ ourselves if (result_sd == 0) return PseudoJet(); // update the history element to reflect our iteration elm->current_in_ca_tree = result_sd.cluster_hist_index(); if (has_verbose_structure()){ elm->dropped_delta_R = result_sd.structure_of().dropped_delta_R(); elm->dropped_symmetry = result_sd.structure_of().dropped_symmetry(); elm->dropped_mu = result_sd.structure_of().dropped_mu(); } // if some substructure was found: if (result_sd.structure_of().has_substructure()){ // update the history element to reflect our iteration elm->child1_in_history = history.size(); elm->child2_in_history = history.size()+1; elm->theta_squared = result_sd.structure_of().delta_R(); elm->theta_squared *= elm->theta_squared; elm->symmetry = result_sd.structure_of().symmetry(); elm->mu2 = result_sd.structure_of().mu(); elm->mu2 *= elm->mu2; // the next iteration will have to handle 2 new history // elements (the R0squared argument here is unused) result_sd.has_parents(piece1, piece2); internal_recursive_softdrop::RSDHistoryElement elm1(piece1, this, _R0sqr); history.push_back(elm1); // insert it in the active branches if needed if (elm1.theta_squared>0) active_branches.insert(hist_it,&(history.back())); // insert just before internal_recursive_softdrop::RSDHistoryElement elm2(piece2, this, _R0sqr); history.push_back(elm2); if ((!_hardest_branch_only) && (elm2.theta_squared>0)){ active_branches.insert(hist_it,&(history.back())); // insert just before } } // otherwise we've just reached the end of the recursion the // history information has been updated above // // we just need to make sure that we do not recurse into that // element any longer list::iterator current = hist_it; ++hist_it; active_branches.erase(current); } // loop over branches at current depth ++n_depth; } // loop over depth // now we have a bunch of history elements that we can use to build the final jet vector mapped_to_history(history.size()); unsigned int history_index = history.size(); do { --history_index; const internal_recursive_softdrop::RSDHistoryElement & elm = history[history_index]; // two kinds of events: either just a final leave, poteitially with grooming // or a brandhing (also with potential grooming at the end) if (elm.child1_in_history<0){ // this is a leaf, i.e. with no further sustructure PseudoJet & subjet = mapped_to_history[history_index] = cs_jets[cs_history[elm.current_in_ca_tree].jetp_index]; StructureType * structure = new StructureType(subjet); if (has_verbose_structure()){ structure->set_verbose(true); } subjet.set_structure_shared_ptr(SharedPtr(structure)); } else { PseudoJet & subjet = mapped_to_history[history_index] = join(mapped_to_history[elm.child1_in_history], mapped_to_history[elm.child2_in_history]); StructureType * structure = new StructureType(subjet, sqrt(elm.theta_squared), elm.symmetry, sqrt(elm.mu2)); if (has_verbose_structure()){ structure->set_verbose(true); structure->set_dropped_delta_R (elm.dropped_delta_R); structure->set_dropped_symmetry(elm.dropped_symmetry); structure->set_dropped_mu (elm.dropped_mu); } subjet.set_structure_shared_ptr(SharedPtr(structure)); } } while (history_index>0); return mapped_to_history[0]; } //======================================================================== // implementation of the helpers //======================================================================== // helper to get all the prongs in a jet that has been obtained using // RecursiveSoftDrop (instead of recursively parsing the 1->2 // composite jet structure) vector recursive_soft_drop_prongs(const PseudoJet & rsd_jet){ // make sure that the jet has the appropriate RecursiveSoftDrop structure if (!rsd_jet.has_structure_of()) return vector(); // if this jet has no substructure, just return a 1-prong object if (!rsd_jet.structure_of().has_substructure()) return vector(1, rsd_jet); // otherwise fill a vector with all the prongs (no specific ordering) vector prongs; // parse the list of PseudoJet we still need to deal with vector to_parse = rsd_jet.pieces(); // valid both for a C/A recombination step or a RSD join unsigned int i_parse = 0; while (i_parse()) && (current.structure_of().has_substructure())){ // if this has some deeper substructure, add it to the list of // things to further process vector pieces = current.pieces(); assert(pieces.size() == 2); to_parse[i_parse] = pieces[0]; to_parse.push_back(pieces[1]); } else { // no further substructure, just add this as a branch prongs.push_back(current); ++i_parse; } } return prongs; } } FASTJET_END_NAMESPACE