// Nsubjettiness Package
// Questions/Comments? jthaler@jthaler.net
//
// Copyright (c) 2011-14
// Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason
//
// $Id: MeasureDefinition.cc 819 2015-06-12 21:23:24Z jthaler $
//----------------------------------------------------------------------
// This file is part of FastJet contrib.
//
// It is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at
// your option) any later version.
//
// It is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this code. If not, see .
//----------------------------------------------------------------------
// #include "AxesRefiner.hh"
#include "MeasureDefinition.hh"
#include
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
namespace contrib {
///////
//
// Measure Function
//
///////
//descriptions updated to include measure type
std::string DefaultMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Default Measure (should not be used directly)";
return stream.str();
};
std::string NormalizedMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Normalized Measure (beta = " << _beta << ", R0 = " << _R0 << ")";
return stream.str();
};
std::string UnnormalizedMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Unnormalized Measure (beta = " << _beta << ", in GeV)";
return stream.str();
};
std::string NormalizedCutoffMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Normalized Cutoff Measure (beta = " << _beta << ", R0 = " << _R0 << ", Rcut = " << _Rcutoff << ")";
return stream.str();
};
std::string UnnormalizedCutoffMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Unnormalized Cutoff Measure (beta = " << _beta << ", Rcut = " << _Rcutoff << ", in GeV)";
return stream.str();
};
//std::string DeprecatedGeometricMeasure::description() const {
// std::stringstream stream;
// stream << std::fixed << std::setprecision(2)
// << "Deprecated Geometric Measure (beta = " << _jet_beta << ", in GeV)";
// return stream.str();
//};
//std::string DeprecatedGeometricCutoffMeasure::description() const {
// std::stringstream stream;
// stream << std::fixed << std::setprecision(2)
// << "Deprecated Geometric Cutoff Measure (beta = " << _jet_beta << ", Rcut = " << _Rcutoff << ", in GeV)";
// return stream.str();
//};
std::string ConicalMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Conical Measure (beta = " << _beta << ", Rcut = " << _Rcutoff << ", in GeV)";
return stream.str();
};
std::string OriginalGeometricMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Original Geometric Measure (Rcut = " << _Rcutoff << ", in GeV)";
return stream.str();
};
std::string ModifiedGeometricMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Modified Geometric Measure (Rcut = " << _Rcutoff << ", in GeV)";
return stream.str();
};
std::string ConicalGeometricMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "Conical Geometric Measure (beta = " << _jet_beta << ", gamma = " << _beam_gamma << ", Rcut = " << _Rcutoff << ", in GeV)";
return stream.str();
};
std::string XConeMeasure::description() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2)
<< "XCone Measure (beta = " << _jet_beta << ", Rcut = " << _Rcutoff << ", in GeV)";
return stream.str();
};
// Return all of the necessary TauComponents for specific input particles and axes
TauComponents MeasureDefinition::component_result(const std::vector& particles,
const std::vector& axes) const {
// first find partition
TauPartition partition = get_partition(particles,axes);
// then return result calculated from partition
return component_result_from_partition(partition,axes);
}
TauPartition MeasureDefinition::get_partition(const std::vector& particles,
const std::vector& axes) const {
TauPartition myPartition(axes.size());
// Figures out the partiting of the input particles into the various jet pieces
// Based on which axis the parition is closest to
for (unsigned i = 0; i < particles.size(); i++) {
// find minimum distance; start with beam (-1) for reference
int j_min = -1;
double minRsq;
if (has_beam()) minRsq = beam_distance_squared(particles[i]);
else minRsq = std::numeric_limits::max(); // make it large value
// check to see which axis the particle is closest to
for (unsigned j = 0; j < axes.size(); j++) {
double tempRsq = jet_distance_squared(particles[i],axes[j]); // delta R distance
if (tempRsq < minRsq) {
minRsq = tempRsq;
j_min = j;
}
}
if (j_min == -1) {
assert(has_beam()); // should have beam for this to make sense.
myPartition.push_back_beam(particles[i],i);
} else {
myPartition.push_back_jet(j_min,particles[i],i);
}
}
return myPartition;
}
// Uses existing partition and calculates result
// TODO: Can we cache this for speed up when doing area subtraction?
TauComponents MeasureDefinition::component_result_from_partition(const TauPartition& partition,
const std::vector& axes) const {
std::vector jetPieces(axes.size(), 0.0);
double beamPiece = 0.0;
double tauDen = 0.0;
if (!has_denominator()) tauDen = 1.0; // if no denominator, then 1.0 for no normalization factor
// first find jet pieces
for (unsigned j = 0; j < axes.size(); j++) {
std::vector thisPartition = partition.jet(j).constituents();
for (unsigned i = 0; i < thisPartition.size(); i++) {
jetPieces[j] += jet_numerator(thisPartition[i],axes[j]); //numerator jet piece
if (has_denominator()) tauDen += denominator(thisPartition[i]); // denominator
}
}
// then find beam piece
if (has_beam()) {
std::vector beamPartition = partition.beam().constituents();
for (unsigned i = 0; i < beamPartition.size(); i++) {
beamPiece += beam_numerator(beamPartition[i]); //numerator beam piece
if (has_denominator()) tauDen += denominator(beamPartition[i]); // denominator
}
}
// create jets for storage in TauComponents
std::vector jets = partition.jets();
return TauComponents(_tau_mode, jetPieces, beamPiece, tauDen, jets, axes);
}
// new methods added to generalize energy and angle squared for different measure types
double DefaultMeasure::energy(const PseudoJet& jet) const {
double energy;
switch (_measure_type) {
case pt_R :
case perp_lorentz_dot :
energy = jet.perp();
break;
case E_theta :
case lorentz_dot :
energy = jet.e();
break;
default : {
assert(_measure_type == pt_R || _measure_type == E_theta || _measure_type == lorentz_dot || _measure_type == perp_lorentz_dot);
energy = std::numeric_limits::quiet_NaN();
break;
}
}
return energy;
}
double DefaultMeasure::angleSquared(const PseudoJet& jet1, const PseudoJet& jet2) const {
double pseudoRsquared;
switch(_measure_type) {
case pt_R : {
pseudoRsquared = jet1.squared_distance(jet2);
break;
}
case E_theta : {
// doesn't seem to be a fastjet built in for this
double dot = jet1.px()*jet2.px() + jet1.py()*jet2.py() + jet1.pz()*jet2.pz();
double norm1 = sqrt(jet1.px()*jet1.px() + jet1.py()*jet1.py() + jet1.pz()*jet1.pz());
double norm2 = sqrt(jet2.px()*jet2.px() + jet2.py()*jet2.py() + jet2.pz()*jet2.pz());
double costheta = dot/(norm1 * norm2);
if (costheta > 1.0) costheta = 1.0; // Need to handle case of numerical overflow
double theta = acos(costheta);
pseudoRsquared = theta*theta;
break;
}
case lorentz_dot : {
double dotproduct = dot_product(jet1,jet2);
pseudoRsquared = 2.0 * dotproduct / (jet1.e() * jet2.e());
break;
}
case perp_lorentz_dot : {
PseudoJet lightJet = lightFrom(jet2); // assuming jet2 is the axis
double dotproduct = dot_product(jet1,lightJet);
pseudoRsquared = 2.0 * dotproduct / (lightJet.pt() * jet1.pt());
break;
}
default : {
assert(_measure_type == pt_R || _measure_type == E_theta || _measure_type == lorentz_dot || _measure_type == perp_lorentz_dot);
pseudoRsquared = std::numeric_limits::quiet_NaN();
break;
}
}
return pseudoRsquared;
}
///////
//
// Axes Refining
//
///////
// uses minimization of N-jettiness to continually update axes until convergence.
// The function returns the axes found at the (local) minimum
// This is the general axes refiner that can be used for a generic measure (but is
// overwritten in the case of the conical measure and the deprecated geometric measure)
std::vector MeasureDefinition::get_one_pass_axes(int n_jets,
const std::vector & particles,
const std::vector& currentAxes,
int nAttempts,
double accuracy) const {
assert(n_jets == (int)currentAxes.size());
std::vector seedAxes = currentAxes;
std::vector temp_axes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
for (unsigned int k = 0; k < seedAxes.size(); k++) {
seedAxes[k] = lightFrom(seedAxes[k]) * seedAxes[k].E(); // making light-like, but keeping energy
}
double seedTau = result(particles, seedAxes);
std::vector bestAxesSoFar = seedAxes;
double bestTauSoFar = seedTau;
for (int i_att = 0; i_att < nAttempts; i_att++) {
std::vector newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
std::vector summed_jets(seedAxes.size(), fastjet::PseudoJet(0,0,0,0));
// find closest axis and assign to that
for (unsigned int i = 0; i < particles.size(); i++) {
// start from unclustered beam measure
int minJ = -1;
double minDist = beam_distance_squared(particles[i]);
// which axis am I closest to?
for (unsigned int j = 0; j < seedAxes.size(); j++) {
double tempDist = jet_distance_squared(particles[i],seedAxes[j]);
if (tempDist < minDist) {
minDist = tempDist;
minJ = j;
}
}
// if not unclustered, then cluster
if (minJ != -1) {
summed_jets[minJ] += particles[i]; // keep track of energy to use later.
if (_useAxisScaling) {
double pseudoMomentum = dot_product(lightFrom(seedAxes[minJ]),particles[i]) + accuracy; // need small offset to avoid potential divide by zero issues
double axis_scaling = (double)jet_numerator(particles[i], seedAxes[minJ])/pseudoMomentum;
newAxes[minJ] += particles[i]*axis_scaling;
}
}
}
if (!_useAxisScaling) newAxes = summed_jets;
// convert the axes to LightLike and then back to PseudoJet
for (unsigned int k = 0; k < newAxes.size(); k++) {
if (newAxes[k].perp() > 0) {
newAxes[k] = lightFrom(newAxes[k]);
newAxes[k] *= summed_jets[k].E(); // scale by energy to get sensible result
}
}
// calculate tau on new axes
double newTau = result(particles, newAxes);
// find the smallest value of tau (and the corresponding axes) so far
if (newTau < bestTauSoFar) {
bestAxesSoFar = newAxes;
bestTauSoFar = newTau;
}
if (fabs(newTau - seedTau) < accuracy) {// close enough for jazz
seedAxes = newAxes;
seedTau = newTau;
break;
}
seedAxes = newAxes;
seedTau = newTau;
}
// return the axes corresponding to the smallest tau found throughout all iterations
// this is to prevent the minimization from returning a non-minimized of tau due to potential oscillations around the minimum
return bestAxesSoFar;
}
// One pass minimization for the DefaultMeasure
// Given starting axes, update to find better axes by using Kmeans clustering around the old axes
template
std::vector DefaultMeasure::UpdateAxesFast(const std::vector & old_axes,
const std::vector & inputJets,
double accuracy
) const {
assert(old_axes.size() == N);
// some storage, declared static to save allocation/re-allocation costs
static LightLikeAxis new_axes[N];
static fastjet::PseudoJet new_jets[N];
for (int n = 0; n < N; ++n) {
new_axes[n].reset(0.0,0.0,0.0,0.0);
new_jets[n].reset_momentum(0.0,0.0,0.0,0.0);
}
double precision = accuracy; //TODO: actually cascade this in
/////////////// Assignment Step //////////////////////////////////////////////////////////
std::vector assignment_index(inputJets.size());
int k_assign = -1;
for (unsigned i = 0; i < inputJets.size(); i++){
double smallestDist = std::numeric_limits::max(); //large number
for (int k = 0; k < N; k++) {
double thisDist = old_axes[k].DistanceSq(inputJets[i]);
if (thisDist < smallestDist) {
smallestDist = thisDist;
k_assign = k;
}
}
if (smallestDist > sq(_Rcutoff)) {k_assign = -1;}
assignment_index[i] = k_assign;
}
//////////////// Update Step /////////////////////////////////////////////////////////////
double distPhi, old_dist;
for (unsigned i = 0; i < inputJets.size(); i++) {
int old_jet_i = assignment_index[i];
if (old_jet_i == -1) {continue;}
const fastjet::PseudoJet& inputJet_i = inputJets[i];
LightLikeAxis& new_axis_i = new_axes[old_jet_i];
double inputPhi_i = inputJet_i.phi();
double inputRap_i = inputJet_i.rap();
// optimize pow() call
// add noise (the precision term) to make sure we don't divide by zero
if (_beta == 1.0) {
double DR = std::sqrt(sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i));
old_dist = 1.0/DR;
} else if (_beta == 2.0) {
old_dist = 1.0;
} else if (_beta == 0.0) {
double DRSq = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
old_dist = 1.0/DRSq;
} else {
old_dist = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
old_dist = std::pow(old_dist, (0.5*_beta-1.0));
}
// TODO: Put some of these addition functions into light-like axes
// rapidity sum
new_axis_i.set_rap(new_axis_i.rap() + inputJet_i.perp() * inputRap_i * old_dist);
// phi sum
distPhi = inputPhi_i - old_axes[old_jet_i].phi();
if (fabs(distPhi) <= M_PI){
new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * inputPhi_i * old_dist );
} else if (distPhi > M_PI) {
new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (-2*M_PI + inputPhi_i) * old_dist );
} else if (distPhi < -M_PI) {
new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (+2*M_PI + inputPhi_i) * old_dist );
}
// weights sum
new_axis_i.set_weight( new_axis_i.weight() + inputJet_i.perp() * old_dist );
// momentum magnitude sum
new_jets[old_jet_i] += inputJet_i;
}
// normalize sums
for (int k = 0; k < N; k++) {
if (new_axes[k].weight() == 0) {
// no particles were closest to this axis! Return to old axis instead of (0,0,0,0)
new_axes[k] = old_axes[k];
} else {
new_axes[k].set_rap( new_axes[k].rap() / new_axes[k].weight() );
new_axes[k].set_phi( new_axes[k].phi() / new_axes[k].weight() );
new_axes[k].set_phi( std::fmod(new_axes[k].phi() + 2*M_PI, 2*M_PI) );
new_axes[k].set_mom( std::sqrt(new_jets[k].modp2()) );
}
}
std::vector new_axes_vec(N);
for (unsigned k = 0; k < N; ++k) new_axes_vec[k] = new_axes[k];
return new_axes_vec;
}
// Given N starting axes, this function updates all axes to find N better axes.
// (This is just a wrapper for the templated version above.)
// TODO: Consider removing this in a future version
std::vector DefaultMeasure::UpdateAxes(const std::vector & old_axes,
const std::vector & inputJets,
double accuracy) const {
int N = old_axes.size();
switch (N) {
case 1: return UpdateAxesFast<1>(old_axes, inputJets, accuracy);
case 2: return UpdateAxesFast<2>(old_axes, inputJets, accuracy);
case 3: return UpdateAxesFast<3>(old_axes, inputJets, accuracy);
case 4: return UpdateAxesFast<4>(old_axes, inputJets, accuracy);
case 5: return UpdateAxesFast<5>(old_axes, inputJets, accuracy);
case 6: return UpdateAxesFast<6>(old_axes, inputJets, accuracy);
case 7: return UpdateAxesFast<7>(old_axes, inputJets, accuracy);
case 8: return UpdateAxesFast<8>(old_axes, inputJets, accuracy);
case 9: return UpdateAxesFast<9>(old_axes, inputJets, accuracy);
case 10: return UpdateAxesFast<10>(old_axes, inputJets, accuracy);
case 11: return UpdateAxesFast<11>(old_axes, inputJets, accuracy);
case 12: return UpdateAxesFast<12>(old_axes, inputJets, accuracy);
case 13: return UpdateAxesFast<13>(old_axes, inputJets, accuracy);
case 14: return UpdateAxesFast<14>(old_axes, inputJets, accuracy);
case 15: return UpdateAxesFast<15>(old_axes, inputJets, accuracy);
case 16: return UpdateAxesFast<16>(old_axes, inputJets, accuracy);
case 17: return UpdateAxesFast<17>(old_axes, inputJets, accuracy);
case 18: return UpdateAxesFast<18>(old_axes, inputJets, accuracy);
case 19: return UpdateAxesFast<19>(old_axes, inputJets, accuracy);
case 20: return UpdateAxesFast<20>(old_axes, inputJets, accuracy);
default: std::cout << "N-jettiness is hard-coded to only allow up to 20 jets!" << std::endl;
return std::vector();
}
}
// uses minimization of N-jettiness to continually update axes until convergence.
// The function returns the axes found at the (local) minimum
std::vector DefaultMeasure::get_one_pass_axes(int n_jets,
const std::vector & inputJets,
const std::vector& seedAxes,
int nAttempts,
double accuracy
) const {
// if the measure type doesn't use the pt_R metric, then the standard minimization scheme should be used
if (_measure_type != pt_R) {
return MeasureDefinition::get_one_pass_axes(n_jets, inputJets, seedAxes, nAttempts, accuracy);
}
// convert from PseudoJets to LightLikeAxes
std::vector< LightLikeAxis > old_axes(n_jets, LightLikeAxis(0,0,0,0));
for (int k = 0; k < n_jets; k++) {
old_axes[k].set_rap( seedAxes[k].rap() );
old_axes[k].set_phi( seedAxes[k].phi() );
}
// Find new axes by iterating (only one pass here)
std::vector< LightLikeAxis > new_axes(n_jets, LightLikeAxis(0,0,0,0));
double cmp = std::numeric_limits::max(); //large number
int h = 0;
while (cmp > accuracy && h < nAttempts) { // Keep updating axes until near-convergence or too many update steps
cmp = 0.0;
h++;
new_axes = UpdateAxes(old_axes, inputJets,accuracy); // Update axes
for (int k = 0; k < n_jets; k++) {
cmp += old_axes[k].Distance(new_axes[k]);
}
cmp = cmp / ((double) n_jets);
old_axes = new_axes;
}
// Convert from internal LightLikeAxes to PseudoJet
std::vector outputAxes;
for (int k = 0; k < n_jets; k++) {
fastjet::PseudoJet temp = old_axes[k].ConvertToPseudoJet();
outputAxes.push_back(temp);
}
// this is used to debug the minimization routine to make sure that it works.
bool do_debug = false;
if (do_debug) {
// get this information to make sure that minimization is working properly
double seed_tau = result(inputJets, seedAxes);
double outputTau = result(inputJets, outputAxes);
assert(outputTau <= seed_tau);
}
return outputAxes;
}
//// One-pass minimization for the Deprecated Geometric Measure
//// Uses minimization of the geometric distance in order to find the minimum axes.
//// It continually updates until it reaches convergence or it reaches the maximum number of attempts.
//// This is essentially the same as a stable cone finder.
//std::vector DeprecatedGeometricCutoffMeasure::get_one_pass_axes(int n_jets,
// const std::vector & particles,
// const std::vector& currentAxes,
// int nAttempts,
// double accuracy) const {
//
// assert(n_jets == (int)currentAxes.size()); //added int casting to get rid of compiler warning
//
// std::vector seedAxes = currentAxes;
// double seedTau = result(particles, seedAxes);
//
// for (int i = 0; i < nAttempts; i++) {
//
// std::vector newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
//
// // find closest axis and assign to that
// for (unsigned int i = 0; i < particles.size(); i++) {
//
// // start from unclustered beam measure
// int minJ = -1;
// double minDist = beam_distance_squared(particles[i]);
//
// // which axis am I closest to?
// for (unsigned int j = 0; j < seedAxes.size(); j++) {
// double tempDist = jet_distance_squared(particles[i],seedAxes[j]);
// if (tempDist < minDist) {
// minDist = tempDist;
// minJ = j;
// }
// }
//
// // if not unclustered, then cluster
// if (minJ != -1) newAxes[minJ] += particles[i];
// }
//
// // calculate tau on new axes
// seedAxes = newAxes;
// double tempTau = result(particles, newAxes);
//
// // close enough to stop?
// if (fabs(tempTau - seedTau) < accuracy) break;
// seedTau = tempTau;
// }
//
// return seedAxes;
//}
// Go from internal LightLikeAxis to PseudoJet
fastjet::PseudoJet LightLikeAxis::ConvertToPseudoJet() {
double px, py, pz, E;
E = _mom;
pz = (std::exp(2.0*_rap) - 1.0) / (std::exp(2.0*_rap) + 1.0) * E;
px = std::cos(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
py = std::sin(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
return fastjet::PseudoJet(px,py,pz,E);
}
} //namespace contrib
FASTJET_END_NAMESPACE