// Nsubjettiness Package
// Questions/Comments? jthaler@jthaler.net
//
// Copyright (c) 2011-14
// Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason
//
//----------------------------------------------------------------------
// This file is part of FastJet contrib.
//
// It is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at
// your option) any later version.
//
// It is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this code. If not, see .
//----------------------------------------------------------------------
#include "AxesFinder.hh"
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
namespace contrib{
///////
//
// Functions for minimization.
//
///////
// Given starting axes, update to find better axes by using Kmeans clustering around the old axes
template
std::vector AxesFinderFromOnePassMinimization::UpdateAxesFast(const std::vector & old_axes,
const std::vector & inputJets) {
assert(old_axes.size() == N);
// some storage, declared static to save allocation/re-allocation costs
static LightLikeAxis new_axes[N];
static fastjet::PseudoJet new_jets[N];
for (int n = 0; n < N; ++n) {
new_axes[n].reset(0.0,0.0,0.0,0.0);
#ifdef FASTJET2
new_jets[n].reset(0.0,0.0,0.0,0.0);
#else
// use cheaper reset if available
new_jets[n].reset_momentum(0.0,0.0,0.0,0.0);
#endif
}
double precision = _precision;
/////////////// Assignment Step //////////////////////////////////////////////////////////
std::vector assignment_index(inputJets.size());
int k_assign = -1;
for (unsigned i = 0; i < inputJets.size(); i++){
double smallestDist = std::numeric_limits::max(); //large number
for (int k = 0; k < N; k++) {
double thisDist = old_axes[k].DistanceSq(inputJets[i]);
if (thisDist < smallestDist) {
smallestDist = thisDist;
k_assign = k;
}
}
if (smallestDist > sq(_Rcutoff)) {k_assign = -1;}
assignment_index[i] = k_assign;
}
//////////////// Update Step /////////////////////////////////////////////////////////////
double distPhi, old_dist;
for (unsigned i = 0; i < inputJets.size(); i++) {
int old_jet_i = assignment_index[i];
if (old_jet_i == -1) {continue;}
const fastjet::PseudoJet& inputJet_i = inputJets[i];
LightLikeAxis& new_axis_i = new_axes[old_jet_i];
double inputPhi_i = inputJet_i.phi();
double inputRap_i = inputJet_i.rap();
// optimize pow() call
// add noise (the precision term) to make sure we don't divide by zero
if (_beta == 1.0) {
double DR = std::sqrt(sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i));
old_dist = 1.0/DR;
} else if (_beta == 2.0) {
old_dist = 1.0;
} else if (_beta == 0.0) {
double DRSq = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
old_dist = 1.0/DRSq;
} else {
old_dist = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i);
old_dist = std::pow(old_dist, (0.5*_beta-1.0));
}
// TODO: Put some of these addition functions into light-like axes
// rapidity sum
new_axis_i.set_rap(new_axis_i.rap() + inputJet_i.perp() * inputRap_i * old_dist);
// phi sum
distPhi = inputPhi_i - old_axes[old_jet_i].phi();
if (fabs(distPhi) <= M_PI){
new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * inputPhi_i * old_dist );
} else if (distPhi > M_PI) {
new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (-2*M_PI + inputPhi_i) * old_dist );
} else if (distPhi < -M_PI) {
new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (+2*M_PI + inputPhi_i) * old_dist );
}
// weights sum
new_axis_i.set_weight( new_axis_i.weight() + inputJet_i.perp() * old_dist );
// momentum magnitude sum
new_jets[old_jet_i] += inputJet_i;
}
// normalize sums
for (int k = 0; k < N; k++) {
if (new_axes[k].weight() == 0) {
// no particles were closest to this axis! Return to old axis instead of (0,0,0,0)
new_axes[k] = old_axes[k];
} else {
new_axes[k].set_rap( new_axes[k].rap() / new_axes[k].weight() );
new_axes[k].set_phi( new_axes[k].phi() / new_axes[k].weight() );
new_axes[k].set_phi( std::fmod(new_axes[k].phi() + 2*M_PI, 2*M_PI) );
new_axes[k].set_mom( std::sqrt(new_jets[k].modp2()) );
}
}
std::vector new_axes_vec(N);
for (unsigned k = 0; k < N; ++k) new_axes_vec[k] = new_axes[k];
return new_axes_vec;
}
// Given N starting axes, this function updates all axes to find N better axes.
// (This is just a wrapper for the templated version above.)
std::vector AxesFinderFromOnePassMinimization::UpdateAxes(const std::vector & old_axes,
const std::vector & inputJets) {
int N = old_axes.size();
switch (N) {
case 1: return UpdateAxesFast<1>(old_axes, inputJets);
case 2: return UpdateAxesFast<2>(old_axes, inputJets);
case 3: return UpdateAxesFast<3>(old_axes, inputJets);
case 4: return UpdateAxesFast<4>(old_axes, inputJets);
case 5: return UpdateAxesFast<5>(old_axes, inputJets);
case 6: return UpdateAxesFast<6>(old_axes, inputJets);
case 7: return UpdateAxesFast<7>(old_axes, inputJets);
case 8: return UpdateAxesFast<8>(old_axes, inputJets);
case 9: return UpdateAxesFast<9>(old_axes, inputJets);
case 10: return UpdateAxesFast<10>(old_axes, inputJets);
case 11: return UpdateAxesFast<11>(old_axes, inputJets);
case 12: return UpdateAxesFast<12>(old_axes, inputJets);
case 13: return UpdateAxesFast<13>(old_axes, inputJets);
case 14: return UpdateAxesFast<14>(old_axes, inputJets);
case 15: return UpdateAxesFast<15>(old_axes, inputJets);
case 16: return UpdateAxesFast<16>(old_axes, inputJets);
case 17: return UpdateAxesFast<17>(old_axes, inputJets);
case 18: return UpdateAxesFast<18>(old_axes, inputJets);
case 19: return UpdateAxesFast<19>(old_axes, inputJets);
case 20: return UpdateAxesFast<20>(old_axes, inputJets);
default: std::cout << "N-jettiness is hard-coded to only allow up to 20 jets!" << std::endl;
return std::vector();
}
}
// uses minimization of N-jettiness to continually update axes until convergence.
// The function returns the axes found at the (local) minimum
std::vector AxesFinderFromOnePassMinimization::getBetterAxes(int n_jets, const std::vector & inputJets, const std::vector& seedAxes) {
// convert from PseudoJets to LightLikeAxes
std::vector< LightLikeAxis > old_axes(n_jets, LightLikeAxis(0,0,0,0));
for (int k = 0; k < n_jets; k++) {
old_axes[k].set_rap( seedAxes[k].rap() );
old_axes[k].set_phi( seedAxes[k].phi() );
}
// Find new axes by iterating (only one pass here)
std::vector< LightLikeAxis > new_axes(n_jets, LightLikeAxis(0,0,0,0));
double cmp = std::numeric_limits::max(); //large number
int h = 0;
while (cmp > _precision && h < _halt) { // Keep updating axes until near-convergence or too many update steps
cmp = 0.0;
h++;
new_axes = UpdateAxes(old_axes, inputJets); // Update axes
for (int k = 0; k < n_jets; k++) {
cmp += old_axes[k].Distance(new_axes[k]);
}
cmp = cmp / ((double) n_jets);
old_axes = new_axes;
}
// Convert from internal LightLikeAxes to PseudoJet
std::vector outputAxes;
for (int k = 0; k < n_jets; k++) {
fastjet::PseudoJet temp = old_axes[k].ConvertToPseudoJet();
outputAxes.push_back(temp);
}
// this is used to debug the minimization routine to make sure that it works.
bool do_debug = false;
if (do_debug) {
// get this information to make sure that minimization is working properly
TauComponents seed_tau_components = _measureFunction.result(inputJets, seedAxes);
double seed_tau = seed_tau_components.tau();
TauComponents tau_components = _measureFunction.result(inputJets, outputAxes);
double outputTau = tau_components.tau();
assert(outputTau <= seed_tau);
}
return outputAxes;
}
PseudoJet AxesFinderFromKmeansMinimization::jiggle(const PseudoJet& axis) {
double phi_noise = ((double)rand()/(double)RAND_MAX) * _noise_range * 2.0 - _noise_range;
double rap_noise = ((double)rand()/(double)RAND_MAX) * _noise_range * 2.0 - _noise_range;
double new_phi = axis.phi() + phi_noise;
if (new_phi >= 2.0*M_PI) new_phi -= 2.0*M_PI;
if (new_phi <= -2.0*M_PI) new_phi += 2.0*M_PI;
PseudoJet newAxis(0,0,0,0);
newAxis.reset_PtYPhiM(axis.perp(),axis.rap() + rap_noise,new_phi);
return newAxis;
}
// Repeatedly calls the one pass finder to try to find global minimum
std::vector AxesFinderFromKmeansMinimization::getBetterAxes(int n_jets, const std::vector & inputJets, const std::vector& seedAxes) {
// first iteration
std::vector bestAxes = _onePassFinder.getAxes(n_jets, inputJets, seedAxes);
double bestTau = (_measureFunction.result(inputJets,bestAxes)).tau();
for (int l = 1; l < _n_iterations; l++) { // Do minimization procedure multiple times (l = 1 to start since first iteration is done already)
// Add noise to current best axes
std::vector< PseudoJet > noiseAxes(n_jets, PseudoJet(0,0,0,0));
for (int k = 0; k < n_jets; k++) {
noiseAxes[k] = jiggle(bestAxes[k]);
}
std::vector testAxes = _onePassFinder.getAxes(n_jets, inputJets, noiseAxes);
double testTau = (_measureFunction.result(inputJets,testAxes)).tau();
if (testTau < bestTau) {
bestTau = testTau;
bestAxes = testAxes;
}
}
return bestAxes;
}
// Uses minimization of the geometric distance in order to find the minimum axes.
// It continually updates until it reaches convergence or it reaches the maximum number of attempts.
// This is essentially the same as a stable cone finder.
std::vector AxesFinderFromGeometricMinimization::getBetterAxes(int n_jets, const std::vector & particles, const std::vector& currentAxes) {
std::vector seedAxes = currentAxes;
double seedTau = _function->tau(particles, seedAxes);
for (int i = 0; i < _nAttempts; i++) {
std::vector newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0));
// find closest axis and assign to that
for (unsigned int i = 0; i < particles.size(); i++) {
// start from unclustered beam measure
int minJ = -1;
double minDist = _function->beam_distance_squared(particles[i]);
// which axis am I closest to?
for (unsigned int j = 0; j < seedAxes.size(); j++) {
double tempDist = _function->jet_distance_squared(particles[i],seedAxes[j]);
if (tempDist < minDist) {
minDist = tempDist;
minJ = j;
}
}
// if not unclustered, then cluster
if (minJ != -1) newAxes[minJ] += particles[i];
}
// calculate tau on new axes
seedAxes = newAxes;
double tempTau = _function->tau(particles, newAxes);
// close enough to stop?
if (fabs(tempTau - seedTau) < _accuracy) break;
seedTau = tempTau;
}
return seedAxes;
}
// Go from internal LightLikeAxis to PseudoJet
fastjet::PseudoJet LightLikeAxis::ConvertToPseudoJet() {
double px, py, pz, E;
E = _mom;
pz = (std::exp(2.0*_rap) - 1.0) / (std::exp(2.0*_rap) + 1.0) * E;
px = std::cos(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
py = std::sin(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) );
return fastjet::PseudoJet(px,py,pz,E);
}
} //namespace contrib
FASTJET_END_NAMESPACE