// Nsubjettiness Package // Questions/Comments? jthaler@jthaler.net // // Copyright (c) 2011-14 // Jesse Thaler, Ken Van Tilburg, Christopher K. Vermilion, and TJ Wilkason // // $Id: AxesFinder.cc 670 2014-06-06 01:24:42Z jthaler $ //---------------------------------------------------------------------- // This file is part of FastJet contrib. // // It is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the // Free Software Foundation; either version 2 of the License, or (at // your option) any later version. // // It is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this code. If not, see . //---------------------------------------------------------------------- #include "AxesFinder.hh" FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh namespace contrib{ /////// // // Functions for minimization. // /////// // Given starting axes, update to find better axes by using Kmeans clustering around the old axes template std::vector AxesFinderFromOnePassMinimization::UpdateAxesFast(const std::vector & old_axes, const std::vector & inputJets) const { assert(old_axes.size() == N); // some storage, declared static to save allocation/re-allocation costs static LightLikeAxis new_axes[N]; static fastjet::PseudoJet new_jets[N]; for (int n = 0; n < N; ++n) { new_axes[n].reset(0.0,0.0,0.0,0.0); new_jets[n].reset_momentum(0.0,0.0,0.0,0.0); } double precision = _precision; /////////////// Assignment Step ////////////////////////////////////////////////////////// std::vector assignment_index(inputJets.size()); int k_assign = -1; for (unsigned i = 0; i < inputJets.size(); i++){ double smallestDist = std::numeric_limits::max(); //large number for (int k = 0; k < N; k++) { double thisDist = old_axes[k].DistanceSq(inputJets[i]); if (thisDist < smallestDist) { smallestDist = thisDist; k_assign = k; } } if (smallestDist > sq(_Rcutoff)) {k_assign = -1;} assignment_index[i] = k_assign; } //////////////// Update Step ///////////////////////////////////////////////////////////// double distPhi, old_dist; for (unsigned i = 0; i < inputJets.size(); i++) { int old_jet_i = assignment_index[i]; if (old_jet_i == -1) {continue;} const fastjet::PseudoJet& inputJet_i = inputJets[i]; LightLikeAxis& new_axis_i = new_axes[old_jet_i]; double inputPhi_i = inputJet_i.phi(); double inputRap_i = inputJet_i.rap(); // optimize pow() call // add noise (the precision term) to make sure we don't divide by zero if (_beta == 1.0) { double DR = std::sqrt(sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i)); old_dist = 1.0/DR; } else if (_beta == 2.0) { old_dist = 1.0; } else if (_beta == 0.0) { double DRSq = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i); old_dist = 1.0/DRSq; } else { old_dist = sq(precision) + old_axes[old_jet_i].DistanceSq(inputJet_i); old_dist = std::pow(old_dist, (0.5*_beta-1.0)); } // TODO: Put some of these addition functions into light-like axes // rapidity sum new_axis_i.set_rap(new_axis_i.rap() + inputJet_i.perp() * inputRap_i * old_dist); // phi sum distPhi = inputPhi_i - old_axes[old_jet_i].phi(); if (fabs(distPhi) <= M_PI){ new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * inputPhi_i * old_dist ); } else if (distPhi > M_PI) { new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (-2*M_PI + inputPhi_i) * old_dist ); } else if (distPhi < -M_PI) { new_axis_i.set_phi( new_axis_i.phi() + inputJet_i.perp() * (+2*M_PI + inputPhi_i) * old_dist ); } // weights sum new_axis_i.set_weight( new_axis_i.weight() + inputJet_i.perp() * old_dist ); // momentum magnitude sum new_jets[old_jet_i] += inputJet_i; } // normalize sums for (int k = 0; k < N; k++) { if (new_axes[k].weight() == 0) { // no particles were closest to this axis! Return to old axis instead of (0,0,0,0) new_axes[k] = old_axes[k]; } else { new_axes[k].set_rap( new_axes[k].rap() / new_axes[k].weight() ); new_axes[k].set_phi( new_axes[k].phi() / new_axes[k].weight() ); new_axes[k].set_phi( std::fmod(new_axes[k].phi() + 2*M_PI, 2*M_PI) ); new_axes[k].set_mom( std::sqrt(new_jets[k].modp2()) ); } } std::vector new_axes_vec(N); for (unsigned k = 0; k < N; ++k) new_axes_vec[k] = new_axes[k]; return new_axes_vec; } // Given N starting axes, this function updates all axes to find N better axes. // (This is just a wrapper for the templated version above.) std::vector AxesFinderFromOnePassMinimization::UpdateAxes(const std::vector & old_axes, const std::vector & inputJets) const { int N = old_axes.size(); switch (N) { case 1: return UpdateAxesFast<1>(old_axes, inputJets); case 2: return UpdateAxesFast<2>(old_axes, inputJets); case 3: return UpdateAxesFast<3>(old_axes, inputJets); case 4: return UpdateAxesFast<4>(old_axes, inputJets); case 5: return UpdateAxesFast<5>(old_axes, inputJets); case 6: return UpdateAxesFast<6>(old_axes, inputJets); case 7: return UpdateAxesFast<7>(old_axes, inputJets); case 8: return UpdateAxesFast<8>(old_axes, inputJets); case 9: return UpdateAxesFast<9>(old_axes, inputJets); case 10: return UpdateAxesFast<10>(old_axes, inputJets); case 11: return UpdateAxesFast<11>(old_axes, inputJets); case 12: return UpdateAxesFast<12>(old_axes, inputJets); case 13: return UpdateAxesFast<13>(old_axes, inputJets); case 14: return UpdateAxesFast<14>(old_axes, inputJets); case 15: return UpdateAxesFast<15>(old_axes, inputJets); case 16: return UpdateAxesFast<16>(old_axes, inputJets); case 17: return UpdateAxesFast<17>(old_axes, inputJets); case 18: return UpdateAxesFast<18>(old_axes, inputJets); case 19: return UpdateAxesFast<19>(old_axes, inputJets); case 20: return UpdateAxesFast<20>(old_axes, inputJets); default: std::cout << "N-jettiness is hard-coded to only allow up to 20 jets!" << std::endl; return std::vector(); } } // uses minimization of N-jettiness to continually update axes until convergence. // The function returns the axes found at the (local) minimum std::vector AxesFinderFromOnePassMinimization::getAxes(int n_jets, const std::vector & inputJets, const std::vector& seedAxes) const { // convert from PseudoJets to LightLikeAxes std::vector< LightLikeAxis > old_axes(n_jets, LightLikeAxis(0,0,0,0)); for (int k = 0; k < n_jets; k++) { old_axes[k].set_rap( seedAxes[k].rap() ); old_axes[k].set_phi( seedAxes[k].phi() ); } // Find new axes by iterating (only one pass here) std::vector< LightLikeAxis > new_axes(n_jets, LightLikeAxis(0,0,0,0)); double cmp = std::numeric_limits::max(); //large number int h = 0; while (cmp > _precision && h < _halt) { // Keep updating axes until near-convergence or too many update steps cmp = 0.0; h++; new_axes = UpdateAxes(old_axes, inputJets); // Update axes for (int k = 0; k < n_jets; k++) { cmp += old_axes[k].Distance(new_axes[k]); } cmp = cmp / ((double) n_jets); old_axes = new_axes; } // Convert from internal LightLikeAxes to PseudoJet std::vector outputAxes; for (int k = 0; k < n_jets; k++) { fastjet::PseudoJet temp = old_axes[k].ConvertToPseudoJet(); outputAxes.push_back(temp); } // this is used to debug the minimization routine to make sure that it works. bool do_debug = false; if (do_debug) { // get this information to make sure that minimization is working properly TauComponents seed_tau_components = _measureFunction.result(inputJets, seedAxes); double seed_tau = seed_tau_components.tau(); TauComponents tau_components = _measureFunction.result(inputJets, outputAxes); double outputTau = tau_components.tau(); assert(outputTau <= seed_tau); } return outputAxes; } PseudoJet AxesFinderFromKmeansMinimization::jiggle(const PseudoJet& axis) const { double phi_noise = ((double)rand()/(double)RAND_MAX) * _noise_range * 2.0 - _noise_range; double rap_noise = ((double)rand()/(double)RAND_MAX) * _noise_range * 2.0 - _noise_range; double new_phi = axis.phi() + phi_noise; if (new_phi >= 2.0*M_PI) new_phi -= 2.0*M_PI; if (new_phi <= -2.0*M_PI) new_phi += 2.0*M_PI; PseudoJet newAxis(0,0,0,0); newAxis.reset_PtYPhiM(axis.perp(),axis.rap() + rap_noise,new_phi); return newAxis; } // Repeatedly calls the one pass finder to try to find global minimum std::vector AxesFinderFromKmeansMinimization::getAxes(int n_jets, const std::vector & inputJets, const std::vector& seedAxes) const { // first iteration std::vector bestAxes = _onePassFinder.getAxes(n_jets, inputJets, seedAxes); double bestTau = (_measureFunction.result(inputJets,bestAxes)).tau(); for (int l = 1; l < _n_iterations; l++) { // Do minimization procedure multiple times (l = 1 to start since first iteration is done already) // Add noise to current best axes std::vector< PseudoJet > noiseAxes(n_jets, PseudoJet(0,0,0,0)); for (int k = 0; k < n_jets; k++) { noiseAxes[k] = jiggle(bestAxes[k]); } std::vector testAxes = _onePassFinder.getAxes(n_jets, inputJets, noiseAxes); double testTau = (_measureFunction.result(inputJets,testAxes)).tau(); if (testTau < bestTau) { bestTau = testTau; bestAxes = testAxes; } } return bestAxes; } // Uses minimization of the geometric distance in order to find the minimum axes. // It continually updates until it reaches convergence or it reaches the maximum number of attempts. // This is essentially the same as a stable cone finder. std::vector AxesFinderFromGeometricMinimization::getAxes(int /*n_jets*/, const std::vector & particles, const std::vector& currentAxes) const { std::vector seedAxes = currentAxes; double seedTau = _function.tau(particles, seedAxes); for (int i = 0; i < _nAttempts; i++) { std::vector newAxes(seedAxes.size(),fastjet::PseudoJet(0,0,0,0)); // find closest axis and assign to that for (unsigned int i = 0; i < particles.size(); i++) { // start from unclustered beam measure int minJ = -1; double minDist = _function.beam_distance_squared(particles[i]); // which axis am I closest to? for (unsigned int j = 0; j < seedAxes.size(); j++) { double tempDist = _function.jet_distance_squared(particles[i],seedAxes[j]); if (tempDist < minDist) { minDist = tempDist; minJ = j; } } // if not unclustered, then cluster if (minJ != -1) newAxes[minJ] += particles[i]; } // calculate tau on new axes seedAxes = newAxes; double tempTau = _function.tau(particles, newAxes); // close enough to stop? if (fabs(tempTau - seedTau) < _accuracy) break; seedTau = tempTau; } return seedAxes; } // Go from internal LightLikeAxis to PseudoJet fastjet::PseudoJet LightLikeAxis::ConvertToPseudoJet() { double px, py, pz, E; E = _mom; pz = (std::exp(2.0*_rap) - 1.0) / (std::exp(2.0*_rap) + 1.0) * E; px = std::cos(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) ); py = std::sin(_phi) * std::sqrt( std::pow(E,2) - std::pow(pz,2) ); return fastjet::PseudoJet(px,py,pz,E); } } //namespace contrib FASTJET_END_NAMESPACE