#ifndef __FASTJET_SHARED_PTR_HH__
#define __FASTJET_SHARED_PTR_HH__
//STARTHEADER
// $Id: SharedPtr.hh 2680 2011-11-12 17:12:05Z soyez $
//
// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development and are described in hep-ph/0512210. If you use
// FastJet as part of work towards a scientific publication, please
// include a citation to the FastJet paper.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//ENDHEADER
#include "fastjet/internal/base.hh"
#include // for NULL!!!
// for testing purposes, the following define makes it possible
// for our SharedPtr simply to be derived from the STL TR1 one.
// #define USETR1SHAREDPTR
#ifdef USETR1SHAREDPTR
#include
#endif // USETR1SHAREDPTR
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
#ifdef USETR1SHAREDPTR
/// @ingroup advanced_usage
/// \class SharedPtr
/// replaces our shared pointer with the TR1 one (for testing purpose)
///
/// for testing purposes, it can be useful to replace our home-made
/// SharedPtr with the standard library one. Having a class derived
/// from the standard one is way of arranging for this to happen.
///
/// The other way of working this is a template class with an
/// internal typedef (http://bytes.com/topic/c/answers/60312-typedef-template)
/// since templated typedefs don't work in standard C++
///
/// Note that some facilities that are present in the FastJet shared
/// pointer (resetting use-count) are not handled by the TR1 shared
/// pointer; and the FastJet SharedPtr has a different underlying data
/// structure from the TR1 shared pointer, which prevents us from
/// implementing some of TR1 features (notably assignment from shared
/// pointers to a derived class).
template
class SharedPtr : public std::tr1::shared_ptr {
public:
SharedPtr() : std::tr1::shared_ptr() {}
SharedPtr(T * t) : std::tr1::shared_ptr(t) {}
SharedPtr(const SharedPtr & t) : std::tr1::shared_ptr(t) {}
// for some reason operator() doesn't get inherited
inline operator bool() const {return (this->get()!=NULL);}
/// return the pointer we're pointing to
T* operator ()() const{
return this->get(); // automatically returns NULL when out-of-scope
}
};
#else // USETR1SHAREDPTR
/**
* @ingroup advanced_usage
* \class SharedPtr
* an implementation of C++0x shared pointers (or boost's)
*
* this class implements a smart pointer, based on the shared+ptr
* proposal. A description of shared_ptr can be found in Section 2.2.3
* of the first C++ Technical Report (TR1)
* http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1745.pdf
* or, alternatively, on the Boost C++ library website at
* http://www.boost.org/doc/libs/1_42_0/libs/smart_ptr/shared_ptr.htm
*
* Our implementation is compatible with both of these apart from a
* series of members and functions that have not been implemented:
* - conversion from weak and auto pointers
* - support for deleters and allocators
* - static, constant and dynamic casts
* - constructor and assignment sharing ownership with a shared
* pointer r but storing a different pointer than r (needed for the
* previous item)
* In the last 2 cases, their implementation would require storing two
* pointers for every copies of the shared pointer, while our
* implementation only needs one. We did not implement then since we
* want to limit as much as possible memory and time consumption, and
* can easily avoid (at least for our needs so far) the casts.
*
* We also add the possibility to force an update of the count.
*
* The class has been tested against the existing boost (v1.42)
* implementation (for the parts that we have implemented).
*/
template
class SharedPtr{
public:
/// forward declaration of the counting container
class __SharedCountingPtr;
/// default ctor
SharedPtr() : _ptr(NULL){}
/// initialise with the main data
/// \param t : the object we want a smart pointer to
template explicit SharedPtr(Y* ptr){
_ptr = new __SharedCountingPtr(ptr);
}
/// overload the copy ctor so that it updates count
/// \param share : the object we want to copy
SharedPtr(SharedPtr const & share) : _ptr(share._get_container()){
if (_ptr!=NULL) ++(*_ptr);
}
// old version
// SharedPtr(SharedPtr const & share) : _ptr(NULL){
// reset(share);
// }
// will not work with the current structure
// /// overload the copy ctor so that it updates count
// /// \param share : the object we want to copy
// template SharedPtr(SharedPtr const & share) : _ptr(NULL){
// reset(share);
// }
/// default dtor
~SharedPtr(){
// make sure the object has been allocated
if (_ptr==NULL) return;
_decrease_count();
}
/// reset the pointer to default value (NULL)
void reset(){
// // if we already are pointing to sth, be sure to decrease its count
// if (_ptr!=NULL) _decrease_count();
// _ptr = NULL;
SharedPtr().swap(*this);
}
// will not work with the current structure
/// reset from a pointer
template void reset(Y * ptr){
// // if we already are pointing to sth, be sure to decrease its count
// if (_ptr!=NULL) _decrease_count();
//
// _ptr = new __SharedCountingPtr(ptr);
SharedPtr(ptr).swap(*this);
}
// not part of the standard
/// do a smart copy
/// \param share : the object we want to copy
/// Q? Do we need a non-template version as for the ctor and the assignment?
template void reset(SharedPtr const & share){
//void reset(SharedPtr const & share){
// if we already are pointing to sth, be sure to decrease its count
if (_ptr!=NULL){
// in the specific case where we're having the same
// share,reset() has actually no effect. However if *this is the
// only instance still alive (implying share==*this) bringing
// the count down to 0 and deleting the object will not have the
// expected effect. So we just avoid that situation explicitly
if (_ptr == share._get_container()) return;
_decrease_count();
}
// Watch out: if share is empty, construct an empty shared_ptr
// copy the container
_ptr = share._get_container(); // Note: automatically set it to NULL if share is empty
if (_ptr!=NULL) ++(*_ptr);
}
/// overload the = operator so that it updates count
/// \param share : the object we want to copy
SharedPtr& operator=(SharedPtr const & share){
reset(share);
return *this;
}
/// overload the = operator so that it updates count
/// \param share : the object we want to copy
template SharedPtr& operator=(SharedPtr const & share){
reset(share);
return *this;
}
/// return the pointer we're pointing to
T* operator ()() const{
if (_ptr==NULL) return NULL;
return _ptr->get(); // automatically returns NULL when out-of-scope
}
/// indirection, get a reference to the stored pointer
///
/// !!! WATCH OUT
/// It fails to check the requirement that the stored pointer must
/// not be NULL!! So you need explicitly to check the validity in
/// your code
inline T& operator*() const{
return *(_ptr->get());
}
/// indirection, get the stored pointer
///
/// !!! WATCH OUT
/// It fails to check the requirement that the stored pointer must
/// not be NULL!! So you need explicitly to check the validity in
/// your code
inline T* operator->() const{
if (_ptr==NULL) return NULL;
return _ptr->get();
}
/// get the stored pointer
inline T* get() const{
if (_ptr==NULL) return NULL;
return _ptr->get();
}
/// check if the instance is unique
inline bool unique() const{
return (use_count()==1);
}
/// return the number of counts
inline long use_count() const{
if (_ptr==NULL) return 0;
return _ptr->use_count(); // automatically returns NULL when out-of-scope
}
/// conversion to bool
/// This will allow you to use the indirection nicely
inline operator bool() const{
return (get()!=NULL);
}
/// exchange the content of the two pointers
inline void swap(SharedPtr & share){
__SharedCountingPtr* share_container = share._ptr;
share._ptr = _ptr;
_ptr = share_container;
}
/// force the count to be set to a specified value
/// \param count the value that we need to reset to
void set_count(const long & count){
if (_ptr==NULL) return;
_ptr->set_count(count);
}
/**
* \if internal_doc
* \class __SharedCountingPtr
* A reference-counting pointer
*
* This is implemented as a container for that pointer together with
* reference counting.
* The pointer is deleted when the number of counts goes to 0;
* \endif
*/
class __SharedCountingPtr{
public:
/// default ctor
__SharedCountingPtr() : _ptr(NULL), _count(0){}
/// ctor with initialisation
template explicit __SharedCountingPtr(Y* ptr) : _ptr(ptr), _count(1){}
/// default dtor
~__SharedCountingPtr(){
// force the deletion of the object we keep track of
if (_ptr!=NULL){ delete _ptr;}
}
/// return a pointer to the object
inline T* get() const {return _ptr;}
/// return the count
inline long use_count() const {return _count;}
/// prefix increment operator
inline long operator++(){return ++_count;}
/// prefix decrement operator
inline long operator--(){return --_count;}
/// postfix increment operator
/// The "dummy" int argument is just a C++ trick to differentiate
/// it from the prefix increment
inline long operator++(int){return _count++;}
/// postfix decrement operator
/// The "dummy" int argument is just a C++ trick to differentiate
/// it from the prefix decrement
inline long operator--(int){return _count--;}
/// force the count to be set to a specified value
/// \param count the value that we ned to reset to
void set_count(const long & count){
_count = count;
}
private:
T *_ptr; ///< the pointer we're counting the references to
long _count; ///< the number of references
};
private:
/// return the common container
inline __SharedCountingPtr* _get_container() const{
return _ptr;
}
/// decrease the pointer count and support deletion
/// Warning: we don't test that the pointer is allocated
/// This can be dangerous if we have explicitly reset the
/// count. Generally speaking, if the count goes negative
/// after _ptr has been effectively deleted, this is going
/// to lead to a segmentation fault. But, if in the course
/// of the deletion of _ptr, the deletion of its pointer
/// (_ptr::_ptr, i.e. the real data we're storing) makes
/// the counts to become negative, this is going to pass
/// smoothly.
void _decrease_count(){
// decrease the count
(*_ptr)--;
// if no one else is using it, free the allocated memory
if (_ptr->use_count()==0)
delete _ptr; // that automatically deletes the object itself
}
// the real info
__SharedCountingPtr *_ptr;
};
/// comparison: equality
template
inline bool operator==(SharedPtr const & t, SharedPtr const & u){
return t.get() == u.get();
}
/// comparison: difference
template
inline bool operator!=(SharedPtr const & t, SharedPtr const & u){
return t.get() != u.get();
}
/// comparison: orgering
template
inline bool operator<(SharedPtr const & t, SharedPtr const & u){
return t.get() < u.get();
}
/// swapping
template
inline void swap(SharedPtr & a, SharedPtr & b){
return a.swap(b);
}
/// getting the pointer
template
inline T* get_pointer(SharedPtr const & t){
return t.get();
}
#endif // USETR1SHAREDPTR
FASTJET_END_NAMESPACE // defined in fastjet/internal/base.hh
#endif // __FASTJET_SHARED_PTR_HH__