//FJSTARTHEADER
// $Id: PseudoJet.hh 4442 2020-05-05 07:50:11Z soyez $
//
// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development. They are described in the original FastJet paper,
// hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
// FastJet as part of work towards a scientific publication, please
// quote the version you use and include a citation to the manual and
// optionally also to hep-ph/0512210.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//FJENDHEADER
#ifndef __FASTJET_PSEUDOJET_HH__
#define __FASTJET_PSEUDOJET_HH__
#include
#include
#include
#include
#include
#include "fastjet/internal/numconsts.hh"
#include "fastjet/internal/IsBase.hh"
#include "fastjet/SharedPtr.hh"
#include "fastjet/Error.hh"
#include "fastjet/PseudoJetStructureBase.hh"
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
//using namespace std;
/// Used to protect against parton-level events where pt can be zero
/// for some partons, giving rapidity=infinity. KtJet fails in those cases.
const double MaxRap = 1e5;
/// default value for phi, meaning it (and rapidity) have yet to be calculated)
const double pseudojet_invalid_phi = -100.0;
const double pseudojet_invalid_rap = -1e200;
#ifndef __FJCORE__
// forward definition
class ClusterSequenceAreaBase;
#endif // __FJCORE__
/// @ingroup basic_classes
/// \class PseudoJet
/// Class to contain pseudojets, including minimal information of use to
/// jet-clustering routines.
class PseudoJet {
public:
//----------------------------------------------------------------------
/// @name Constructors and destructor
//\{
/// default constructor, which as of FJ3.0 provides an object for
/// which all operations are now valid and which has zero momentum
///
// (cf. this is actually OK from a timing point of view and in some
// cases better than just having the default constructor for the
// internal shared pointer: see PJtiming.cc and the notes therein)
PseudoJet() : _px(0), _py(0), _pz(0), _E(0) {_finish_init(); _reset_indices();}
//PseudoJet() : _px(0), _py(0), _pz(0), _E(0), _phi(pseudojet_invalid_phi), _rap(pseudojet_invalid_rap), _kt2(0) {_reset_indices();}
/// construct a pseudojet from explicit components
PseudoJet(const double px, const double py, const double pz, const double E);
/// constructor from any object that has px,py,pz,E = some_four_vector[0--3],
#ifndef SWIG
template PseudoJet(const L & some_four_vector);
#endif
// Constructor that performs minimal initialisation (only that of
// the shared pointers), of use in certain speed-critical contexts
//
// NB: "dummy" is commented to avoid unused-variable compiler warnings
PseudoJet(bool /* dummy */) {}
/// default (virtual) destructor
virtual ~PseudoJet(){};
//\} ---- end of constructors and destructors --------------------------
//----------------------------------------------------------------------
/// @name Kinematic access functions
//\{
//----------------------------------------------------------------------
inline double E() const {return _E;}
inline double e() const {return _E;} // like CLHEP
inline double px() const {return _px;}
inline double py() const {return _py;}
inline double pz() const {return _pz;}
/// returns phi (in the range 0..2pi)
inline double phi() const {return phi_02pi();}
/// returns phi in the range -pi..pi
inline double phi_std() const {
_ensure_valid_rap_phi();
return _phi > pi ? _phi-twopi : _phi;}
/// returns phi in the range 0..2pi
inline double phi_02pi() const {
_ensure_valid_rap_phi();
return _phi;
}
/// returns the rapidity or some large value when the rapidity
/// is infinite
inline double rap() const {
_ensure_valid_rap_phi();
return _rap;
}
/// the same as rap()
inline double rapidity() const {return rap();} // like CLHEP
/// returns the pseudo-rapidity or some large value when the
/// rapidity is infinite
double pseudorapidity() const;
double eta() const {return pseudorapidity();}
/// returns the squared transverse momentum
inline double pt2() const {return _kt2;}
/// returns the scalar transverse momentum
inline double pt() const {return sqrt(_kt2);}
/// returns the squared transverse momentum
inline double perp2() const {return _kt2;} // like CLHEP
/// returns the scalar transverse momentum
inline double perp() const {return sqrt(_kt2);} // like CLHEP
/// returns the squared transverse momentum
inline double kt2() const {return _kt2;} // for bkwds compatibility
/// returns the squared invariant mass // like CLHEP
inline double m2() const {return (_E+_pz)*(_E-_pz)-_kt2;}
/// returns the invariant mass
/// (If m2() is negative then -sqrt(-m2()) is returned, as in CLHEP)
inline double m() const;
/// returns the squared transverse mass = kt^2+m^2
inline double mperp2() const {return (_E+_pz)*(_E-_pz);}
/// returns the transverse mass = sqrt(kt^2+m^2)
inline double mperp() const {return sqrt(std::abs(mperp2()));}
/// returns the squared transverse mass = kt^2+m^2
inline double mt2() const {return (_E+_pz)*(_E-_pz);}
/// returns the transverse mass = sqrt(kt^2+m^2)
inline double mt() const {return sqrt(std::abs(mperp2()));}
/// return the squared 3-vector modulus = px^2+py^2+pz^2
inline double modp2() const {return _kt2+_pz*_pz;}
/// return the 3-vector modulus = sqrt(px^2+py^2+pz^2)
inline double modp() const {return sqrt(_kt2+_pz*_pz);}
/// return the transverse energy
inline double Et() const {return (_kt2==0) ? 0.0 : _E/sqrt(1.0+_pz*_pz/_kt2);}
/// return the transverse energy squared
inline double Et2() const {return (_kt2==0) ? 0.0 : _E*_E/(1.0+_pz*_pz/_kt2);}
/// cos of the polar angle
/// should we have: min(1.0,max(-1.0,_pz/sqrt(modp2())));
inline double cos_theta() const {
return std::min(1.0, std::max(-1.0, _pz/sqrt(modp2())));
}
/// polar angle
inline double theta() const { return acos(cos_theta()); }
/// returns component i, where X==0, Y==1, Z==2, E==3
double operator () (int i) const ;
/// returns component i, where X==0, Y==1, Z==2, E==3
inline double operator [] (int i) const { return (*this)(i); }; // this too
/// returns kt distance (R=1) between this jet and another
double kt_distance(const PseudoJet & other) const;
/// returns squared cylinder (rap-phi) distance between this jet and another
double plain_distance(const PseudoJet & other) const;
/// returns squared cylinder (rap-phi) distance between this jet and
/// another
inline double squared_distance(const PseudoJet & other) const {
return plain_distance(other);}
/// return the cylinder (rap-phi) distance between this jet and another,
/// \f$\Delta_R = \sqrt{\Delta y^2 + \Delta \phi^2}\f$.
inline double delta_R(const PseudoJet & other) const {
return sqrt(squared_distance(other));
}
/// returns other.phi() - this.phi(), constrained to be in
/// range -pi .. pi
double delta_phi_to(const PseudoJet & other) const;
//// this seemed to compile except if it was used
//friend inline double
// kt_distance(const PseudoJet & jet1, const PseudoJet & jet2) {
// return jet1.kt_distance(jet2);}
/// returns distance between this jet and the beam
inline double beam_distance() const {return _kt2;}
/// return a valarray containing the four-momentum (components 0-2
/// are 3-mom, component 3 is energy).
std::valarray four_mom() const;
//\} ------- end of kinematic access functions
// taken from CLHEP
enum { X=0, Y=1, Z=2, T=3, NUM_COORDINATES=4, SIZE=NUM_COORDINATES };
//----------------------------------------------------------------------
/// @name Kinematic modification functions
//\{
//----------------------------------------------------------------------
/// transform this jet (given in the rest frame of prest) into a jet
/// in the lab frame
PseudoJet & boost(const PseudoJet & prest);
/// transform this jet (given in lab) into a jet in the rest
/// frame of prest
PseudoJet & unboost(const PseudoJet & prest);
PseudoJet & operator*=(double);
PseudoJet & operator/=(double);
PseudoJet & operator+=(const PseudoJet &);
PseudoJet & operator-=(const PseudoJet &);
/// reset the 4-momentum according to the supplied components and
/// put the user and history indices back to their default values
inline void reset(double px, double py, double pz, double E);
/// reset the PseudoJet to be equal to psjet (including its
/// indices); NB if the argument is derived from a PseudoJet then
/// the "reset" used will be the templated version
///
/// Note: this is included on top of the templated version because
/// PseudoJet is not "derived" from PseudoJet, so the templated
/// reset would not handle this case properly.
inline void reset(const PseudoJet & psjet) {
(*this) = psjet;
}
/// reset the 4-momentum according to the supplied generic 4-vector
/// (accessible via indexing, [0]==px,...[3]==E) and put the user
/// and history indices back to their default values.
#ifndef SWIG
template inline void reset(const L & some_four_vector) {
// check if some_four_vector can be cast to a PseudoJet
//
// Note that a regular dynamic_cast would not work here because
// there is no guarantee that L is polymorphic. We use a more
// complex construct here that works also in such a case. As for
// dynamic_cast, NULL is returned if L is not derived from
// PseudoJet
//
// Note the explicit request for fastjet::cast_if_derived; when
// combining fastjet and fjcore, this avoids ambiguity in which of
// the two cast_if_derived calls to use.
const PseudoJet * pj = fastjet::cast_if_derived(&some_four_vector);
if (pj){
(*this) = *pj;
} else {
reset(some_four_vector[0], some_four_vector[1],
some_four_vector[2], some_four_vector[3]);
}
}
#endif // SWIG
/// reset the PseudoJet according to the specified pt, rapidity,
/// azimuth and mass (also resetting indices, etc.)
/// (phi should satisfy -2pi inline void reset_momentum(const L & some_four_vector) {
reset_momentum(some_four_vector[0], some_four_vector[1],
some_four_vector[2], some_four_vector[3]);
}
/// in some cases when setting a 4-momentum, the user/program knows
/// what rapidity and azimuth are associated with that 4-momentum;
/// by calling this routine the user can provide the information
/// directly to the PseudoJet and avoid expensive rap-phi
/// recalculations.
///
/// - \param rap rapidity
/// - \param phi (in range -twopi...4*pi)
///
/// USE WITH CAUTION: there are no checks that the rapidity and
/// azimuth supplied are sensible, nor does this reset the
/// 4-momentum components if things don't match.
void set_cached_rap_phi(double rap, double phi);
//\} --- end of kin mod functions ------------------------------------
//----------------------------------------------------------------------
/// @name User index functions
///
/// To allow the user to set and access an integer index which can
/// be exploited by the user to associate extra information with a
/// particle/jet (for example pdg id, or an indication of a
/// particle's origin within the user's analysis)
//
//\{
/// return the user_index,
inline int user_index() const {return _user_index;}
/// set the user_index, intended to allow the user to add simple
/// identifying information to a particle/jet
inline void set_user_index(const int index) {_user_index = index;}
//\} ----- end of use index functions ---------------------------------
//----------------------------------------------------------------------
/// @name User information types and functions
///
/// Allows PseudoJet to carry extra user info (as an object derived from
/// UserInfoBase).
//\{
/// @ingroup user_info
/// \class UserInfoBase
/// a base class to hold extra user information in a PseudoJet
///
/// This is a base class to help associate extra user information
/// with a jet. The user should store their information in a class
/// derived from this. This allows information of arbitrary
/// complexity to be easily associated with a PseudoJet (in contrast
/// to the user index). For example, in a Monte Carlo simulation,
/// the user information might include the PDG ID, and the position
/// of the production vertex for the particle.
///
/// The PseudoJet is able to store a shared pointer to any object
/// derived from UserInfo. The use of a shared pointer frees the
/// user of the need to handle the memory management associated with
/// the information.
///
/// Having the user information derive from a common base class also
/// facilitates dynamic casting, etc.
///
class UserInfoBase{
public:
// dummy ctor
UserInfoBase(){};
// dummy virtual dtor
// makes it polymorphic to allow for dynamic_cast
virtual ~UserInfoBase(){};
};
/// error class to be thrown if accessing user info when it doesn't
/// exist
class InexistentUserInfo : public Error {
public:
InexistentUserInfo();
};
/// sets the internal shared pointer to the user information.
///
/// Note that the PseudoJet will now _own_ the pointer, and delete
/// the corresponding object when it (the jet, and any copies of the jet)
/// goes out of scope.
void set_user_info(UserInfoBase * user_info_in) {
_user_info.reset(user_info_in);
}
/// returns a reference to the dynamic cast conversion of user_info
/// to type L.
///
/// Usage: suppose you have previously set the user info with a pointer
/// to an object of type MyInfo,
///
/// class MyInfo: public PseudoJet::UserInfoBase {
/// MyInfo(int id) : _pdg_id(id);
/// int pdg_id() const {return _pdg_id;}
/// int _pdg_id;
/// };
///
/// PseudoJet particle(...);
/// particle.set_user_info(new MyInfo(its_pdg_id));
///
/// Then you would access that pdg_id() as
///
/// particle.user_info().pdg_id();
///
/// It's overkill for just a single integer, but scales easily to
/// more extensive information.
///
/// Note that user_info() throws an InexistentUserInfo() error if
/// there is no user info; throws a std::bad_cast if the conversion
/// doesn't work
///
/// If this behaviour does not fit your needs, use instead the the
/// user_info_ptr() or user_info_shared_ptr() member functions.
template
const L & user_info() const{
if (_user_info.get() == 0) throw InexistentUserInfo();
return dynamic_cast(* _user_info.get());
}
/// returns true if the PseudoJet has user information
bool has_user_info() const{
return _user_info.get();
}
/// returns true if the PseudoJet has user information than can be
/// cast to the template argument type.
template
bool has_user_info() const{
return _user_info.get() && dynamic_cast(_user_info.get());
}
/// retrieve a pointer to the (const) user information
const UserInfoBase * user_info_ptr() const{
// the line below is not needed since the next line would anyway
// return NULL in that case
//if (!_user_info) return NULL;
return _user_info.get();
}
/// retrieve a (const) shared pointer to the user information
const SharedPtr & user_info_shared_ptr() const{
return _user_info;
}
/// retrieve a (non-const) shared pointer to the user information;
/// you can use this, for example, to set the shared pointer, eg
///
/// \code
/// p2.user_info_shared_ptr() = p1.user_info_shared_ptr();
/// \endcode
///
/// or
///
/// \code
/// SharedPtr info_shared(new MyInfo(...));
/// p2.user_info_shared_ptr() = info_shared;
/// \endcode
SharedPtr & user_info_shared_ptr(){
return _user_info;
}
// \} --- end of extra info functions ---------------------------------
//----------------------------------------------------------------------
/// @name Description
///
/// Since a PseudoJet can have a structure that contains a variety
/// of information, we provide a description that allows one to check
/// exactly what kind of PseudoJet we are dealing with
//
//\{
/// return a string describing what kind of PseudoJet we are dealing with
std::string description() const;
//\} ----- end of description functions ---------------------------------
//-------------------------------------------------------------
/// @name Access to the associated ClusterSequence object.
///
/// In addition to having kinematic information, jets may contain a
/// reference to an associated ClusterSequence (this is the case,
/// for example, if the jet has been returned by a ClusterSequence
/// member function).
//\{
//-------------------------------------------------------------
/// returns true if this PseudoJet has an associated ClusterSequence.
bool has_associated_cluster_sequence() const;
/// shorthand for has_associated_cluster_sequence()
bool has_associated_cs() const {return has_associated_cluster_sequence();}
/// returns true if this PseudoJet has an associated and still
/// valid(ated) ClusterSequence.
bool has_valid_cluster_sequence() const;
/// shorthand for has_valid_cluster_sequence()
bool has_valid_cs() const {return has_valid_cluster_sequence();}
/// get a (const) pointer to the parent ClusterSequence (NULL if
/// inexistent)
const ClusterSequence* associated_cluster_sequence() const;
// shorthand for associated_cluster_sequence()
const ClusterSequence* associated_cs() const {return associated_cluster_sequence();}
/// if the jet has a valid associated cluster sequence then return a
/// pointer to it; otherwise throw an error
inline const ClusterSequence * validated_cluster_sequence() const {
return validated_cs();
}
/// shorthand for validated_cluster_sequence()
const ClusterSequence * validated_cs() const;
#ifndef __FJCORE__
/// if the jet has valid area information then return a pointer to
/// the associated ClusterSequenceAreaBase object; otherwise throw an error
inline const ClusterSequenceAreaBase * validated_cluster_sequence_area_base() const {
return validated_csab();
}
/// shorthand for validated_cluster_sequence_area_base()
const ClusterSequenceAreaBase * validated_csab() const;
#endif // __FJCORE__
//\}
//-------------------------------------------------------------
/// @name Access to the associated PseudoJetStructureBase object.
///
/// In addition to having kinematic information, jets may contain a
/// reference to an associated ClusterSequence (this is the case,
/// for example, if the jet has been returned by a ClusterSequence
/// member function).
//\{
//-------------------------------------------------------------
/// set the associated structure
void set_structure_shared_ptr(const SharedPtr &structure);
/// return true if there is some structure associated with this PseudoJet
bool has_structure() const;
/// return a pointer to the structure (of type
/// PseudoJetStructureBase*) associated with this PseudoJet.
///
/// return NULL if there is no associated structure
const PseudoJetStructureBase* structure_ptr() const;
/// return a non-const pointer to the structure (of type
/// PseudoJetStructureBase*) associated with this PseudoJet.
///
/// return NULL if there is no associated structure
///
/// Only use this if you know what you are doing. In any case,
/// prefer the 'structure_ptr()' (the const version) to this method,
/// unless you really need a write access to the PseudoJet's
/// underlying structure.
PseudoJetStructureBase* structure_non_const_ptr();
/// return a pointer to the structure (of type
/// PseudoJetStructureBase*) associated with this PseudoJet.
///
/// throw an error if there is no associated structure
const PseudoJetStructureBase* validated_structure_ptr() const;
/// return a reference to the shared pointer to the
/// PseudoJetStructureBase associated with this PseudoJet
const SharedPtr & structure_shared_ptr() const;
/// returns a reference to the structure casted to the requested
/// structure type
///
/// If there is no structure associated, an Error is thrown.
/// If the type is not met, a std::bad_cast error is thrown.
template
const StructureType & structure() const;
/// check if the PseudoJet has the structure resulting from a Transformer
/// (that is, its structure is compatible with a Transformer::StructureType).
/// If there is no structure, false is returned.
template
bool has_structure_of() const;
/// this is a helper to access any structure created by a Transformer
/// (that is, of type Transformer::StructureType).
///
/// If there is no structure, or if the structure is not compatible
/// with TransformerType, an error is thrown.
template
const typename TransformerType::StructureType & structure_of() const;
//\}
//-------------------------------------------------------------
/// @name Methods for access to information about jet structure
///
/// These allow access to jet constituents, and other jet
/// subtructure information. They only work if the jet is associated
/// with a ClusterSequence.
//-------------------------------------------------------------
//\{
/// check if it has been recombined with another PseudoJet in which
/// case, return its partner through the argument. Otherwise,
/// 'partner' is set to 0.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
virtual bool has_partner(PseudoJet &partner) const;
/// check if it has been recombined with another PseudoJet in which
/// case, return its child through the argument. Otherwise, 'child'
/// is set to 0.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
virtual bool has_child(PseudoJet &child) const;
/// check if it is the product of a recombination, in which case
/// return the 2 parents through the 'parent1' and 'parent2'
/// arguments. Otherwise, set these to 0.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
virtual bool has_parents(PseudoJet &parent1, PseudoJet &parent2) const;
/// check if the current PseudoJet contains the one passed as
/// argument.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
virtual bool contains(const PseudoJet &constituent) const;
/// check if the current PseudoJet is contained the one passed as
/// argument.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
virtual bool is_inside(const PseudoJet &jet) const;
/// returns true if the PseudoJet has constituents
virtual bool has_constituents() const;
/// retrieve the constituents.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence or other substructure information
virtual std::vector constituents() const;
/// returns true if the PseudoJet has support for exclusive subjets
virtual bool has_exclusive_subjets() const;
/// return a vector of all subjets of the current jet (in the sense
/// of the exclusive algorithm) that would be obtained when running
/// the algorithm with the given dcut.
///
/// Time taken is O(m ln m), where m is the number of subjets that
/// are found. If m gets to be of order of the total number of
/// constituents in the jet, this could be substantially slower than
/// just getting that list of constituents.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
std::vector exclusive_subjets (const double dcut) const;
/// return the size of exclusive_subjets(...); still n ln n with same
/// coefficient, but marginally more efficient than manually taking
/// exclusive_subjets.size()
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
int n_exclusive_subjets(const double dcut) const;
/// return the list of subjets obtained by unclustering the supplied
/// jet down to nsub subjets. Throws an error if there are fewer than
/// nsub particles in the jet.
///
/// For ClusterSequence type jets, requires nsub ln nsub time
///
/// An Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
std::vector exclusive_subjets (int nsub) const;
/// return the list of subjets obtained by unclustering the supplied
/// jet down to nsub subjets (or all constituents if there are fewer
/// than nsub).
///
/// For ClusterSequence type jets, requires nsub ln nsub time
///
/// An Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
std::vector exclusive_subjets_up_to (int nsub) const;
/// Returns the dij that was present in the merging nsub+1 -> nsub
/// subjets inside this jet.
///
/// Returns 0 if there were nsub or fewer constituents in the jet.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
double exclusive_subdmerge(int nsub) const;
/// Returns the maximum dij that occurred in the whole event at the
/// stage that the nsub+1 -> nsub merge of subjets occurred inside
/// this jet.
///
/// Returns 0 if there were nsub or fewer constituents in the jet.
///
/// an Error is thrown if this PseudoJet has no currently valid
/// associated ClusterSequence
double exclusive_subdmerge_max(int nsub) const;
/// returns true if a jet has pieces
///
/// By default a single particle or a jet coming from a
/// ClusterSequence have no pieces and this methos will return false.
///
/// In practice, this is equivalent to have an structure of type
/// CompositeJetStructure.
virtual bool has_pieces() const;
/// retrieve the pieces that make up the jet.
///
/// If the jet does not support pieces, an error is throw
virtual std::vector pieces() const;
// the following ones require a computation of the area in the
// parent ClusterSequence (See ClusterSequenceAreaBase for details)
//------------------------------------------------------------------
#ifndef __FJCORE__
/// check if it has a defined area
virtual bool has_area() const;
/// return the jet (scalar) area.
/// throws an Error if there is no support for area in the parent CS
virtual double area() const;
/// return the error (uncertainty) associated with the determination
/// of the area of this jet.
/// throws an Error if there is no support for area in the parent CS
virtual double area_error() const;
/// return the jet 4-vector area.
/// throws an Error if there is no support for area in the parent CS
virtual PseudoJet area_4vector() const;
/// true if this jet is made exclusively of ghosts.
/// throws an Error if there is no support for area in the parent CS
virtual bool is_pure_ghost() const;
#endif // __FJCORE__
//\} --- end of jet structure -------------------------------------
//----------------------------------------------------------------------
/// @name Members mainly intended for internal use
//----------------------------------------------------------------------
//\{
/// return the cluster_hist_index, intended to be used by clustering
/// routines.
inline int cluster_hist_index() const {return _cluster_hist_index;}
/// set the cluster_hist_index, intended to be used by clustering routines.
inline void set_cluster_hist_index(const int index) {_cluster_hist_index = index;}
/// alternative name for cluster_hist_index() [perhaps more meaningful]
inline int cluster_sequence_history_index() const {
return cluster_hist_index();}
/// alternative name for set_cluster_hist_index(...) [perhaps more
/// meaningful]
inline void set_cluster_sequence_history_index(const int index) {
set_cluster_hist_index(index);}
//\} ---- end of internal use functions ---------------------------
protected:
SharedPtr _structure;
SharedPtr _user_info;
private:
// NB: following order must be kept for things to behave sensibly...
double _px,_py,_pz,_E;
mutable double _phi, _rap;
double _kt2;
int _cluster_hist_index, _user_index;
/// calculate phi, rap, kt2 based on the 4-momentum components
void _finish_init();
/// set the indices to default values
void _reset_indices();
/// ensure that the internal values for rapidity and phi
/// correspond to 4-momentum structure
inline void _ensure_valid_rap_phi() const {
if (_phi == pseudojet_invalid_phi) _set_rap_phi();
}
/// set cached rapidity and phi values
void _set_rap_phi() const;
// needed for operator* to have access to _ensure_valid_rap_phi()
friend PseudoJet operator*(double, const PseudoJet &);
};
//----------------------------------------------------------------------
// routines for basic binary operations
PseudoJet operator+(const PseudoJet &, const PseudoJet &);
PseudoJet operator-(const PseudoJet &, const PseudoJet &);
PseudoJet operator*(double, const PseudoJet &);
PseudoJet operator*(const PseudoJet &, double);
PseudoJet operator/(const PseudoJet &, double);
/// returns true if the 4 momentum components of the two PseudoJets
/// are identical and all the internal indices (user, cluster_history)
/// + structure and user-info shared pointers are too
bool operator==(const PseudoJet &, const PseudoJet &);
/// inequality test which is exact opposite of operator==
inline bool operator!=(const PseudoJet & a, const PseudoJet & b) {return !(a==b);}
/// Can only be used with val=0 and tests whether all four
/// momentum components are equal to val (=0.0)
bool operator==(const PseudoJet & jet, const double val);
inline bool operator==(const double val, const PseudoJet & jet) {return jet == val;}
/// Can only be used with val=0 and tests whether at least one of the
/// four momentum components is different from val (=0.0)
inline bool operator!=(const PseudoJet & a, const double val) {return !(a==val);}
inline bool operator!=( const double val, const PseudoJet & a) {return !(a==val);}
/// returns the 4-vector dot product of a and b
inline double dot_product(const PseudoJet & a, const PseudoJet & b) {
return a.E()*b.E() - a.px()*b.px() - a.py()*b.py() - a.pz()*b.pz();
}
/// returns the cosine of the angle between a and b
inline double cos_theta(const PseudoJet & a, const PseudoJet & b) {
double dot_3d = a.px()*b.px() + a.py()*b.py() + a.pz()*b.pz();
return std::min(1.0, std::max(-1.0, dot_3d/sqrt(a.modp2()*b.modp2())));
}
/// returns the angle between a and b
inline double theta(const PseudoJet & a, const PseudoJet & b) {
return acos(cos_theta(a,b));
}
/// returns true if the momenta of the two input jets are identical
bool have_same_momentum(const PseudoJet &, const PseudoJet &);
/// return a pseudojet with the given pt, y, phi and mass
/// (phi should satisfy -2pi sorted_by_pt(const std::vector & jets);
/// return a vector of jets sorted into increasing rapidity
std::vector sorted_by_rapidity(const std::vector & jets);
/// return a vector of jets sorted into decreasing energy
std::vector sorted_by_E(const std::vector & jets);
/// return a vector of jets sorted into increasing pz
std::vector sorted_by_pz(const std::vector & jets);
//----------------------------------------------------------------------
// some code to help sorting
/// sort the indices so that values[indices[0->n-1]] is sorted
/// into increasing order
void sort_indices(std::vector & indices,
const std::vector & values);
/// given a vector of values with a one-to-one correspondence with the
/// vector of objects, sort objects into an order such that the
/// associated values would be in increasing order (but don't actually
/// touch the values vector in the process).
template std::vector objects_sorted_by_values(const std::vector & objects,
const std::vector & values) {
//assert(objects.size() == values.size());
if (objects.size() != values.size()){
throw Error("fastjet::objects_sorted_by_values(...): the size of the 'objects' vector must match the size of the 'values' vector");
}
// get a vector of indices
std::vector indices(values.size());
for (size_t i = 0; i < indices.size(); i++) {indices[i] = i;}
// sort the indices
sort_indices(indices, values);
// copy the objects
std::vector objects_sorted(objects.size());
// place the objects in the correct order
for (size_t i = 0; i < indices.size(); i++) {
objects_sorted[i] = objects[indices[i]];
}
return objects_sorted;
}
/// \if internal_doc
/// @ingroup internal
/// \class IndexedSortHelper
/// a class that helps us carry out indexed sorting.
/// \endif
class IndexedSortHelper {
public:
inline IndexedSortHelper (const std::vector * reference_values) {
_ref_values = reference_values;
};
inline int operator() (const int i1, const int i2) const {
return (*_ref_values)[i1] < (*_ref_values)[i2];
};
private:
const std::vector * _ref_values;
};
//----------------------------------------------------------------------
/// constructor from any object that has px,py,pz,E = some_four_vector[0--3],
// NB: do not know if it really needs to be inline, but when it wasn't
// linking failed with g++ (who knows what was wrong...)
#ifndef SWIG
template inline PseudoJet::PseudoJet(const L & some_four_vector) {
reset(some_four_vector);
}
#endif
//----------------------------------------------------------------------
inline void PseudoJet::_reset_indices() {
set_cluster_hist_index(-1);
set_user_index(-1);
_structure.reset();
_user_info.reset();
}
// taken literally from CLHEP
inline double PseudoJet::m() const {
double mm = m2();
return mm < 0.0 ? -std::sqrt(-mm) : std::sqrt(mm);
}
inline void PseudoJet::reset(double px_in, double py_in, double pz_in, double E_in) {
_px = px_in;
_py = py_in;
_pz = pz_in;
_E = E_in;
_finish_init();
_reset_indices();
}
inline void PseudoJet::reset_momentum(double px_in, double py_in, double pz_in, double E_in) {
_px = px_in;
_py = py_in;
_pz = pz_in;
_E = E_in;
_finish_init();
}
inline void PseudoJet::reset_momentum(const PseudoJet & pj) {
_px = pj._px ;
_py = pj._py ;
_pz = pj._pz ;
_E = pj._E ;
_phi = pj._phi;
_rap = pj._rap;
_kt2 = pj._kt2;
}
//-------------------------------------------------------------------------------
// implementation of the templated accesses to the underlying structyre
//-------------------------------------------------------------------------------
// returns a reference to the structure casted to the requested
// structure type
//
// If there is no sructure associated, an Error is thrown.
// If the type is not met, a std::bad_cast error is thrown.
template
const StructureType & PseudoJet::structure() const{
return dynamic_cast(* validated_structure_ptr());
}
// check if the PseudoJet has the structure resulting from a Transformer
// (that is, its structure is compatible with a Transformer::StructureType)
template
bool PseudoJet::has_structure_of() const{
if (!_structure) return false;
return dynamic_cast(_structure.get()) != 0;
}
// this is a helper to access a structure created by a Transformer
// (that is, of type Transformer::StructureType)
// NULL is returned if the corresponding type is not met
template
const typename TransformerType::StructureType & PseudoJet::structure_of() const{
if (!_structure)
throw Error("Trying to access the structure of a PseudoJet without an associated structure");
return dynamic_cast(*_structure);
}
//-------------------------------------------------------------------------------
// helper functions to build a jet made of pieces
//
// Note that there are more complete versions of these functions, with
// an additional argument for a recombination scheme, in
// JetDefinition.hh
// -------------------------------------------------------------------------------
/// build a "CompositeJet" from the vector of its pieces
///
/// In this case, E-scheme recombination is assumed to compute the
/// total momentum
PseudoJet join(const std::vector & pieces);
/// build a MergedJet from a single PseudoJet
PseudoJet join(const PseudoJet & j1);
/// build a MergedJet from 2 PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2);
/// build a MergedJet from 3 PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3);
/// build a MergedJet from 4 PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3, const PseudoJet & j4);
FASTJET_END_NAMESPACE
#endif // __FASTJET_PSEUDOJET_HH__