#ifndef __FASTJET_NNFJN2TILED_HH__
#define __FASTJET_NNFJN2TILED_HH__
//FJSTARTHEADER
// $Id: NNFJN2Tiled.hh 4442 2020-05-05 07:50:11Z soyez $
//
// Copyright (c) 2016-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development. They are described in the original FastJet paper,
// hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
// FastJet as part of work towards a scientific publication, please
// quote the version you use and include a citation to the manual and
// optionally also to hep-ph/0512210.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//FJENDHEADER
#include
#include
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
//----------------------------------------------------------------------
/// @ingroup advanced_usage
/// \class NNFJN2Tiled
///
/// Helps solve closest pair problems with factorised interparticle
/// and beam distances (ie satisfying the FastJet lemma) that are on
/// a cylindrical geometry and allow tiling.
///
/// (see NNBase.hh for an introductory description)
///
/// This variant provides an implementation based on the N2Tiled
/// clustering strategy in FastJet. As for the NNFJN2Plain case, the
/// interparticle and beam distances should be of the form
///
/// \code
/// dij = min(mom_factor(i), mom_factor(j)) * geometrical_distance(i,j)
/// diB = mom_factor(i) * geometrical_beam_distance(i)
/// \endcode
///
/// Additionally, the NNFJN2Tiled class takes a tile_size parameter
/// that controls the size of the tiles. It must be such that, for any
/// two points in non-neighbouring (and non-identical) tiles, the
/// geometrical distance between the 2 points is larger than the
/// geometrical beam distance of each of the 2 points.
///
/// It is templated with a BJ (brief jet) class and can be used with or
/// without an extra "Information" template, i.e. NNFJN2Tiled or
/// NNFJN2Tiled
///
/// For the NNFJN2Tiled version of the class to function, BJ must provide
/// three member functions
///
/// \code
/// void BJ::init(const PseudoJet & jet); // initialise with a PseudoJet
/// double BJ::geometrical_distance(const BJ * other_bj_jet); // distance between this and other_bj_jet (geometrical part)
/// double BJ::geometrical_beam_distance(); // distance to the beam (geometrical part)
/// double BJ::momentum_factor(); // extra momentum factor
/// \endcode
///
/// For the NNFJN2Tiled version to function, the BJ::init(...) member
/// must accept an extra argument
///
/// \code
/// void BJ::init(const PseudoJet & jet, I * info); // initialise with a PseudoJet + info
/// \endcode
///
/// NOTE: THE DISTANCE MUST BE SYMMETRIC I.E. SATISFY
/// \code
/// a.geometrical_distance(b) == b.geometrical_distance(a)
/// \endcode
///
/// Finally, the BJ class needs to provide access to the variables used
/// for the rectangular tiling:
///
/// \code
/// double BJ::rap(); // rapidity-like variable
/// double BJ::phi(); // azimutal-angle-like variable (should be > -2pi)
/// \endcode
///
/// Note that you are strongly advised to add the following lines
/// to your BJ class to allow it to be used also with NNH:
///
/// \code
/// /// make this BJ class compatible with the use of NNH
/// double BJ::distance(const BJ * other_bj_jet){
/// double mom1 = momentum_factor();
/// double mom2 = other_bj_jet->momentum_factor();
/// return (mom1 class NNFJN2Tiled : public NNBase {
public:
/// constructor with an initial set of jets (which will be assigned indices
/// `0...jets.size()-1`)
NNFJN2Tiled(const std::vector & jets, double requested_tile_size)
: NNBase(), _requested_tile_size(requested_tile_size) {start(jets);}
NNFJN2Tiled(const std::vector & jets, double requested_tile_size, I * info)
: NNBase(info), _requested_tile_size(requested_tile_size) {start(jets);}
void start(const std::vector & jets);
/// return the dij_min and indices iA, iB, for the corresponding jets.
/// If iB < 0 then iA recombines with the beam
double dij_min(int & iA, int & iB);
/// remove the jet pointed to by index iA
void remove_jet(int iA);
/// merge the jets pointed to by indices A and B and replace them with
/// jet, assigning it an index jet_index.
void merge_jets(int iA, int iB, const PseudoJet & jet, int jet_index);
/// a destructor
~NNFJN2Tiled() {
delete[] briefjets;
delete[] diJ;
}
private:
class TiledJet; // forward declaration
class Tile;
class diJ_plus_link;
// Set up the tiles:
void _initialise_tiles(const std::vector & particles);
// return the full distance of a particle to its NN
inline double _compute_diJ(const TiledJet * const jet) const {
double mom_fact = jet->momentum_factor();
if (jet->NN != NULL) {
double other_mom_fact = jet->NN->momentum_factor();
if (other_mom_fact < mom_fact) {mom_fact = other_mom_fact;}
}
return jet->NN_dist * mom_fact;
}
// reasonably robust return of tile index given irap and iphi, in particular
// it works even if iphi is negative
inline int _tile_index (int irap, int iphi) const {
// note that (-1)%n = -1 so that we have to add _n_tiles_phi
// before performing modulo operation
return (irap-_tiles_irap_min)*_n_tiles_phi
+ (iphi+_n_tiles_phi) % _n_tiles_phi;
}
int _tile_index(const double rap, const double phi) const;
void _tiledjet_set_jetinfo ( TiledJet * const tiled_jet, const PseudoJet &jet, int index);
void _bj_remove_from_tiles(TiledJet * const jet);
void _initialise_tiles();
void _print_tiles(TiledJet * briefjets ) const;
void _add_neighbours_to_tile_union(const int tile_index, int & n_near_tiles) const;
void _add_untagged_neighbours_to_tile_union(const int tile_index, int & n_near_tiles);
/// contains the briefjets
TiledJet * briefjets;
/// semaphores for the current extent of our structure
TiledJet * head;
/// currently active number of jets
int n;
/// where_is[i] contains a pointer to the jet with index i
std::vector where_is;
/// helper to keep tracks of tiles to be checked for updates
std::vector tile_union;
/// a table containing all the (full) distances to each object's NN
diJ_plus_link * diJ;
/// tiling information
std::vector _tiles;
double _requested_tile_size;
double _tiles_rap_min, _tiles_rap_max;
double _tile_size_rap, _tile_size_phi;
int _n_tiles_phi,_tiles_irap_min,_tiles_irap_max;
/// a class that wraps around the BJ, supplementing it with extra information
/// such as pointers to neighbours, etc.
class TiledJet : public BJ {
public:
void init(const PseudoJet & jet, int index_in) {
BJ::init(jet);
other_init(index_in);
}
void init(const PseudoJet & jet, int index_in, I * info) {
BJ::init(jet, info);
other_init(index_in);
}
void other_init(int index_in) {
_index = index_in;
NN_dist = BJ::geometrical_beam_distance();
NN = NULL;
}
int jet_index() const {return _index;}
double NN_dist;
TiledJet * NN, *previous, * next;
int tile_index, diJ_posn;
// routines that are useful in the minheap version of tiled
// clustering ("misuse" the otherwise unused diJ_posn, so as
// to indicate whether jets need to have their minheap entries
// updated).
inline void label_minheap_update_needed() {diJ_posn = 1;}
inline void label_minheap_update_done() {diJ_posn = 0;}
inline bool minheap_update_needed() const {return diJ_posn==1;}
private:
int _index;
};
/// number of neighbours that a tile will have (rectangular geometry
/// gives 9 neighbours).
static const int n_tile_neighbours = 9;
//----------------------------------------------------------------------
/// The fundamental structures to be used for the tiled N^2 algorithm
/// (see CCN27-44 for some discussion of pattern of tiling)
class Tile {
public:
/// pointers to neighbouring tiles, including self
Tile * begin_tiles[n_tile_neighbours];
/// neighbouring tiles, excluding self
Tile ** surrounding_tiles;
/// half of neighbouring tiles, no self
Tile ** RH_tiles;
/// just beyond end of tiles
Tile ** end_tiles;
/// start of list of BriefJets contained in this tile
TiledJet * head;
/// sometimes useful to be able to tag a tile
bool tagged;
};
// structure that holds the real, full, distance (as well as a pointer to the corresponding TiledJet)
class diJ_plus_link {
public:
double diJ; // the distance
TiledJet * jet; // the jet (i) for which we've found this distance
// (whose NN will the J).
};
};
//----------------------------------------------------------------------
template void NNFJN2Tiled::start(const std::vector & jets) {
_initialise_tiles(jets);
n = jets.size();
briefjets = new TiledJet[n];
where_is.resize(2*n);
TiledJet * jetA = briefjets, * jetB;
// will be used quite deep inside loops, but declare it here so that
// memory (de)allocation gets done only once
tile_union.resize(3*n_tile_neighbours);
// initialise the basic jet info
for (int i = 0; i< n; i++) {
_tiledjet_set_jetinfo(jetA, jets[i], i);
where_is[i] = jetA;
jetA++; // move on to next entry of briefjets
}
head = briefjets; // a nicer way of naming start
// set up the initial nearest neighbour information
typename std::vector::const_iterator tile;
for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
// first do it on this tile
for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
for (jetB = tile->head; jetB != jetA; jetB = jetB->next) {
double dist = jetA->geometrical_distance(jetB);
if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
}
}
// then do it for RH tiles
for (Tile ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
double dist = jetA->geometrical_distance(jetB);
if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
}
}
}
// no need to do it for LH tiles, since they are implicitly done
// when we set NN for both jetA and jetB on the RH tiles.
}
diJ = new diJ_plus_link[n];
jetA = head;
for (int i = 0; i < n; i++) {
diJ[i].diJ = _compute_diJ(jetA); // kt distance * R^2
diJ[i].jet = jetA; // our compact diJ table will not be in
jetA->diJ_posn = i; // one-to-one corresp. with non-compact jets,
// so set up bi-directional correspondence here.
jetA++; // have jetA follow i
}
}
//----------------------------------------------------------------------
template double NNFJN2Tiled::dij_min(int & iA, int & iB) {
// find the minimum of the diJ on this round
diJ_plus_link * best, *stop; // pointers a bit faster than indices
// could use best to keep track of diJ
// min, but it turns out to be
// marginally faster to have a separate
// variable (avoids n dereferences at
// the expense of n/2 assignments).
double diJ_min = diJ[0].diJ; // initialise the best one here.
best = diJ; // and here
stop = diJ+n;
for (diJ_plus_link * here = diJ+1; here != stop; here++) {
if (here->diJ < diJ_min) {best = here; diJ_min = here->diJ;}
}
// return information to user about recombination
TiledJet * jetA = best->jet;
iA = jetA->jet_index();
iB = jetA->NN ? jetA->NN->jet_index() : -1;
return diJ_min;
}
//----------------------------------------------------------------------
// remove jetA from the list
template void NNFJN2Tiled::remove_jet(int iA) {
TiledJet * jetA = where_is[iA];
_bj_remove_from_tiles(jetA);
// first establish the set of tiles over which we are going to
// have to run searches for updated and new nearest-neighbours --
// basically a combination of vicinity of the tiles of the two old
// and one new jet.
int n_near_tiles = 0;
_add_untagged_neighbours_to_tile_union(jetA->tile_index, n_near_tiles);
// now update our nearest neighbour info and diJ table
// first reduce size of table
n--;
// then compactify the diJ by taking the last of the diJ and copying
// it to the position occupied by the diJ for jetA
diJ[n].jet->diJ_posn = jetA->diJ_posn;
diJ[jetA->diJ_posn] = diJ[n];
// updating other particles' NN.
// Run over all tiles in our union
for (int itile = 0; itile < n_near_tiles; itile++) {
Tile * tile_ptr = &_tiles[tile_union[itile]];
tile_ptr->tagged = false; // reset tag, since we're done with unions
// run over all jets in the current tile
for (TiledJet * jetI = tile_ptr->head; jetI != NULL; jetI = jetI->next) {
// see if jetI had jetA or jetB as a NN -- if so recalculate the NN
if (jetI->NN == jetA) {
jetI->NN_dist = jetI->geometrical_beam_distance();
jetI->NN = NULL;
// now go over tiles that are neighbours of I (include own tile)
for (Tile ** near_tile = tile_ptr->begin_tiles;
near_tile != tile_ptr->end_tiles; near_tile++) {
// and then over the contents of that tile
for (TiledJet * jetJ = (*near_tile)->head; jetJ != NULL; jetJ = jetJ->next) {
double dist = jetI->geometrical_distance(jetJ);
if (dist < jetI->NN_dist && jetJ != jetI) {
jetI->NN_dist = dist; jetI->NN = jetJ;
}
}
}
diJ[jetI->diJ_posn].diJ = _compute_diJ(jetI); // update diJ kt-dist
}
}
}
}
//----------------------------------------------------------------------
template void NNFJN2Tiled::merge_jets(int iA, int iB,
const PseudoJet & jet, int index) {
TiledJet * jetA = where_is[iA];
TiledJet * jetB = where_is[iB];
// jet-jet recombination
// If necessary relabel A & B to ensure jetB < jetA, that way if
// the larger of them == newtail then that ends up being jetA and
// the new jet that is added as jetB is inserted in a position that
// has a future!
if (jetA < jetB) {std::swap(jetA,jetB);}
// what was jetB will now become the new jet
_bj_remove_from_tiles(jetA);
TiledJet oldB = * jetB; // take a copy because we will need it...
_bj_remove_from_tiles(jetB);
_tiledjet_set_jetinfo(jetB, jet, index); // cause jetB to become _jets[nn]
// (also registers the jet in the tiling)
where_is[index] = jetB;
// first establish the set of tiles over which we are going to
// have to run searches for updated and new nearest-neighbours --
// basically a combination of vicinity of the tiles of the two old
// and one new jet.
int n_near_tiles = 0;
_add_untagged_neighbours_to_tile_union(jetA->tile_index, n_near_tiles);
if (jetB->tile_index != jetA->tile_index) {
_add_untagged_neighbours_to_tile_union(jetB->tile_index, n_near_tiles);
}
if (oldB.tile_index != jetA->tile_index &&
oldB.tile_index != jetB->tile_index) {
_add_untagged_neighbours_to_tile_union(oldB.tile_index, n_near_tiles);
}
// now update our nearest neighbour info and diJ table
// first reduce size of table
n--;
// then compactify the diJ by taking the last of the diJ and copying
// it to the position occupied by the diJ for jetA
diJ[n].jet->diJ_posn = jetA->diJ_posn;
diJ[jetA->diJ_posn] = diJ[n];
// Initialise jetB's NN distance as well as updating it for
// other particles.
// Run over all tiles in our union
for (int itile = 0; itile < n_near_tiles; itile++) {
Tile * tile_ptr = &_tiles[tile_union[itile]];
tile_ptr->tagged = false; // reset tag, since we're done with unions
// run over all jets in the current tile
for (TiledJet * jetI = tile_ptr->head; jetI != NULL; jetI = jetI->next) {
// see if jetI had jetA or jetB as a NN -- if so recalculate the NN
if ((jetI->NN == jetA) || (jetI->NN == jetB)) {
jetI->NN_dist = jetI->geometrical_beam_distance();
jetI->NN = NULL;
// now go over tiles that are neighbours of I (include own tile)
for (Tile ** near_tile = tile_ptr->begin_tiles; near_tile != tile_ptr->end_tiles; near_tile++) {
// and then over the contents of that tile
for (TiledJet * jetJ = (*near_tile)->head; jetJ != NULL; jetJ = jetJ->next) {
double dist = jetI->geometrical_distance(jetJ);
if (dist < jetI->NN_dist && jetJ != jetI) {
jetI->NN_dist = dist; jetI->NN = jetJ;
}
}
}
diJ[jetI->diJ_posn].diJ = _compute_diJ(jetI); // update diJ kt-dist
}
// check whether new jetB is closer than jetI's current NN and
// if jetI is closer than jetB's current (evolving) nearest
// neighbour. Where relevant update things
double dist = jetI->geometrical_distance(jetB);
if (dist < jetI->NN_dist) {
if (jetI != jetB) {
jetI->NN_dist = dist;
jetI->NN = jetB;
diJ[jetI->diJ_posn].diJ = _compute_diJ(jetI); // update diJ...
}
}
if (dist < jetB->NN_dist) {
if (jetI != jetB) {
jetB->NN_dist = dist;
jetB->NN = jetI;}
}
}
}
// finally, register the updated kt distance for B
diJ[jetB->diJ_posn].diJ = _compute_diJ(jetB);
}
//----------------------------------------------------------------------
/// Set up the tiles:
/// - decide the range in eta
/// - allocate the tiles
/// - set up the cross-referencing info between tiles
///
/// The neighbourhood of a tile is set up as follows
///
/// LRR
/// LXR
/// LLR
///
/// such that tiles is an array containing XLLLLRRRR with pointers
/// | \ RH_tiles
/// \ surrounding_tiles
///
/// with appropriate precautions when close to the edge of the tiled
/// region.
///
template
void NNFJN2Tiled::_initialise_tiles(const std::vector &particles) {
// first decide tile sizes (with a lower bound to avoid huge memory use with
// very small R)
double default_size = _requested_tile_size>0.1 ? _requested_tile_size : 0.1;
_tile_size_rap = default_size;
// it makes no sense to go below 3 tiles in phi -- 3 tiles is
// sufficient to make sure all pair-wise combinations up to pi in
// phi are possible
_n_tiles_phi = int(floor(twopi/default_size));
if (_n_tiles_phi<3) _n_tiles_phi = 3;
_tile_size_phi = twopi / _n_tiles_phi; // >= _Rparam and fits in 2pi
TilingExtent tiling_analysis(particles);
_tiles_rap_min = tiling_analysis.minrap();
_tiles_rap_max = tiling_analysis.maxrap();
// now adjust the values
_tiles_irap_min = int(floor(_tiles_rap_min/_tile_size_rap));
_tiles_irap_max = int(floor( _tiles_rap_max/_tile_size_rap));
_tiles_rap_min = _tiles_irap_min * _tile_size_rap;
_tiles_rap_max = _tiles_irap_max * _tile_size_rap;
// allocate the tiles
_tiles.resize((_tiles_irap_max-_tiles_irap_min+1)*_n_tiles_phi);
// now set up the cross-referencing between tiles
for (int irap = _tiles_irap_min; irap <= _tiles_irap_max; irap++) {
for (int iphi = 0; iphi < _n_tiles_phi; iphi++) {
Tile * tile = & _tiles[_tile_index(irap,iphi)];
// no jets in this tile yet
tile->head = NULL; // first element of tiles points to itself
tile->begin_tiles[0] = tile;
Tile ** pptile = & (tile->begin_tiles[0]);
pptile++;
//
// set up L's in column to the left of X
tile->surrounding_tiles = pptile;
if (irap > _tiles_irap_min) {
// with the itile subroutine, we can safely run tiles from
// idphi=-1 to idphi=+1, because it takes care of
// negative and positive boundaries
for (int idphi = -1; idphi <=+1; idphi++) {
*pptile = & _tiles[_tile_index(irap-1,iphi+idphi)];
pptile++;
}
}
// now set up last L (below X)
*pptile = & _tiles[_tile_index(irap,iphi-1)];
pptile++;
// set up first R (above X)
tile->RH_tiles = pptile;
*pptile = & _tiles[_tile_index(irap,iphi+1)];
pptile++;
// set up remaining R's, to the right of X
if (irap < _tiles_irap_max) {
for (int idphi = -1; idphi <= +1; idphi++) {
*pptile = & _tiles[_tile_index(irap+1,iphi+idphi)];
pptile++;
}
}
// now put semaphore for end tile
tile->end_tiles = pptile;
// finally make sure tiles are untagged
tile->tagged = false;
}
}
}
//----------------------------------------------------------------------
/// return the tile index corresponding to the given rap,phi point
template
int NNFJN2Tiled::_tile_index(const double rap, const double phi) const {
int irap, iphi;
if (rap <= _tiles_rap_min) {irap = 0;}
else if (rap >= _tiles_rap_max) {irap = _tiles_irap_max-_tiles_irap_min;}
else {
//irap = int(floor((rap - _tiles_rap_min) / _tile_size_rap));
irap = int(((rap - _tiles_rap_min) / _tile_size_rap));
// following needed in case of rare but nasty rounding errors
if (irap > _tiles_irap_max-_tiles_irap_min) {
irap = _tiles_irap_max-_tiles_irap_min;}
}
// allow for some extent of being beyond range in calculation of phi
// as well
//iphi = (int(floor(phi/_tile_size_phi)) + _n_tiles_phi) % _n_tiles_phi;
// with just int and no floor, things run faster but beware
iphi = int((phi+twopi)/_tile_size_phi) % _n_tiles_phi;
return (iphi + irap * _n_tiles_phi);
}
//----------------------------------------------------------------------
template
void NNFJN2Tiled::_bj_remove_from_tiles(TiledJet * const jet) {
Tile * tile = & _tiles[jet->tile_index];
if (jet->previous == NULL) {
// we are at head of the tile, so reset it.
// If this was the only jet on the tile then tile->head will now be NULL
tile->head = jet->next;
} else {
// adjust link from previous jet in this tile
jet->previous->next = jet->next;
}
if (jet->next != NULL) {
// adjust backwards-link from next jet in this tile
jet->next->previous = jet->previous;
}
}
//----------------------------------------------------------------------
// overloaded version which additionally sets up information regarding the
// tiling
template
inline void NNFJN2Tiled::_tiledjet_set_jetinfo(TiledJet * const tile_jet,
const PseudoJet &jet,
int index) {
// the this-> in the next line is required by standard compiler
// see e.g. http://stackoverflow.com/questions/10639053/name-lookups-in-c-templates
this->init_jet(tile_jet, jet, index);
// Then do the setup specific to the tiled case.
// Find out which tile it belonds to
tile_jet->tile_index = _tile_index(tile_jet->rap(), tile_jet->phi());
// Insert it into the tile's linked list of jets
Tile * tile = &_tiles[tile_jet->tile_index];
tile_jet->previous = NULL;
tile_jet->next = tile->head;
if (tile_jet->next != NULL) {tile_jet->next->previous = tile_jet;}
tile->head = tile_jet;
}
//----------------------------------------------------------------------
/// Add to the vector tile_union the tiles that are in the neighbourhood
/// of the specified tile_index, including itself -- start adding
/// from position n_near_tiles-1, and increase n_near_tiles as
/// you go along (could have done it more C++ like with vector with reserved
/// space, but fear is that it would have been slower, e.g. checking
/// for end of vector at each stage to decide whether to resize it)
template
void NNFJN2Tiled::_add_neighbours_to_tile_union(const int tile_index,
int & n_near_tiles) const {
for (Tile * const * near_tile = _tiles[tile_index].begin_tiles;
near_tile != _tiles[tile_index].end_tiles; near_tile++){
// get the tile number
tile_union[n_near_tiles] = *near_tile - & _tiles[0];
n_near_tiles++;
}
}
//----------------------------------------------------------------------
/// Like _add_neighbours_to_tile_union, but only adds neighbours if
/// their "tagged" status is false; when a neighbour is added its
/// tagged status is set to true.
///
/// Note that with a high level of warnings (-pedantic -Wextra -ansi,
/// gcc complains about tile_index maybe being used uninitialised for
/// oldB in ClusterSequence::_minheap_faster_tiled_N2_cluster(). We
/// have explicitly checked that it was harmless so we could disable
/// the gcc warning by hand using the construct below
///
/// #pragma GCC diagnostic push
/// #pragma GCC diagnostic ignored "-Wpragmas"
/// #pragma GCC diagnostic ignored "-Wuninitialized"
/// #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
/// ...
/// #pragma GCC diagnostic pop
///
/// the @GCC diagnostic push/pop directive was only introduced in
/// gcc-4.6, so for broader usage, we'd need to insert #pragma GCC
/// diagnostic ignored "-Wpragmas" at the top of this file
template
inline void NNFJN2Tiled::_add_untagged_neighbours_to_tile_union(
const int tile_index,
int & n_near_tiles) {
for (Tile ** near_tile = _tiles[tile_index].begin_tiles;
near_tile != _tiles[tile_index].end_tiles; near_tile++){
if (! (*near_tile)->tagged) {
(*near_tile)->tagged = true;
// get the tile number
tile_union[n_near_tiles] = *near_tile - & _tiles[0];
n_near_tiles++;
}
}
}
FASTJET_END_NAMESPACE // defined in fastjet/internal/base.hh
#endif // __FASTJET_NNFJN2TILED_HH__