//FJSTARTHEADER
// $Id: LazyTiling25.cc 3808 2015-02-20 11:24:53Z soyez $
//
// Copyright (c) 2005-2014, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development. They are described in the original FastJet paper,
// hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
// FastJet as part of work towards a scientific publication, please
// quote the version you use and include a citation to the manual and
// optionally also to hep-ph/0512210.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//FJENDHEADER
#include
#include "fastjet/internal/LazyTiling25.hh"
#include "fastjet/internal/TilingExtent.hh"
using namespace std;
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
LazyTiling25::LazyTiling25(ClusterSequence & cs) :
_cs(cs), _jets(cs.jets())
//, _minheap(_jets.size())
{
#ifdef INSTRUMENT2
_ncall = 0; // gps tmp
_ncall_dtt = 0; // gps tmp
#endif // INSTRUMENT2
_Rparam = cs.jet_def().R();
_R2 = _Rparam * _Rparam;
_invR2 = 1.0 / _R2;
_initialise_tiles();
}
//----------------------------------------------------------------------
/// Set up the tiles:
/// - decide the range in eta
/// - allocate the tiles
/// - set up the cross-referencing info between tiles
///
/// The neighbourhood of a tile is set up as follows
///
/// LLRRR
/// LLRRR
/// LLXRR
/// LLLRR
/// LLLRR
///
/// such that tiles is an array containing XLL..LLRR..RR with pointers
/// | \ RH_tiles
/// \ surrounding_tiles
///
/// with appropriate precautions when close to the edge of the tiled
/// region.
///
void LazyTiling25::_initialise_tiles() {
// first decide tile sizes (with a lower bound to avoid huge memory use with
// very small R)
double default_size = max(0.1,_Rparam)/2;
_tile_size_eta = default_size;
// it makes no sense to go below 5 tiles in phi -- 5 tiles is
// sufficient to make sure all pair-wise combinations up to pi in
// phi are possible
_n_tiles_phi = max(5,int(floor(twopi/default_size)));
_tile_size_phi = twopi / _n_tiles_phi; // >= _Rparam and fits in 2pi
#define _FASTJET_TILING25_USE_TILING_ANALYSIS_
#ifdef _FASTJET_TILING25_USE_TILING_ANALYSIS_
// testing
TilingExtent tiling_analysis(_cs);
_tiles_eta_min = tiling_analysis.minrap();
_tiles_eta_max = tiling_analysis.maxrap();
//cout << "Using timing analysis " << " " << _tiles_eta_min << " " << _tiles_eta_max << endl;
#else // not _FASTJET_TILING25_USE_TILING_ANALYSIS_
// always include zero rapidity in the tiling region
_tiles_eta_min = 0.0;
_tiles_eta_max = 0.0;
// but go no further than following
const double maxrap = 7.0;
// and find out how much further one should go
for(unsigned int i = 0; i < _jets.size(); i++) {
double eta = _jets[i].rap();
// first check if eta is in range -- to avoid taking into account
// very spurious rapidities due to particles with near-zero kt.
if (abs(eta) < maxrap) {
if (eta < _tiles_eta_min) {_tiles_eta_min = eta;}
if (eta > _tiles_eta_max) {_tiles_eta_max = eta;}
}
}
//cout << "NOT using timing analysis " << " " << _tiles_eta_min << " " << _tiles_eta_max << endl;
#endif // _FASTJET_TILING25_USE_TILING_ANALYSIS_
// now adjust the values of the ieta extents
// 2014-07-18: the following commented piece of code gives speed
// improvements for large-R jets, but occasionally it appears to
// hang, e.g. on
// gunzip -c < ../data/Pythia-PtMin50-LHC-10kev.dat.gz | time ./example/fastjet_timing_plugins -R 1000 -nev 1000 -strategy -6 -antikt -rapmax 5.0 -repeat 1 -write
// 2014-07-23: this was understood because tile centres assumed
// tiles_ieta_min = tiles_eta_min (no longer true)
//
#define FASTJET_LAZY25_MIN3TILESY
#ifdef FASTJET_LAZY25_MIN3TILESY
if (_tiles_eta_max - _tiles_eta_min < 3*_tile_size_eta) {
// if we have a rapidity coverage that is small compared to the
// tile size then we can adjust the grid in rapidity so as to
// have exactly 3 tiles. This can give relevant speed improvements
// for large R jets
_tile_size_eta = (_tiles_eta_max - _tiles_eta_min)/3;
_tiles_ieta_min = 0;
_tiles_ieta_max = 2;
// the eta max value is being taken as the lower edge of the
// highest-y tile
_tiles_eta_max -= _tile_size_eta;
} else {
#endif //FASTJET_LAZY25_MIN3TILESY
_tiles_ieta_min = int(floor(_tiles_eta_min/_tile_size_eta));
_tiles_ieta_max = int(floor( _tiles_eta_max/_tile_size_eta));
_tiles_eta_min = _tiles_ieta_min * _tile_size_eta;
_tiles_eta_max = _tiles_ieta_max * _tile_size_eta;
#ifdef FASTJET_LAZY25_MIN3TILESY
}
#endif
_tile_half_size_eta = _tile_size_eta * 0.5;
_tile_half_size_phi = _tile_size_phi * 0.5;
// set up information about whether we need to allow for "periodic"
// wrapping tests in delta_phi calculations
vector use_periodic_delta_phi(_n_tiles_phi, false);
if (_n_tiles_phi <= 5) {
fill(use_periodic_delta_phi.begin(), use_periodic_delta_phi.end(), true);
} else {
use_periodic_delta_phi[0] = true;
use_periodic_delta_phi[1] = true;
use_periodic_delta_phi[_n_tiles_phi-2] = true;
use_periodic_delta_phi[_n_tiles_phi-1] = true;
}
// allocate the tiles
_tiles.resize((_tiles_ieta_max-_tiles_ieta_min+1)*_n_tiles_phi);
// now set up the cross-referencing between tiles
for (int ieta = _tiles_ieta_min; ieta <= _tiles_ieta_max; ieta++) {
for (int iphi = 0; iphi < _n_tiles_phi; iphi++) {
Tile25 * tile = & _tiles[_tile_index(ieta,iphi)];
// no jets in this tile yet
tile->head = NULL; // first element of tiles points to itself
tile->begin_tiles[0] = tile;
Tile25 ** pptile = & (tile->begin_tiles[0]);
pptile++;
//
// set up L's in column to the left of X
tile->surrounding_tiles = pptile;
if (ieta > _tiles_ieta_min) {
// with the itile subroutine, we can safely run tiles from
// idphi=-1 to idphi=+1, because it takes care of
// negative and positive boundaries
for (int idphi = -2; idphi <=+2; idphi++) {
*pptile = & _tiles[_tile_index(ieta-1,iphi+idphi)];
pptile++;
}
}
// and the column twice to left of X
if (ieta > _tiles_ieta_min + 1) {
// with the itile subroutine, we can safely run tiles from
// idphi=-1 to idphi=+1, because it takes care of
// negative and positive boundaries
for (int idphi = -2; idphi <= +2; idphi++) {
*pptile = & _tiles[_tile_index(ieta-2,iphi+idphi)];
pptile++;
}
}
// now set up last two L's (below X)
*pptile = & _tiles[_tile_index(ieta,iphi-1)];
pptile++;
*pptile = & _tiles[_tile_index(ieta,iphi-2)];
pptile++;
// set up first two R's (above X)
tile->RH_tiles = pptile;
*pptile = & _tiles[_tile_index(ieta,iphi+1)];
pptile++;
*pptile = & _tiles[_tile_index(ieta,iphi+2)];
pptile++;
// set up remaining R's, to the right of X
if (ieta < _tiles_ieta_max) {
for (int idphi = -2; idphi <= +2; idphi++) {
*pptile = & _tiles[_tile_index(ieta+1,iphi+idphi)];
pptile++;
}
}
// set up remaining R's, and two cols to the right of X
if (ieta < _tiles_ieta_max - 1) {
for (int idphi = -2; idphi <= +2; idphi++) {
*pptile = & _tiles[_tile_index(ieta+2,iphi+idphi)];
pptile++;
}
}
// now put semaphore for end tile
tile->end_tiles = pptile;
// finally make sure tiles are untagged
tile->tagged = false;
// and store the information about periodicity in phi
tile->use_periodic_delta_phi = use_periodic_delta_phi[iphi];
// and ensure max distance is sensibly initialised
tile->max_NN_dist = 0;
// and also position of centre of tile
tile->eta_centre = (ieta-_tiles_ieta_min+0.5)*_tile_size_eta + _tiles_eta_min;
tile->phi_centre = (iphi+0.5)*_tile_size_phi;
}
}
}
//----------------------------------------------------------------------
/// return the tile index corresponding to the given eta,phi point
int LazyTiling25::_tile_index(const double eta, const double phi) const {
int ieta, iphi;
if (eta <= _tiles_eta_min) {ieta = 0;}
else if (eta >= _tiles_eta_max) {ieta = _tiles_ieta_max-_tiles_ieta_min;}
else {
//ieta = int(floor((eta - _tiles_eta_min) / _tile_size_eta));
ieta = int(((eta - _tiles_eta_min) / _tile_size_eta));
// following needed in case of rare but nasty rounding errors
if (ieta > _tiles_ieta_max-_tiles_ieta_min) {
ieta = _tiles_ieta_max-_tiles_ieta_min;}
}
// allow for some extent of being beyond range in calculation of phi
// as well
//iphi = (int(floor(phi/_tile_size_phi)) + _n_tiles_phi) % _n_tiles_phi;
// with just int and no floor, things run faster but beware
iphi = int((phi+twopi)/_tile_size_phi) % _n_tiles_phi;
return (iphi + ieta * _n_tiles_phi);
}
//----------------------------------------------------------------------
// sets up information regarding the tiling of the given jet
inline void LazyTiling25::_tj_set_jetinfo( TiledJet * const jet,
const int _jets_index) {
// first call the generic setup
_bj_set_jetinfo<>(jet, _jets_index);
// Then do the setup specific to the tiled case.
// Find out which tile it belonds to
jet->tile_index = _tile_index(jet->eta, jet->phi);
// Insert it into the tile's linked list of jets
Tile25 * tile = &_tiles[jet->tile_index];
jet->previous = NULL;
jet->next = tile->head;
if (jet->next != NULL) {jet->next->previous = jet;}
tile->head = jet;
}
//----------------------------------------------------------------------
void LazyTiling25::_bj_remove_from_tiles(TiledJet * const jet) {
Tile25 * tile = & _tiles[jet->tile_index];
if (jet->previous == NULL) {
// we are at head of the tile, so reset it.
// If this was the only jet on the tile then tile->head will now be NULL
tile->head = jet->next;
} else {
// adjust link from previous jet in this tile
jet->previous->next = jet->next;
}
if (jet->next != NULL) {
// adjust backwards-link from next jet in this tile
jet->next->previous = jet->previous;
}
}
//----------------------------------------------------------------------
/// output the contents of the tiles
void LazyTiling25::_print_tiles(TiledJet * briefjets ) const {
for (vector::const_iterator tile = _tiles.begin();
tile < _tiles.end(); tile++) {
cout << "Tile " << tile - _tiles.begin()
<< " at " << setw(10) << tile->eta_centre << "," << setw(10) << tile->phi_centre
<< " = ";
vector list;
for (TiledJet * jetI = tile->head; jetI != NULL; jetI = jetI->next) {
list.push_back(jetI-briefjets);
//cout <<" "< & tile_union, int & n_near_tiles) const {
for (Tile25 * const * near_tile = _tiles[tile_index].begin_tiles;
near_tile != _tiles[tile_index].end_tiles; near_tile++){
// get the tile number
tile_union[n_near_tiles] = *near_tile - & _tiles[0];
n_near_tiles++;
}
}
//----------------------------------------------------------------------
/// Like _add_neighbours_to_tile_union, but only adds neighbours if
/// their "tagged" status is false; when a neighbour is added its
/// tagged status is set to true.
inline void LazyTiling25::_add_untagged_neighbours_to_tile_union(
const int tile_index,
vector & tile_union, int & n_near_tiles) {
for (Tile25 ** near_tile = _tiles[tile_index].begin_tiles;
near_tile != _tiles[tile_index].end_tiles; near_tile++){
if (! (*near_tile)->tagged) {
(*near_tile)->tagged = true;
// get the tile number
tile_union[n_near_tiles] = *near_tile - & _tiles[0];
n_near_tiles++;
}
}
}
//----------------------------------------------------------------------
/// Like _add_neighbours_to_tile_union, but adds tiles that are
/// "neighbours" of a jet (rather than a tile) and only if a
/// neighbouring tile's max_NN_dist is >= the distance between the jet
/// and the nearest point on the tile. It ignores tiles that have
/// already been tagged.
inline void LazyTiling25::_add_untagged_neighbours_to_tile_union_using_max_info(
const TiledJet * jet,
vector & tile_union, int & n_near_tiles) {
Tile25 & tile = _tiles[jet->tile_index];
for (Tile25 ** near_tile = tile.begin_tiles; near_tile != tile.end_tiles; near_tile++){
if ((*near_tile)->tagged) continue;
// here we are not allowed to miss a tile due to some rounding
// error. We therefore allow for a margin of security
double dist = _distance_to_tile(jet, *near_tile) - tile_edge_security_margin;
// cout << " max info looked at tile " << *near_tile - &_tiles[0]
// << ", dist = " << dist << " " << (*near_tile)->max_NN_dist
// << endl;
if (dist > (*near_tile)->max_NN_dist) continue;
// cout << " max info tagged tile " << *near_tile - &_tiles[0] << endl;
(*near_tile)->tagged = true;
// get the tile number
tile_union[n_near_tiles] = *near_tile - & _tiles[0];
n_near_tiles++;
}
}
////--------TMPTMPTMPTMPTMP-----GPS TEMP--------------------
//ostream & operator<<(ostream & ostr, const TiledJet & jet) {
// ostr << "j" << setw(3) << jet._jets_index << ":pt2,rap,phi=" ; ostr.flush();
// ostr << jet.kt2 << ","; ostr.flush();
// ostr << jet.eta << ","; ostr.flush();
// ostr << jet.phi; ostr.flush();
// ostr << ", tile=" << jet.tile_index; ostr.flush();
// return ostr;
//}
//----------------------------------------------------------------------
/// returns a particle's distance to the edge of the specified tile
inline double LazyTiling25::_distance_to_tile(const TiledJet * bj, const Tile25 * tile)
#ifdef INSTRUMENT2
{
_ncall_dtt++; // GPS tmp
#else
const {
#endif // INSTRUMENT2
// Note the careful way of checking the minimum potential deta:
// unlike the phi case below, we don't calculate the distance to the
// centre and subtract spacing/2. This is because of issue of
// boundary tiles, which can extend far beyond spacing/2 in eta.
// Using the positions of tile centers should instead be safe.
double deta;
if (_tiles[bj->tile_index].eta_centre == tile->eta_centre) deta = 0;
//else deta = std::abs(bj->eta - tile->eta_centre) - 0.5*_tile_size_eta;
else deta = std::abs(bj->eta - tile->eta_centre) - _tile_half_size_eta;
// ------
// |
// A | B
// ------
// |
// C | D
// ------
double dphi = std::abs(bj->phi - tile->phi_centre);
if (dphi > pi) dphi = twopi-dphi;
dphi -= _tile_half_size_phi;
//dphi -= 0.5*_tile_size_phi;
if (dphi < 0) dphi = 0;
return dphi*dphi + deta*deta;
}
//----------------------------------------------------------------------
/// looks at distance between jetX and jetI and updates the NN
/// information if relevant; also pushes identity of jetI onto
/// the vector of jets for minheap, to signal that it will have
/// to be handled later.
///
/// GPS TEMP GPS TMP: REMOVE THIS LATER: EVEN LABELLED AS INLINE, THE
/// CALL ADDS A SUBSTANTIAL PENALTY...
inline void LazyTiling25::_update_jetX_jetI_NN(TiledJet * jetX, TiledJet * jetI, vector & jets_for_minheap) {
double dist = _bj_dist(jetI,jetX);
if (dist < jetI->NN_dist) {
if (jetI != jetX) {
jetI->NN_dist = dist;
jetI->NN = jetX;
// label jetI as needing heap action...
if (!jetI->minheap_update_needed()) {
jetI->label_minheap_update_needed();
jets_for_minheap.push_back(jetI);
}
}
}
if (dist < jetX->NN_dist) {
if (jetI != jetX) {
jetX->NN_dist = dist;
jetX->NN = jetI;}
}
}
inline void LazyTiling25::_set_NN(TiledJet * jetI,
vector & jets_for_minheap) {
jetI->NN_dist = _R2;
jetI->NN = NULL;
// label jetI as needing heap action...
if (!jetI->minheap_update_needed()) {
jetI->label_minheap_update_needed();
jets_for_minheap.push_back(jetI);}
// now go over tiles that are neighbours of I (include own tile)
Tile25 * tile_ptr = &_tiles[jetI->tile_index];
//if (tile_ptr->is_near_zero_phi(_tile_size_phi)) {
for (Tile25 ** near_tile = tile_ptr->begin_tiles;
near_tile != tile_ptr->end_tiles; near_tile++) {
// for own tile, this will be zero automatically: should we be clever
// and skip the test? (With some doubling of code?)
if (jetI->NN_dist < _distance_to_tile(jetI, *near_tile)) continue;
// and then over the contents of that tile
for (TiledJet * jetJ = (*near_tile)->head;
jetJ != NULL; jetJ = jetJ->next) {
double dist = _bj_dist(jetI,jetJ);
if (dist < jetI->NN_dist && jetJ != jetI) {
jetI->NN_dist = dist; jetI->NN = jetJ;
}
}
}
// } else {
// // second copy that exploits the fact that for this tile we needn't worry
// // about periodicity
// for (Tile25 ** near_tile = tile_ptr->begin_tiles;
// near_tile != tile_ptr->end_tiles; near_tile++) {
// // for own tile, this will be zero automatically: should we be clever
// // and skip the test? (With some doubling of code?)
// if (jetI->NN_dist < _distance_to_tile(jetI, *near_tile)) continue;
// // and then over the contents of that tile
// for (TiledJet * jetJ = (*near_tile)->head;
// jetJ != NULL; jetJ = jetJ->next) {
// double dist = _bj_dist_not_periodic(jetI,jetJ);
// if (dist < jetI->NN_dist && jetJ != jetI) {
// jetI->NN_dist = dist; jetI->NN = jetJ;
// }
// }
// }
// }
}
void LazyTiling25::run() {
//_initialise_tiles();
int n = _jets.size();
if (n == 0) return;
TiledJet * briefjets = new TiledJet[n];
TiledJet * jetA = briefjets, * jetB;
// avoid warning about uninitialised oldB below;
// only valid for n>=1 (hence the test n==0 test above)
TiledJet oldB = briefjets[0];
// will be used quite deep inside loops, but declare it here so that
// memory (de)allocation gets done only once
vector tile_union(3*25);
// initialise the basic jet info
for (int i = 0; i< n; i++) {
_tj_set_jetinfo(jetA, i);
//cout << i<<": "<tile_index<<"\n";
jetA++; // move on to next entry of briefjets
}
TiledJet * head = briefjets; // a nicer way of naming start
// set up the initial nearest neighbour information
vector::iterator tile;
for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
// first do it on this tile
for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
for (jetB = tile->head; jetB != jetA; jetB = jetB->next) {
double dist = _bj_dist_not_periodic(jetA,jetB);
if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
}
}
for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
if (jetA->NN_dist > tile->max_NN_dist) tile->max_NN_dist = jetA->NN_dist;
}
}
for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
if (tile->use_periodic_delta_phi) {
// then do it for RH tiles;
for (Tile25 ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
double dist_to_tile = _distance_to_tile(jetA, *RTile);
// it only makes sense to do a tile if jetA is close enough to the Rtile
// either for a jet in the Rtile to be closer to jetA than it's current NN
// or if jetA could be closer to something in the Rtile than the largest
// NN distance within the RTile.
//
// GPS note: also tried approach where we perform only the
// first test and run over all surrounding tiles
// (not just RH ones). The test is passed less
// frequently, but one is running over more tiles
// and on balance, for the trial event we used, it's
// a bit slower.
bool relevant_for_jetA = dist_to_tile <= jetA->NN_dist;
bool relevant_for_RTile = dist_to_tile <= (*RTile)->max_NN_dist;
if (relevant_for_jetA || relevant_for_RTile) {
for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
double dist = _bj_dist(jetA,jetB);
if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
}
}
}
}
} else {
// this second version of the code uses the faster
// "not_periodic" version because it knows that the tile is
// sufficiently far from the edge.
for (Tile25 ** RTile = tile->RH_tiles; RTile != tile->end_tiles; RTile++) {
for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
double dist_to_tile = _distance_to_tile(jetA, *RTile);
bool relevant_for_jetA = dist_to_tile <= jetA->NN_dist;
bool relevant_for_RTile = dist_to_tile <= (*RTile)->max_NN_dist;
if (relevant_for_jetA || relevant_for_RTile) {
for (jetB = (*RTile)->head; jetB != NULL; jetB = jetB->next) {
double dist = _bj_dist_not_periodic(jetA,jetB);
if (dist < jetA->NN_dist) {jetA->NN_dist = dist; jetA->NN = jetB;}
if (dist < jetB->NN_dist) {jetB->NN_dist = dist; jetB->NN = jetA;}
}
}
}
}
}
// no need to do it for LH tiles, since they are implicitly done
// when we set NN for both jetA and jetB on the RH tiles.
}
// Now update the max_NN_dist within each tile. Not strictly
// necessary, because existing max_NN_dist is an upper bound. but
// costs little and may give some efficiency gain later.
for (tile = _tiles.begin(); tile != _tiles.end(); tile++) {
tile->max_NN_dist = 0;
for (jetA = tile->head; jetA != NULL; jetA = jetA->next) {
if (jetA->NN_dist > tile->max_NN_dist) tile->max_NN_dist = jetA->NN_dist;
}
}
#ifdef INSTRUMENT2
cout << "intermediate ncall, dtt = " << _ncall << " " << _ncall_dtt << endl; // GPS tmp
#endif // INSTRUMENT2
// GPS debugging
// _print_tiles(briefjets);
// for (jetB = briefjets; jetB < briefjets+n; jetB++) {
// cout << "Tiled jet " << jetB->_jets_index << " has NN " << jetB->NN-briefjets << endl;
// }
vector diJs(n);
for (int i = 0; i < n; i++) {
diJs[i] = _bj_diJ(&briefjets[i]);
briefjets[i].label_minheap_update_done();
}
MinHeap minheap(diJs);
// have a stack telling us which jets we'll have to update on the heap
vector jets_for_minheap;
jets_for_minheap.reserve(n);
// now run the recombination loop
int history_location = n-1;
while (n > 0) {
double diJ_min = minheap.minval() *_invR2;
jetA = head + minheap.minloc();
// do the recombination between A and B
history_location++;
jetB = jetA->NN;
if (jetB != NULL) {
// jet-jet recombination
// If necessary relabel A & B to ensure jetB < jetA, that way if
// the larger of them == newtail then that ends up being jetA and
// the new jet that is added as jetB is inserted in a position that
// has a future!
if (jetA < jetB) {std::swap(jetA,jetB);}
int nn; // new jet index
_cs.plugin_record_ij_recombination(jetA->_jets_index, jetB->_jets_index, diJ_min, nn);
// what was jetB will now become the new jet
_bj_remove_from_tiles(jetA);
oldB = * jetB; // take a copy because we will need it...
_bj_remove_from_tiles(jetB);
_tj_set_jetinfo(jetB, nn); // cause jetB to become _jets[nn]
// (also registers the jet in the tiling)
} else {
// jet-beam recombination
// get the hist_index
_cs.plugin_record_iB_recombination(jetA->_jets_index, diJ_min);
_bj_remove_from_tiles(jetA);
}
// remove the minheap entry for jetA
minheap.remove(jetA-head);
int n_near_tiles = 0;
// Initialise jetB's NN distance as well as updating it for other
// particles. While doing so, examine whether jetA or old jetB was
// some other particle's NN.
if (jetB != NULL) {
Tile25 & jetB_tile = _tiles[jetB->tile_index];
for (Tile25 ** near_tile = jetB_tile.begin_tiles;
near_tile != jetB_tile.end_tiles; near_tile++) {
double dist_to_tile = _distance_to_tile(jetB, *near_tile);
// use <= in next line so that on first tile, relevant_for_jetB is
// set to true
bool relevant_for_jetB = dist_to_tile <= jetB->NN_dist;
bool relevant_for_near_tile = dist_to_tile <= (*near_tile)->max_NN_dist;
bool relevant = relevant_for_jetB || relevant_for_near_tile;
if (! relevant) continue;
// now label this tile as having been considered (so that we
// don't go over it again later)
tile_union[n_near_tiles] = *near_tile - & _tiles[0];
(*near_tile)->tagged = true;
n_near_tiles++;
// if going over the neighbouring tile's jets, check anyway
// whether A or B were nearest neighbours, since it comes at a
// modest cost relative to the distance computation (and we would
// in most cases have to do it again later anyway).
for (TiledJet * jetI = (*near_tile)->head; jetI != NULL; jetI = jetI->next) {
if (jetI->NN == jetA || jetI->NN == jetB) _set_NN(jetI, jets_for_minheap);
_update_jetX_jetI_NN(jetB, jetI, jets_for_minheap);
}
}
}
// first establish the set of tiles over which we are going to
// have to run searches for updated and new nearest-neighbours --
// basically a combination of vicinity of the tiles of the two old
// and one new jet.
int n_done_tiles = n_near_tiles;
_add_untagged_neighbours_to_tile_union_using_max_info(jetA,
tile_union, n_near_tiles);
if (jetB != NULL) {
_add_untagged_neighbours_to_tile_union_using_max_info(&oldB,
tile_union,n_near_tiles);
jetB->label_minheap_update_needed();
jets_for_minheap.push_back(jetB);
}
// first untag the tiles we have already dealt with
for (int itile = 0; itile < n_done_tiles; itile++) {
_tiles[tile_union[itile]].tagged = false;
}
// now run over the tiles that were tagged earlier and that we haven't yet
// had a change to visit.
for (int itile = n_done_tiles; itile < n_near_tiles; itile++) {
Tile25 * tile_ptr = &_tiles[tile_union[itile]];
tile_ptr->tagged = false;
// run over all jets in the current tile
for (TiledJet * jetI = tile_ptr->head; jetI != NULL; jetI = jetI->next) {
// see if jetI had jetA or jetB as a NN -- if so recalculate the NN
if (jetI->NN == jetA || (jetI->NN == jetB && jetB != NULL)) {
_set_NN(jetI, jets_for_minheap);
}
}
}
// deal with jets whose minheap entry needs updating
//if (verbose) cout << " jets whose NN was modified: " << endl;
while (jets_for_minheap.size() > 0) {
TiledJet * jetI = jets_for_minheap.back();
jets_for_minheap.pop_back();
minheap.update(jetI-head, _bj_diJ(jetI));
jetI->label_minheap_update_done();
// handle max_NN_dist update for all jets that might have
// seen a change (increase) of distance
Tile25 & tile_I = _tiles[jetI->tile_index];
if (tile_I.max_NN_dist < jetI->NN_dist) tile_I.max_NN_dist = jetI->NN_dist;
}
n--;
}
// final cleaning up;
delete[] briefjets;
#ifdef INSTRUMENT2
cout << "ncall, dtt = " << _ncall << " " << _ncall_dtt << endl; // GPS tmp
#endif // INSTRUMENT2
}
FASTJET_END_NAMESPACE