//FJSTARTHEADER // $Id: JetDefinition.cc 4354 2018-04-22 07:12:37Z salam $ // // Copyright (c) 2005-2018, Matteo Cacciari, Gavin P. Salam and Gregory Soyez // //---------------------------------------------------------------------- // This file is part of FastJet. // // FastJet is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // The algorithms that underlie FastJet have required considerable // development. They are described in the original FastJet paper, // hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use // FastJet as part of work towards a scientific publication, please // quote the version you use and include a citation to the manual and // optionally also to hep-ph/0512210. // // FastJet is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with FastJet. If not, see . //---------------------------------------------------------------------- //FJENDHEADER #include "fastjet/JetDefinition.hh" #include "fastjet/Error.hh" #include "fastjet/CompositeJetStructure.hh" #include FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh using namespace std; const double JetDefinition::max_allowable_R = 1000.0; //---------------------------------------------------------------------- // [NB: implementation was getting complex, so in 2.4-devel moved it // from .hh to .cc] JetDefinition::JetDefinition(JetAlgorithm jet_algorithm_in, double R_in, RecombinationScheme recomb_scheme_in, Strategy strategy_in, int nparameters) : _jet_algorithm(jet_algorithm_in), _Rparam(R_in), _strategy(strategy_in) { // set R parameter or ensure its sensibleness, as appropriate if (_jet_algorithm == ee_kt_algorithm) { _Rparam = 4.0; // introduce a fictional R that ensures that // our clustering sequence will not produce // "beam" jets except when only a single particle remains. // Any value > 2 would have done here } else { // We maintain some limit on R because particles with pt=0, m=0 // can have rapidities O(100000) and one doesn't want the // clustering to start including them as if their rapidities were // physical. if (R_in > max_allowable_R) { ostringstream oss; oss << "Requested R = " << R_in << " for jet definition is larger than max_allowable_R = " << max_allowable_R; throw Error(oss.str()); } } // cross-check the number of parameters that were declared in setting up the // algorithm (passed internally from the public constructors) unsigned int nparameters_expected = n_parameters_for_algorithm(jet_algorithm_in); if (nparameters != (int) nparameters_expected){ ostringstream oss; oss << "The jet algorithm you requested (" << jet_algorithm_in << ") should be constructed with " << nparameters_expected << " parameter(s) but was called with " << nparameters << " parameter(s)\n"; throw Error(oss.str()); } // make sure the strategy requested is sensible assert (_strategy != plugin_strategy); _plugin = NULL; set_recombination_scheme(recomb_scheme_in); set_extra_param(0.0); // make sure it's defined } //---------------------------------------------------------------------- // returns true if the jet definition involves an algorithm // intended for use on a spherical geometry (e.g. e+e- algorithms, // as opposed to most pp algorithms, which use a cylindrical, // rapidity-phi geometry). bool JetDefinition::is_spherical() const { if (jet_algorithm() == plugin_algorithm) { return plugin()->is_spherical(); } else { return (jet_algorithm() == ee_kt_algorithm || // as of 2013-02-14, the two jet_algorithm() == ee_genkt_algorithm // native spherical algorithms ); } } //---------------------------------------------------------------------- string JetDefinition::description() const { ostringstream name; name << description_no_recombiner(); if ((jet_algorithm() == plugin_algorithm) || (jet_algorithm() == undefined_jet_algorithm)){ return name.str(); } if (n_parameters_for_algorithm(jet_algorithm()) == 0) name << " with "; else name << " and "; name << recombiner()->description(); return name.str(); } //---------------------------------------------------------------------- string JetDefinition::description_no_recombiner() const { ostringstream name; if (jet_algorithm() == plugin_algorithm) { return plugin()->description(); } else if (jet_algorithm() == undefined_jet_algorithm) { return "uninitialised JetDefinition (jet_algorithm=undefined_jet_algorithm)" ; } name << algorithm_description(jet_algorithm()); switch (n_parameters_for_algorithm(jet_algorithm())){ case 0: name << " (NB: no R)"; break; case 1: name << " with R = " << R(); break; // the parameter is always R case 2: // the 1st parameter is always R name << " with R = " << R(); // the 2nd depends on the algorithm if (jet_algorithm() == cambridge_for_passive_algorithm){ name << "and a special hack whereby particles with kt < " << extra_param() << "are treated as passive ghosts"; } else { name << ", p = " << extra_param(); } }; return name.str(); } //---------------------------------------------------------------------- string JetDefinition::algorithm_description(const JetAlgorithm jet_alg){ ostringstream name; switch (jet_alg){ case plugin_algorithm: return "plugin algorithm"; case kt_algorithm: return "Longitudinally invariant kt algorithm"; case cambridge_algorithm: return "Longitudinally invariant Cambridge/Aachen algorithm"; case antikt_algorithm: return "Longitudinally invariant anti-kt algorithm"; case genkt_algorithm: return "Longitudinally invariant generalised kt algorithm"; case cambridge_for_passive_algorithm: return "Longitudinally invariant Cambridge/Aachen algorithm"; case ee_kt_algorithm: return "e+e- kt (Durham) algorithm (NB: no R)"; case ee_genkt_algorithm: return "e+e- generalised kt algorithm"; case undefined_jet_algorithm: return "undefined jet algorithm"; default: throw Error("JetDefinition::algorithm_description(): unrecognized jet_algorithm"); }; } //---------------------------------------------------------------------- unsigned int JetDefinition::n_parameters_for_algorithm(const JetAlgorithm jet_alg){ switch (jet_alg) { case ee_kt_algorithm: return 0; case genkt_algorithm: case ee_genkt_algorithm: return 2; default: return 1; }; } //---------------------------------------------------------------------- void JetDefinition::set_recombination_scheme( RecombinationScheme recomb_scheme) { _default_recombiner = JetDefinition::DefaultRecombiner(recomb_scheme); // do not forget to delete the existing recombiner if needed if (_shared_recombiner) _shared_recombiner.reset(); _recombiner = 0; } void JetDefinition::set_recombiner(const JetDefinition &other_jet_def){ // make sure the "invariants" of the other jet def are sensible assert(other_jet_def._recombiner || other_jet_def.recombination_scheme() != external_scheme); // first treat the situation where we're using the default recombiner if (other_jet_def._recombiner == 0){ set_recombination_scheme(other_jet_def.recombination_scheme()); return; } // in other cases, copy the pointer to the recombiner _recombiner = other_jet_def._recombiner; // set the default recombiner appropriately _default_recombiner = DefaultRecombiner(external_scheme); // and set the _shared_recombiner to the same state // as in the other_jet_def, whatever that was _shared_recombiner.reset(other_jet_def._shared_recombiner); // NB: it is tempting to go via set_recombiner and then to sort // out the shared part, but this would be dangerous in the // specific (rare?) case where other_jet_def is the same as this // it deletes_recombiner_when_unused. In that case the shared // pointer reset would delete the recombiner. } // returns true if the current jet definitions shares the same // recombiner as teh one passed as an argument bool JetDefinition::has_same_recombiner(const JetDefinition &other_jd) const{ // first make sure that they have the same recombination scheme const RecombinationScheme & scheme = recombination_scheme(); if (other_jd.recombination_scheme() != scheme) return false; // if the scheme is "external", also check that they have the same // recombiner return (scheme != external_scheme) || (recombiner() == other_jd.recombiner()); } /// causes the JetDefinition to handle the deletion of the /// recombiner when it is no longer used void JetDefinition::delete_recombiner_when_unused(){ if (_recombiner == 0){ throw Error("tried to call JetDefinition::delete_recombiner_when_unused() for a JetDefinition without a user-defined recombination scheme"); } else if (_shared_recombiner.get()) { throw Error("Error in JetDefinition::delete_recombiner_when_unused: the recombiner is already scheduled for deletion when unused (or was already set as shared)"); } _shared_recombiner.reset(_recombiner); } /// allows to let the JetDefinition handle the deletion of the /// plugin when it is no longer used void JetDefinition::delete_plugin_when_unused(){ if (_plugin == 0){ throw Error("tried to call JetDefinition::delete_plugin_when_unused() for a JetDefinition without a plugin"); } _plugin_shared.reset(_plugin); } string JetDefinition::DefaultRecombiner::description() const { switch(_recomb_scheme) { case E_scheme: return "E scheme recombination"; case pt_scheme: return "pt scheme recombination"; case pt2_scheme: return "pt2 scheme recombination"; case Et_scheme: return "Et scheme recombination"; case Et2_scheme: return "Et2 scheme recombination"; case BIpt_scheme: return "boost-invariant pt scheme recombination"; case BIpt2_scheme: return "boost-invariant pt2 scheme recombination"; case WTA_pt_scheme: return "pt-ordered Winner-Takes-All recombination"; // Energy-ordering can lead to dangerous situations with particles at // rest. We instead implement the WTA_modp_scheme // // case WTA_E_scheme: // return "energy-ordered Winner-Takes-All recombination"; case WTA_modp_scheme: return "|3-momentum|-ordered Winner-Takes-All recombination"; default: ostringstream err; err << "DefaultRecombiner: unrecognized recombination scheme " << _recomb_scheme; throw Error(err.str()); } } void JetDefinition::DefaultRecombiner::recombine( const PseudoJet & pa, const PseudoJet & pb, PseudoJet & pab) const { double weighta, weightb; switch(_recomb_scheme) { case E_scheme: // a call to reset turns out to be somewhat more efficient // than a sum and assignment //pab = pa + pb; pab.reset(pa.px()+pb.px(), pa.py()+pb.py(), pa.pz()+pb.pz(), pa.E ()+pb.E ()); return; // all remaining schemes are massless recombinations and locally // we just set weights, while the hard work is done below... case pt_scheme: case Et_scheme: case BIpt_scheme: weighta = pa.perp(); weightb = pb.perp(); break; case pt2_scheme: case Et2_scheme: case BIpt2_scheme: weighta = pa.perp2(); weightb = pb.perp2(); break; case WTA_pt_scheme:{ const PseudoJet & phard = (pa.pt2() >= pb.pt2()) ? pa : pb; /// keep y,phi and m from the hardest, sum pt pab.reset_PtYPhiM(pa.pt()+pb.pt(), phard.rap(), phard.phi(), phard.m()); return;} // Energy-ordering can lead to dangerous situations with particles at // rest. We instead implement the WTA_modp_scheme // // case WTA_E_scheme:{ // const PseudoJet & phard = (pa.E() >= pb.E()) ? pa : pb; // /// keep 3-momentum direction and mass from the hardest, sum energies // /// // /// If the particle with the largest energy is at rest, the sum // /// remains at rest, implying that the mass of the sum is larger // /// than the mass of pa. // double Eab = pa.E() + pb.E(); // double scale = (phard.modp2()==0.0) // ? 0.0 // : sqrt((Eab*Eab - phard.m2())/phard.modp2()); // pab.reset(phard.px()*scale, phard.py()*scale, phard.pz()*scale, Eab); // return;} case WTA_modp_scheme:{ // Note: we need to compute both a and b modp. And we need pthard // and its modp. If we want to avoid repeating the test and do // only 2 modp calculations, we'd have to duplicate the code (or // use a pair). An alternative is to write modp_soft as // modp_ab-modp_hard but this could suffer from larger rounding // errors bool a_hardest = (pa.modp2() >= pb.modp2()); const PseudoJet & phard = a_hardest ? pa : pb; const PseudoJet & psoft = a_hardest ? pb : pa; /// keep 3-momentum direction and mass from the hardest, sum modp /// /// If the hardest particle is at rest, the sum remains at rest /// (the energy of the sum is therefore the mass of pa) double modp_hard = phard.modp(); double modp_ab = modp_hard + psoft.modp(); if (phard.modp2()==0.0){ pab.reset(0.0, 0.0, 0.0, phard.m()); } else { double scale = modp_ab/modp_hard; pab.reset(phard.px()*scale, phard.py()*scale, phard.pz()*scale, sqrt(modp_ab*modp_ab + phard.m2())); } return;} default: ostringstream err; err << "DefaultRecombiner: unrecognized recombination scheme " << _recomb_scheme; throw Error(err.str()); } double perp_ab = pa.perp() + pb.perp(); if (perp_ab != 0.0) { // weights also non-zero... double y_ab = (weighta * pa.rap() + weightb * pb.rap())/(weighta+weightb); // take care with periodicity in phi... double phi_a = pa.phi(), phi_b = pb.phi(); if (phi_a - phi_b > pi) phi_b += twopi; if (phi_a - phi_b < -pi) phi_b -= twopi; double phi_ab = (weighta * phi_a + weightb * phi_b)/(weighta+weightb); // this is much more efficient... pab.reset_PtYPhiM(perp_ab,y_ab,phi_ab); // pab = PseudoJet(perp_ab*cos(phi_ab), // perp_ab*sin(phi_ab), // perp_ab*sinh(y_ab), // perp_ab*cosh(y_ab)); } else { // weights are zero //pab = PseudoJet(0.0,0.0,0.0,0.0); pab.reset(0.0, 0.0, 0.0, 0.0); } } void JetDefinition::DefaultRecombiner::preprocess(PseudoJet & p) const { switch(_recomb_scheme) { case E_scheme: case BIpt_scheme: case BIpt2_scheme: case WTA_pt_scheme: //case WTA_E_scheme: case WTA_modp_scheme: break; case pt_scheme: case pt2_scheme: { // these schemes (as in the ktjet implementation) need massless // initial 4-vectors with essentially E=|p|. double newE = sqrt(p.perp2()+p.pz()*p.pz()); p.reset_momentum(p.px(), p.py(), p.pz(), newE); // FJ2.x version // int user_index = p.user_index(); // p = PseudoJet(p.px(), p.py(), p.pz(), newE); // p.set_user_index(user_index); } break; case Et_scheme: case Et2_scheme: { // these schemes (as in the ktjet implementation) need massless // initial 4-vectors with essentially E=|p|. double rescale = p.E()/sqrt(p.perp2()+p.pz()*p.pz()); p.reset_momentum(rescale*p.px(), rescale*p.py(), rescale*p.pz(), p.E()); // FJ2.x version // int user_index = p.user_index(); // p = PseudoJet(rescale*p.px(), rescale*p.py(), rescale*p.pz(), p.E()); // p.set_user_index(user_index); } break; default: ostringstream err; err << "DefaultRecombiner: unrecognized recombination scheme " << _recomb_scheme; throw Error(err.str()); } } void JetDefinition::Plugin::set_ghost_separation_scale(double /*scale*/) const { throw Error("set_ghost_separation_scale not supported"); } //------------------------------------------------------------------------------- // helper functions to build a jet made of pieces // // This is the extended version with support for a user-defined // recombination-scheme // ------------------------------------------------------------------------------- // build a "CompositeJet" from the vector of its pieces // // the user passes the reciombination scheme used to "sum" the pieces. PseudoJet join(const vector & pieces, const JetDefinition::Recombiner & recombiner){ // compute the total momentum //-------------------------------------------------- PseudoJet result; // automatically initialised to 0 if (pieces.size()>0){ result = pieces[0]; for (unsigned int i=1; i(cj_struct)); return result; } // build a "CompositeJet" from a single PseudoJet PseudoJet join(const PseudoJet & j1, const JetDefinition::Recombiner & recombiner){ return join(vector(1,j1), recombiner); } // build a "CompositeJet" from two PseudoJet PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const JetDefinition::Recombiner & recombiner){ vector pieces; pieces.push_back(j1); pieces.push_back(j2); return join(pieces, recombiner); } // build a "CompositeJet" from 3 PseudoJet PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3, const JetDefinition::Recombiner & recombiner){ vector pieces; pieces.push_back(j1); pieces.push_back(j2); pieces.push_back(j3); return join(pieces, recombiner); } // build a "CompositeJet" from 4 PseudoJet PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3, const PseudoJet & j4, const JetDefinition::Recombiner & recombiner){ vector pieces; pieces.push_back(j1); pieces.push_back(j2); pieces.push_back(j3); pieces.push_back(j4); return join(pieces, recombiner); } FASTJET_END_NAMESPACE