//STARTHEADER
// $Id$
//
// Copyright (c) 2005-2011, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development and are described in hep-ph/0512210. If you use
// FastJet as part of work towards a scientific publication, please
// include a citation to the FastJet paper.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//ENDHEADER
#include "fastjet/JetDefinition.hh"
#include "fastjet/Error.hh"
#include "fastjet/CompositeJetStructure.hh"
#include
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
using namespace std;
const double JetDefinition::max_allowable_R = 1000.0;
//----------------------------------------------------------------------
// [NB: implementation was getting complex, so in 2.4-devel moved it
// from .hh to .cc]
JetDefinition::JetDefinition(JetAlgorithm jet_algorithm_in,
double R_in,
Strategy strategy_in,
RecombinationScheme recomb_scheme_in,
int nparameters) :
_jet_algorithm(jet_algorithm_in), _Rparam(R_in), _strategy(strategy_in) {
// set R parameter or ensure its sensibleness, as appropriate
if (_jet_algorithm == ee_kt_algorithm) {
_Rparam = 4.0; // introduce a fictional R that ensures that
// our clustering sequence will not produce
// "beam" jets except when only a single particle remains.
// Any value > 2 would have done here
} else {
// We maintain some limit on R because particles with pt=0, m=0
// can have rapidities O(100000) and one doesn't want the
// clustering to start including them as if their rapidities were
// physical.
if (R_in > max_allowable_R) {
ostringstream oss;
oss << "Requested R = " << R_in << " for jet definition is larger than max_allowable_R = " << max_allowable_R;
throw Error(oss.str());
}
}
// cross-check the number of parameters that were declared in setting up the
// algorithm (passed internally from the public constructors)
switch (jet_algorithm_in) {
case ee_kt_algorithm:
if (nparameters != 0) {
ostringstream oss;
oss << "ee_kt_algorithm should be constructed with 0 parameters but was called with "
<< nparameters << " parameter(s)\n";
throw Error(oss.str());
}
break;
case genkt_algorithm:
case ee_genkt_algorithm:
if (nparameters != 2) {
ostringstream oss;
oss << "(ee_)genkt_algorithm should be constructed with 2 parameters but was called with "
<< nparameters << " parameter(s)\n";
throw Error(oss.str());
}
break;
default:
if (nparameters != 1) {
ostringstream oss;
oss << "The jet algorithm you requested ("
<< jet_algorithm_in << ") should be constructed with 1 parameter but was called with "
<< nparameters << " parameter(s)\n";
throw Error(oss.str());
}
}
// make sure the strategy requested is sensible
assert (_strategy != plugin_strategy);
_plugin = NULL;
set_recombination_scheme(recomb_scheme_in);
set_extra_param(0.0); // make sure it's defined
}
//----------------------------------------------------------------------
string JetDefinition::description() const {
ostringstream name;
if (jet_algorithm() == plugin_algorithm) {
return plugin()->description();
} else if (jet_algorithm() == kt_algorithm) {
name << "Longitudinally invariant kt algorithm with R = " << R();
name << " and " << recombiner()->description();
} else if (jet_algorithm() == cambridge_algorithm) {
name << "Longitudinally invariant Cambridge/Aachen algorithm with R = "
<< R() ;
name << " and " << recombiner()->description();
} else if (jet_algorithm() == antikt_algorithm) {
name << "Longitudinally invariant anti-kt algorithm with R = "
<< R() ;
name << " and " << recombiner()->description();
} else if (jet_algorithm() == genkt_algorithm) {
name << "Longitudinally invariant generalised kt algorithm with R = "
<< R() << ", p = " << extra_param();
name << " and " << recombiner()->description();
} else if (jet_algorithm() == cambridge_for_passive_algorithm) {
name << "Longitudinally invariant Cambridge/Aachen algorithm with R = "
<< R() << "and a special hack whereby particles with kt < "
<< extra_param() << "are treated as passive ghosts";
} else if (jet_algorithm() == ee_kt_algorithm) {
name << "e+e- kt (Durham) algorithm (NB: no R)";
name << " with " << recombiner()->description();
} else if (jet_algorithm() == ee_genkt_algorithm) {
name << "e+e- generalised kt algorithm with R = "
<< R() << ", p = " << extra_param();
name << " and " << recombiner()->description();
} else if (jet_algorithm() == undefined_jet_algorithm) {
name << "uninitialised JetDefinition (jet_algorithm=undefined_jet_algorithm)" ;
} else {
throw Error("JetDefinition::description(): unrecognized jet_algorithm");
}
return name.str();
}
void JetDefinition::set_recombination_scheme(
RecombinationScheme recomb_scheme) {
_default_recombiner = JetDefinition::DefaultRecombiner(recomb_scheme);
// do not forget to delete the existing recombiner if needed
if (_recombiner_shared()) _recombiner_shared.reset();
_recombiner = 0;
}
// returns true if the current jet definitions shares the same
// recombiner as teh one passed as an argument
bool JetDefinition::has_same_recombiner(const JetDefinition &other_jd) const{
// first make sure that they have the same recombination scheme
const RecombinationScheme & scheme = recombination_scheme();
if (other_jd.recombination_scheme() != scheme) return false;
// if the scheme is "external", also check that they ahve the same
// recombiner
return (scheme != external_scheme)
|| (recombiner() == other_jd.recombiner());
}
/// allows to let the JetDefinition handle the deletion of the
/// recombiner when it is no longer used
void JetDefinition::delete_recombiner_when_unused(){
if (_recombiner == 0){
throw Error("tried to call JetDefinition::delete_recombiner_when_unused() for a JetDefinition without a user-defined recombination scheme");
}
_recombiner_shared.reset(_recombiner);
}
/// allows to let the JetDefinition handle the deletion of the
/// plugin when it is no longer used
void JetDefinition::delete_plugin_when_unused(){
if (_plugin == 0){
throw Error("tried to call JetDefinition::delete_plugin_when_unused() for a JetDefinition without a plugin");
}
_plugin_shared.reset(_plugin);
}
string JetDefinition::DefaultRecombiner::description() const {
switch(_recomb_scheme) {
case E_scheme:
return "E scheme recombination";
case pt_scheme:
return "pt scheme recombination";
case pt2_scheme:
return "pt2 scheme recombination";
case Et_scheme:
return "Et scheme recombination";
case Et2_scheme:
return "Et2 scheme recombination";
case BIpt_scheme:
return "boost-invariant pt scheme recombination";
case BIpt2_scheme:
return "boost-invariant pt2 scheme recombination";
default:
ostringstream err;
err << "DefaultRecombiner: unrecognized recombination scheme "
<< _recomb_scheme;
throw Error(err.str());
}
}
void JetDefinition::DefaultRecombiner::recombine(
const PseudoJet & pa, const PseudoJet & pb,
PseudoJet & pab) const {
double weighta, weightb;
switch(_recomb_scheme) {
case E_scheme:
// a call to reset turns out to be somewhat more efficient
// than a sum and assignment
//pab = pa + pb;
pab.reset(pa.px()+pb.px(),
pa.py()+pb.py(),
pa.pz()+pb.pz(),
pa.E ()+pb.E ());
return;
// all remaining schemes are massless recombinations and locally
// we just set weights, while the hard work is done below...
case pt_scheme:
case Et_scheme:
case BIpt_scheme:
weighta = pa.perp();
weightb = pb.perp();
break;
case pt2_scheme:
case Et2_scheme:
case BIpt2_scheme:
weighta = pa.perp2();
weightb = pb.perp2();
break;
default:
ostringstream err;
err << "DefaultRecombiner: unrecognized recombination scheme "
<< _recomb_scheme;
throw Error(err.str());
}
double perp_ab = pa.perp() + pb.perp();
if (perp_ab != 0.0) { // weights also non-zero...
double y_ab = (weighta * pa.rap() + weightb * pb.rap())/(weighta+weightb);
// take care with periodicity in phi...
double phi_a = pa.phi(), phi_b = pb.phi();
if (phi_a - phi_b > pi) phi_b += twopi;
if (phi_a - phi_b < -pi) phi_b -= twopi;
double phi_ab = (weighta * phi_a + weightb * phi_b)/(weighta+weightb);
// this is much more efficient...
pab.reset_PtYPhiM(perp_ab,y_ab,phi_ab);
// pab = PseudoJet(perp_ab*cos(phi_ab),
// perp_ab*sin(phi_ab),
// perp_ab*sinh(y_ab),
// perp_ab*cosh(y_ab));
} else { // weights are zero
//pab = PseudoJet(0.0,0.0,0.0,0.0);
pab.reset(0.0, 0.0, 0.0, 0.0);
}
}
void JetDefinition::DefaultRecombiner::preprocess(PseudoJet & p) const {
switch(_recomb_scheme) {
case E_scheme:
case BIpt_scheme:
case BIpt2_scheme:
break;
case pt_scheme:
case pt2_scheme:
{
// these schemes (as in the ktjet implementation) need massless
// initial 4-vectors with essentially E=|p|.
double newE = sqrt(p.perp2()+p.pz()*p.pz());
p.reset_momentum(p.px(), p.py(), p.pz(), newE);
// FJ2.x version
// int user_index = p.user_index();
// p = PseudoJet(p.px(), p.py(), p.pz(), newE);
// p.set_user_index(user_index);
}
break;
case Et_scheme:
case Et2_scheme:
{
// these schemes (as in the ktjet implementation) need massless
// initial 4-vectors with essentially E=|p|.
double rescale = p.E()/sqrt(p.perp2()+p.pz()*p.pz());
p.reset_momentum(rescale*p.px(), rescale*p.py(), rescale*p.pz(), p.E());
// FJ2.x version
// int user_index = p.user_index();
// p = PseudoJet(rescale*p.px(), rescale*p.py(), rescale*p.pz(), p.E());
// p.set_user_index(user_index);
}
break;
default:
ostringstream err;
err << "DefaultRecombiner: unrecognized recombination scheme "
<< _recomb_scheme;
throw Error(err.str());
}
}
void JetDefinition::Plugin::set_ghost_separation_scale(double /*scale*/) const {
throw Error("set_ghost_separation_scale not supported");
}
//-------------------------------------------------------------------------------
// helper functions to build a jet made of pieces
//
// This is the extended version with support for a user-defined
// recombination-scheme
// -------------------------------------------------------------------------------
// build a "CompositeJet" from the vector of its pieces
//
// the user passes the reciombination scheme used to "sum" the pieces.
PseudoJet join(const vector & pieces, const JetDefinition::Recombiner & recombiner){
// compute the total momentum
//--------------------------------------------------
PseudoJet result; // automatically initialised to 0
if (pieces.size()>0){
result = pieces[0];
for (unsigned int i=1; i(cj_struct));
return result;
}
// build a "CompositeJet" from a single PseudoJet
PseudoJet join(const PseudoJet & j1,
const JetDefinition::Recombiner & recombiner){
return join(vector(1,j1), recombiner);
}
// build a "CompositeJet" from two PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2,
const JetDefinition::Recombiner & recombiner){
vector pieces;
pieces.push_back(j1);
pieces.push_back(j2);
return join(pieces, recombiner);
}
// build a "CompositeJet" from 3 PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3,
const JetDefinition::Recombiner & recombiner){
vector pieces;
pieces.push_back(j1);
pieces.push_back(j2);
pieces.push_back(j3);
return join(pieces, recombiner);
}
// build a "CompositeJet" from 4 PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3, const PseudoJet & j4,
const JetDefinition::Recombiner & recombiner){
vector pieces;
pieces.push_back(j1);
pieces.push_back(j2);
pieces.push_back(j3);
pieces.push_back(j4);
return join(pieces, recombiner);
}
FASTJET_END_NAMESPACE