//FJSTARTHEADER
// $Id: JetDefinition.cc 4442 2020-05-05 07:50:11Z soyez $
//
// Copyright (c) 2005-2020, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet.
//
// FastJet is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// The algorithms that underlie FastJet have required considerable
// development. They are described in the original FastJet paper,
// hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
// FastJet as part of work towards a scientific publication, please
// quote the version you use and include a citation to the manual and
// optionally also to hep-ph/0512210.
//
// FastJet is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with FastJet. If not, see .
//----------------------------------------------------------------------
//FJENDHEADER
#include "fastjet/JetDefinition.hh"
#include "fastjet/Error.hh"
#include "fastjet/CompositeJetStructure.hh"
#include
FASTJET_BEGIN_NAMESPACE // defined in fastjet/internal/base.hh
using namespace std;
const double JetDefinition::max_allowable_R = 1000.0;
//----------------------------------------------------------------------
// [NB: implementation was getting complex, so in 2.4-devel moved it
// from .hh to .cc]
JetDefinition::JetDefinition(JetAlgorithm jet_algorithm_in,
double R_in,
RecombinationScheme recomb_scheme_in,
Strategy strategy_in,
int nparameters) :
_jet_algorithm(jet_algorithm_in), _Rparam(R_in), _strategy(strategy_in) {
// set R parameter or ensure its sensibleness, as appropriate
if (_jet_algorithm == ee_kt_algorithm) {
_Rparam = 4.0; // introduce a fictional R that ensures that
// our clustering sequence will not produce
// "beam" jets except when only a single particle remains.
// Any value > 2 would have done here
} else {
// We maintain some limit on R because particles with pt=0, m=0
// can have rapidities O(100000) and one doesn't want the
// clustering to start including them as if their rapidities were
// physical.
if (R_in > max_allowable_R) {
ostringstream oss;
oss << "Requested R = " << R_in << " for jet definition is larger than max_allowable_R = " << max_allowable_R;
throw Error(oss.str());
}
}
// cross-check the number of parameters that were declared in setting up the
// algorithm (passed internally from the public constructors)
unsigned int nparameters_expected = n_parameters_for_algorithm(jet_algorithm_in);
if (nparameters != (int) nparameters_expected){
ostringstream oss;
oss << "The jet algorithm you requested ("
<< jet_algorithm_in << ") should be constructed with " << nparameters_expected
<< " parameter(s) but was called with " << nparameters << " parameter(s)\n";
throw Error(oss.str());
}
// make sure the strategy requested is sensible
assert (_strategy != plugin_strategy);
_plugin = NULL;
set_recombination_scheme(recomb_scheme_in);
set_extra_param(0.0); // make sure it's defined
}
//----------------------------------------------------------------------
// returns true if the jet definition involves an algorithm
// intended for use on a spherical geometry (e.g. e+e- algorithms,
// as opposed to most pp algorithms, which use a cylindrical,
// rapidity-phi geometry).
bool JetDefinition::is_spherical() const {
if (jet_algorithm() == plugin_algorithm) {
return plugin()->is_spherical();
} else {
return (jet_algorithm() == ee_kt_algorithm || // as of 2013-02-14, the two
jet_algorithm() == ee_genkt_algorithm // native spherical algorithms
);
}
}
//----------------------------------------------------------------------
string JetDefinition::description() const {
ostringstream name;
name << description_no_recombiner();
if ((jet_algorithm() == plugin_algorithm) || (jet_algorithm() == undefined_jet_algorithm)){
return name.str();
}
if (n_parameters_for_algorithm(jet_algorithm()) == 0)
name << " with ";
else
name << " and ";
name << recombiner()->description();
return name.str();
}
//----------------------------------------------------------------------
string JetDefinition::description_no_recombiner() const {
ostringstream name;
if (jet_algorithm() == plugin_algorithm) {
return plugin()->description();
} else if (jet_algorithm() == undefined_jet_algorithm) {
return "uninitialised JetDefinition (jet_algorithm=undefined_jet_algorithm)" ;
}
name << algorithm_description(jet_algorithm());
switch (n_parameters_for_algorithm(jet_algorithm())){
case 0: name << " (NB: no R)"; break;
case 1: name << " with R = " << R(); break; // the parameter is always R
case 2:
// the 1st parameter is always R
name << " with R = " << R();
// the 2nd depends on the algorithm
if (jet_algorithm() == cambridge_for_passive_algorithm){
name << "and a special hack whereby particles with kt < "
<< extra_param() << "are treated as passive ghosts";
} else {
name << ", p = " << extra_param();
}
};
return name.str();
}
//----------------------------------------------------------------------
string JetDefinition::algorithm_description(const JetAlgorithm jet_alg){
ostringstream name;
switch (jet_alg){
case plugin_algorithm: return "plugin algorithm";
case kt_algorithm: return "Longitudinally invariant kt algorithm";
case cambridge_algorithm: return "Longitudinally invariant Cambridge/Aachen algorithm";
case antikt_algorithm: return "Longitudinally invariant anti-kt algorithm";
case genkt_algorithm: return "Longitudinally invariant generalised kt algorithm";
case cambridge_for_passive_algorithm: return "Longitudinally invariant Cambridge/Aachen algorithm";
case ee_kt_algorithm: return "e+e- kt (Durham) algorithm (NB: no R)";
case ee_genkt_algorithm: return "e+e- generalised kt algorithm";
case undefined_jet_algorithm: return "undefined jet algorithm";
default:
throw Error("JetDefinition::algorithm_description(): unrecognized jet_algorithm");
};
}
//----------------------------------------------------------------------
unsigned int JetDefinition::n_parameters_for_algorithm(const JetAlgorithm jet_alg){
switch (jet_alg) {
case ee_kt_algorithm: return 0;
case genkt_algorithm:
case ee_genkt_algorithm: return 2;
default: return 1;
};
}
//----------------------------------------------------------------------
void JetDefinition::set_recombination_scheme(
RecombinationScheme recomb_scheme) {
_default_recombiner = JetDefinition::DefaultRecombiner(recomb_scheme);
// do not forget to delete the existing recombiner if needed
if (_shared_recombiner) _shared_recombiner.reset();
_recombiner = 0;
}
void JetDefinition::set_recombiner(const JetDefinition &other_jet_def){
// make sure the "invariants" of the other jet def are sensible
assert(other_jet_def._recombiner ||
other_jet_def.recombination_scheme() != external_scheme);
// first treat the situation where we're using the default recombiner
if (other_jet_def._recombiner == 0){
set_recombination_scheme(other_jet_def.recombination_scheme());
return;
}
// in other cases, copy the pointer to the recombiner
_recombiner = other_jet_def._recombiner;
// set the default recombiner appropriately
_default_recombiner = DefaultRecombiner(external_scheme);
// and set the _shared_recombiner to the same state
// as in the other_jet_def, whatever that was
_shared_recombiner.reset(other_jet_def._shared_recombiner);
// NB: it is tempting to go via set_recombiner and then to sort
// out the shared part, but this would be dangerous in the
// specific (rare?) case where other_jet_def is the same as this
// it deletes_recombiner_when_unused. In that case the shared
// pointer reset would delete the recombiner.
}
// returns true if the current jet definitions shares the same
// recombiner as teh one passed as an argument
bool JetDefinition::has_same_recombiner(const JetDefinition &other_jd) const{
// first make sure that they have the same recombination scheme
const RecombinationScheme & scheme = recombination_scheme();
if (other_jd.recombination_scheme() != scheme) return false;
// if the scheme is "external", also check that they have the same
// recombiner
return (scheme != external_scheme)
|| (recombiner() == other_jd.recombiner());
}
/// causes the JetDefinition to handle the deletion of the
/// recombiner when it is no longer used
void JetDefinition::delete_recombiner_when_unused(){
if (_recombiner == 0){
throw Error("tried to call JetDefinition::delete_recombiner_when_unused() for a JetDefinition without a user-defined recombination scheme");
} else if (_shared_recombiner.get()) {
throw Error("Error in JetDefinition::delete_recombiner_when_unused: the recombiner is already scheduled for deletion when unused (or was already set as shared)");
}
_shared_recombiner.reset(_recombiner);
}
/// allows to let the JetDefinition handle the deletion of the
/// plugin when it is no longer used
void JetDefinition::delete_plugin_when_unused(){
if (_plugin == 0){
throw Error("tried to call JetDefinition::delete_plugin_when_unused() for a JetDefinition without a plugin");
}
_plugin_shared.reset(_plugin);
}
string JetDefinition::DefaultRecombiner::description() const {
switch(_recomb_scheme) {
case E_scheme:
return "E scheme recombination";
case pt_scheme:
return "pt scheme recombination";
case pt2_scheme:
return "pt2 scheme recombination";
case Et_scheme:
return "Et scheme recombination";
case Et2_scheme:
return "Et2 scheme recombination";
case BIpt_scheme:
return "boost-invariant pt scheme recombination";
case BIpt2_scheme:
return "boost-invariant pt2 scheme recombination";
case WTA_pt_scheme:
return "pt-ordered Winner-Takes-All recombination";
// Energy-ordering can lead to dangerous situations with particles at
// rest. We instead implement the WTA_modp_scheme
//
// case WTA_E_scheme:
// return "energy-ordered Winner-Takes-All recombination";
case WTA_modp_scheme:
return "|3-momentum|-ordered Winner-Takes-All recombination";
default:
ostringstream err;
err << "DefaultRecombiner: unrecognized recombination scheme "
<< _recomb_scheme;
throw Error(err.str());
}
}
void JetDefinition::DefaultRecombiner::recombine(
const PseudoJet & pa, const PseudoJet & pb,
PseudoJet & pab) const {
double weighta, weightb;
switch(_recomb_scheme) {
case E_scheme:
// a call to reset turns out to be somewhat more efficient
// than a sum and assignment
//pab = pa + pb;
pab.reset(pa.px()+pb.px(),
pa.py()+pb.py(),
pa.pz()+pb.pz(),
pa.E ()+pb.E ());
return;
// all remaining schemes are massless recombinations and locally
// we just set weights, while the hard work is done below...
case pt_scheme:
case Et_scheme:
case BIpt_scheme:
weighta = pa.perp();
weightb = pb.perp();
break;
case pt2_scheme:
case Et2_scheme:
case BIpt2_scheme:
weighta = pa.perp2();
weightb = pb.perp2();
break;
case WTA_pt_scheme:{
const PseudoJet & phard = (pa.pt2() >= pb.pt2()) ? pa : pb;
/// keep y,phi and m from the hardest, sum pt
pab.reset_PtYPhiM(pa.pt()+pb.pt(),
phard.rap(), phard.phi(), phard.m());
return;}
// Energy-ordering can lead to dangerous situations with particles at
// rest. We instead implement the WTA_modp_scheme
//
// case WTA_E_scheme:{
// const PseudoJet & phard = (pa.E() >= pb.E()) ? pa : pb;
// /// keep 3-momentum direction and mass from the hardest, sum energies
// ///
// /// If the particle with the largest energy is at rest, the sum
// /// remains at rest, implying that the mass of the sum is larger
// /// than the mass of pa.
// double Eab = pa.E() + pb.E();
// double scale = (phard.modp2()==0.0)
// ? 0.0
// : sqrt((Eab*Eab - phard.m2())/phard.modp2());
// pab.reset(phard.px()*scale, phard.py()*scale, phard.pz()*scale, Eab);
// return;}
case WTA_modp_scheme:{
// Note: we need to compute both a and b modp. And we need pthard
// and its modp. If we want to avoid repeating the test and do
// only 2 modp calculations, we'd have to duplicate the code (or
// use a pair). An alternative is to write modp_soft as
// modp_ab-modp_hard but this could suffer from larger rounding
// errors
bool a_hardest = (pa.modp2() >= pb.modp2());
const PseudoJet & phard = a_hardest ? pa : pb;
const PseudoJet & psoft = a_hardest ? pb : pa;
/// keep 3-momentum direction and mass from the hardest, sum modp
///
/// If the hardest particle is at rest, the sum remains at rest
/// (the energy of the sum is therefore the mass of pa)
double modp_hard = phard.modp();
double modp_ab = modp_hard + psoft.modp();
if (phard.modp2()==0.0){
pab.reset(0.0, 0.0, 0.0, phard.m());
} else {
double scale = modp_ab/modp_hard;
pab.reset(phard.px()*scale, phard.py()*scale, phard.pz()*scale,
sqrt(modp_ab*modp_ab + phard.m2()));
}
return;}
default:
ostringstream err;
err << "DefaultRecombiner: unrecognized recombination scheme "
<< _recomb_scheme;
throw Error(err.str());
}
double perp_ab = pa.perp() + pb.perp();
if (perp_ab != 0.0) { // weights also non-zero...
double y_ab = (weighta * pa.rap() + weightb * pb.rap())/(weighta+weightb);
// take care with periodicity in phi...
double phi_a = pa.phi(), phi_b = pb.phi();
if (phi_a - phi_b > pi) phi_b += twopi;
if (phi_a - phi_b < -pi) phi_b -= twopi;
double phi_ab = (weighta * phi_a + weightb * phi_b)/(weighta+weightb);
// this is much more efficient...
pab.reset_PtYPhiM(perp_ab,y_ab,phi_ab);
// pab = PseudoJet(perp_ab*cos(phi_ab),
// perp_ab*sin(phi_ab),
// perp_ab*sinh(y_ab),
// perp_ab*cosh(y_ab));
} else { // weights are zero
//pab = PseudoJet(0.0,0.0,0.0,0.0);
pab.reset(0.0, 0.0, 0.0, 0.0);
}
}
void JetDefinition::DefaultRecombiner::preprocess(PseudoJet & p) const {
switch(_recomb_scheme) {
case E_scheme:
case BIpt_scheme:
case BIpt2_scheme:
case WTA_pt_scheme:
//case WTA_E_scheme:
case WTA_modp_scheme:
break;
case pt_scheme:
case pt2_scheme:
{
// these schemes (as in the ktjet implementation) need massless
// initial 4-vectors with essentially E=|p|.
double newE = sqrt(p.perp2()+p.pz()*p.pz());
p.reset_momentum(p.px(), p.py(), p.pz(), newE);
// FJ2.x version
// int user_index = p.user_index();
// p = PseudoJet(p.px(), p.py(), p.pz(), newE);
// p.set_user_index(user_index);
}
break;
case Et_scheme:
case Et2_scheme:
{
// these schemes (as in the ktjet implementation) need massless
// initial 4-vectors with essentially E=|p|.
double rescale = p.E()/sqrt(p.perp2()+p.pz()*p.pz());
p.reset_momentum(rescale*p.px(), rescale*p.py(), rescale*p.pz(), p.E());
// FJ2.x version
// int user_index = p.user_index();
// p = PseudoJet(rescale*p.px(), rescale*p.py(), rescale*p.pz(), p.E());
// p.set_user_index(user_index);
}
break;
default:
ostringstream err;
err << "DefaultRecombiner: unrecognized recombination scheme "
<< _recomb_scheme;
throw Error(err.str());
}
}
void JetDefinition::Plugin::set_ghost_separation_scale(double /*scale*/) const {
throw Error("set_ghost_separation_scale not supported");
}
//-------------------------------------------------------------------------------
// helper functions to build a jet made of pieces
//
// This is the extended version with support for a user-defined
// recombination-scheme
// -------------------------------------------------------------------------------
// build a "CompositeJet" from the vector of its pieces
//
// the user passes the reciombination scheme used to "sum" the pieces.
PseudoJet join(const vector & pieces, const JetDefinition::Recombiner & recombiner){
// compute the total momentum
//--------------------------------------------------
PseudoJet result; // automatically initialised to 0
if (pieces.size()>0){
result = pieces[0];
for (unsigned int i=1; i(cj_struct));
return result;
}
// build a "CompositeJet" from a single PseudoJet
PseudoJet join(const PseudoJet & j1,
const JetDefinition::Recombiner & recombiner){
return join(vector(1,j1), recombiner);
}
// build a "CompositeJet" from two PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2,
const JetDefinition::Recombiner & recombiner){
vector pieces;
pieces.push_back(j1);
pieces.push_back(j2);
return join(pieces, recombiner);
}
// build a "CompositeJet" from 3 PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3,
const JetDefinition::Recombiner & recombiner){
vector pieces;
pieces.push_back(j1);
pieces.push_back(j2);
pieces.push_back(j3);
return join(pieces, recombiner);
}
// build a "CompositeJet" from 4 PseudoJet
PseudoJet join(const PseudoJet & j1, const PseudoJet & j2, const PseudoJet & j3, const PseudoJet & j4,
const JetDefinition::Recombiner & recombiner){
vector pieces;
pieces.push_back(j1);
pieces.push_back(j2);
pieces.push_back(j3);
pieces.push_back(j4);
return join(pieces, recombiner);
}
FASTJET_END_NAMESPACE