#include "TrkUtil.h" #include #include #include // Constructor TrkUtil::TrkUtil(Double_t Bz) { fBz = Bz; fGasSel = 0; // Default is He-Isobuthane (90-10) fRmin = 0.0; // Lower DCH radius fRmax = 0.0; // Higher DCH radius fZmin = 0.0; // Lower DCH z fZmax = 0.0; // Higher DCH z } TrkUtil::TrkUtil() { fBz = 0.0; fGasSel = 0; // Default is He-Isobuthane (90-10) fRmin = 0.0; // Lower DCH radius fRmax = 0.0; // Higher DCH radius fZmin = 0.0; // Lower DCH z fZmax = 0.0; // Higher DCH z } // // Destructor TrkUtil::~TrkUtil() { fBz = 0.0; fGasSel = 0; // Default is He-Isobuthane (90-10) fRmin = 0.0; // Lower DCH radius fRmax = 0.0; // Higher DCH radius fZmin = 0.0; // Lower DCH z fZmax = 0.0; // Higher DCH z } // // Helix parameters from position and momentum // static TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q, Double_t Bz) { // TVectorD Par(5); // Transverse parameters Double_t a = -Q * Bz * cSpeed(); // Units are Tesla, GeV and meters Double_t pt = p.Pt(); Double_t C = a / (2 * pt); // Half curvature //std::cout << "ObsTrk::XPtoPar: fB = " << fB << ", a = " << a << ", pt = " << pt << ", C = " << C << std::endl; Double_t r2 = x(0) * x(0) + x(1) * x(1); Double_t cross = x(0) * p(1) - x(1) * p(0); Double_t T = sqrt(pt * pt - 2 * a * cross + a * a * r2); Double_t phi0 = atan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi0 Double_t D; // Impact parameter D if (pt < 10.0) D = (T - pt) / a; else D = (-2 * cross + a * r2) / (T + pt); // Par(0) = D; // Store D Par(1) = phi0; // Store phi0 Par(2) = C; // Store C //Longitudinal parameters Double_t B = C * sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D)); Double_t st = asin(B) / C; Double_t ct = p(2) / pt; Double_t z0; Double_t dot = x(0) * p(0) + x(1) * p(1); if (dot > 0.0) z0 = x(2) - ct * st; else z0 = x(2) + ct * st; // Par(3) = z0; // Store z0 Par(4) = ct; // Store cot(theta) // return Par; } // non-static TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q) { // TVectorD Par(5); Double_t Bz = fBz; Par = XPtoPar(x, p, Q, Bz); // return Par; } // TVector3 TrkUtil::ParToX(TVectorD Par) { Double_t D = Par(0); Double_t phi0 = Par(1); Double_t z0 = Par(3); // TVector3 Xval; Xval(0) = -D * sin(phi0); Xval(1) = D * cos(phi0); Xval(2) = z0; // return Xval; } // TVector3 TrkUtil::ParToP(TVectorD Par) { if (fBz == 0.0)std::cout << "TrkUtil::ParToP: Warning Bz not set" << std::endl; // return ParToP(Par, fBz); } // TVector3 TrkUtil::ParToP(TVectorD Par, Double_t Bz) { Double_t C = Par(2); Double_t phi0 = Par(1); Double_t ct = Par(4); // TVector3 Pval; Double_t pt = Bz * cSpeed() / TMath::Abs(2 * C); Pval(0) = pt * cos(phi0); Pval(1) = pt * sin(phi0); Pval(2) = pt * ct; // return Pval; } // Double_t TrkUtil::ParToQ(TVectorD Par) { return TMath::Sign(1.0, -Par(2)); } // // Parameter conversion to ACTS format TVectorD TrkUtil::ParToACTS(TVectorD Par) { TVectorD pACTS(6); // Return vector // Double_t b = -cSpeed() * fBz / 2.; pACTS(0) = 1000 * Par(0); // D from m to mm pACTS(1) = 1000 * Par(3); // z0 from m to mm pACTS(2) = Par(1); // Phi0 is unchanged pACTS(3) = atan2(1.0, Par(4)); // Theta in [0, pi] range pACTS(4) = Par(2) / (b * sqrt(1 + Par(4) * Par(4))); // q/p in GeV pACTS(5) = 0.0; // Time: currently undefined // return pACTS; } // Covariance conversion to ACTS format TMatrixDSym TrkUtil::CovToACTS(TVectorD Par, TMatrixDSym Cov) { TMatrixDSym cACTS(6); cACTS.Zero(); Double_t b = -cSpeed() * fBz / 2.; // // Fill derivative matrix TMatrixD A(5, 5); A.Zero(); Double_t ct = Par(4); // cot(theta) Double_t C = Par(2); // half curvature A(0, 0) = 1000.; // D-D conversion to mm A(1, 2) = 1.0; // phi0-phi0 A(2, 4) = 1.0 / (sqrt(1.0 + ct * ct) * b); // q/p-C A(3, 1) = 1000.; // z0-z0 conversion to mm A(4, 3) = -1.0 / (1.0 + ct * ct); // theta - cot(theta) A(4, 4) = -C * ct / (b * pow(1.0 + ct * ct, 3.0 / 2.0)); // q/p-cot(theta) // TMatrixDSym Cv = Cov; TMatrixD At(5, 5); At.Transpose(A); Cv.Similarity(At); TMatrixDSub(cACTS, 0, 4, 0, 4) = Cv; cACTS(5, 5) = 0.1; // Currently undefined: set to arbitrary value to avoid crashes // return cACTS; } // // Parameter conversion to ILC format TVectorD TrkUtil::ParToILC(TVectorD Par) { TVectorD pILC(5); // Return vector // pILC(0) = Par(0) * 1.0e3; // d0 in mm pILC(1) = Par(1); // phi0 is unchanged pILC(2) = -2 * Par(2) * 1.0e-3; // w in mm^-1 pILC(3) = Par(3) * 1.0e3; // z0 in mm pILC(4) = Par(4); // tan(lambda) = cot(theta) // return pILC; } // Covariance conversion to ILC format TMatrixDSym TrkUtil::CovToILC(TMatrixDSym Cov) { TMatrixDSym cILC(5); cILC.Zero(); // // Fill derivative matrix TMatrixD A(5, 5); A.Zero(); // A(0, 0) = 1.0e3; // D-d0 in mm A(1, 1) = 1.0; // phi0-phi0 A(2, 2) = -2.0e-3; // w-C A(3, 3) = 1.0e3; // z0-z0 conversion to mm A(4, 4) = 1.0; // tan(lambda) - cot(theta) // TMatrixDSym Cv = Cov; TMatrixD At(5, 5); At.Transpose(A); Cv.Similarity(At); cILC = Cv; // return cILC; } // // Conversion from meters to mm TVectorD TrkUtil::ParToMm(TVectorD Par) // Parameter conversion { TVectorD Pmm(5); // Return vector // Pmm(0) = Par(0) * 1.0e3; // d0 in mm Pmm(1) = Par(1); // phi0 is unchanged Pmm(2) = Par(2) * 1.0e-3; // C in mm^-1 Pmm(3) = Par(3) * 1.0e3; // z0 in mm Pmm(4) = Par(4); // tan(lambda) = cot(theta) unchanged // return Pmm; } TMatrixDSym TrkUtil::CovToMm(TMatrixDSym Cov) // Covariance conversion { TMatrixDSym Cmm(5); Cmm.Zero(); // // Fill derivative matrix TMatrixD A(5, 5); A.Zero(); // A(0, 0) = 1.0e3; // D-d0 in mm A(1, 1) = 1.0; // phi0-phi0 A(2, 2) = 1.0e-3; // C-C A(3, 3) = 1.0e3; // z0-z0 conversion to mm A(4, 4) = 1.0; // lambda - cot(theta) // TMatrixDSym Cv = Cov; TMatrixD At(5, 5); At.Transpose(A); Cv.Similarity(At); Cmm = Cv; // return Cmm; } // // Setup chamber volume void TrkUtil::SetDchBoundaries(Double_t Rmin, Double_t Rmax, Double_t Zmin, Double_t Zmax) { fRmin = Rmin; // Lower DCH radius fRmax = Rmax; // Higher DCH radius fZmin = Zmin; // Lower DCH z fZmax = Zmax; // Higher DCH z } // // Get Trakck length inside DCH volume Double_t TrkUtil::TrkLen(TVectorD Par) { Double_t tLength = 0.0; // Check if geometry is initialized if (fZmin == 0.0 && fZmax == 0.0) { // No geometry set so send a warning and return 0 std::cout << "TrkUtil::TrkLen() called without a DCH volume defined" << std::endl; } else { //****************************************************************** // Determine the track length inside the chamber **** //****************************************************************** // // Track pararameters Double_t D = Par(0); // Transverse impact parameter Double_t phi0 = Par(1); // Transverse direction at minimum approach Double_t C = Par(2); // Half curvature Double_t z0 = Par(3); // Z at minimum approach Double_t ct = Par(4); // cot(theta) //std::cout << "TrkUtil:: parameters: D= " << D << ", phi0= " << phi0 // << ", C= " << C << ", z0= " << z0 << ", ct= " << ct << std::endl; // // Track length per unit phase change Double_t Scale = sqrt(1.0 + ct * ct) / (2.0 * TMath::Abs(C)); // // Find intersections with chamber boundaries // Double_t phRin = 0.0; // phase of inner cylinder Double_t phRin2 = 0.0; // phase of inner cylinder intersection (2nd branch) Double_t phRhi = 0.0; // phase of outer cylinder intersection Double_t phZmn = 0.0; // phase of left wall intersection Double_t phZmx = 0.0; // phase of right wall intersection // ... with inner cylinder Double_t Rtop = TMath::Abs((1.0 + C * D) / C); if (Rtop > fRmin && TMath::Abs(D) < fRmin) // *** don't treat large D tracks for the moment *** { Double_t ph = 2 * asin(C * sqrt((fRmin * fRmin - D * D) / (1.0 + 2.0 * C * D))); Double_t z = z0 + ct * ph / (2.0 * C); //std::cout << "Rin intersection: ph = " << ph<<", z= "< fZmin) phRin = TMath::Abs(ph); // Intersection inside chamber volume // // Include second branch of loopers Double_t Pi = 3.14159265358979323846; Double_t ph2 = 2 * Pi - TMath::Abs(ph); if (ph < 0)ph2 = -ph2; z = z0 + ct * ph2 / (2.0 * C); if (z < fZmax && z > fZmin) phRin2 = TMath::Abs(ph2); // Intersection inside chamber volume } // ... with outer cylinder if (Rtop > fRmax && TMath::Abs(D) < fRmax) // *** don't treat large D tracks for the moment *** { Double_t ph = 2 * asin(C * sqrt((fRmax * fRmax - D * D) / (1.0 + 2.0 * C * D))); Double_t z = z0 + ct * ph / (2.0 * C); if (z < fZmax && z > fZmin) phRhi = TMath::Abs(ph); // Intersection inside chamber volume } // ... with left wall Double_t Zdir = (fZmin - z0) / ct; if (Zdir > 0.0) { Double_t ph = 2.0 * C * Zdir; Double_t Rint = sqrt(D * D + (1.0 + 2.0 * C * D) * pow(sin(ph / 2), 2) / (C * C)); if (Rint < fRmax && Rint > fRmin) phZmn = TMath::Abs(ph); // Intersection inside chamber volume } // ... with right wall Zdir = (fZmax - z0) / ct; if (Zdir > 0.0) { Double_t ph = 2.0 * C * Zdir; Double_t Rint = sqrt(D * D + (1.0 + 2.0 * C * D) * pow(sin(ph / 2), 2) / (C * C)); if (Rint < fRmax && Rint > fRmin) phZmx = TMath::Abs(ph); // Intersection inside chamber volume } // // Order phases and keep the lowest two non-zero ones // const Int_t Nint = 5; Double_t dPhase = 0.0; // Phase difference between two close intersections Double_t ph_arr[Nint] = { phRin, phRin2, phRhi, phZmn, phZmx }; std::sort(ph_arr, ph_arr + Nint); Int_t iPos = -1; // First element > 0 for (Int_t i = 0; i < Nint; i++) { if (ph_arr[i] <= 0.0) iPos = i; } if (iPos < Nint - 2) { dPhase = ph_arr[iPos + 2] - ph_arr[iPos + 1]; tLength = dPhase * Scale; } } return tLength; } // // Return number of ionization clusters Bool_t TrkUtil::IonClusters(Double_t& Ncl, Double_t mass, TVectorD Par) { // // Units are meters/Tesla/GeV // Ncl = 0.0; Bool_t Signal = kFALSE; Double_t tLen = 0; // Check if geometry is initialized if (fZmin == 0.0 && fZmax == 0.0) { // No geometry set so send a warning and return 0 std::cout << "TrkUtil::IonClusters() called without a volume defined" << std::endl; } else tLen = TrkLen(Par); //****************************************************************** // Now get the number of clusters **** //****************************************************************** // Double_t muClu = 0.0; // mean number of clusters Double_t bg = 0.0; // beta*gamma Ncl = 0.0; if (tLen > 0.0) { Signal = kTRUE; // // Find beta*gamma if (fBz == 0.0) { Signal = kFALSE; std::cout << "TrkUtil::IonClusters: Please set Bz!!!" << std::endl; } else { TVector3 p = ParToP(Par); bg = p.Mag() / mass; muClu = Nclusters(bg) * tLen; // Avg. number of clusters Ncl = gRandom->PoissonD(muClu); // Actual number of clusters } } // return Signal; } // // Double_t TrkUtil::Nclusters(Double_t begam) { Int_t Opt = fGasSel; Double_t Nclu = Nclusters(begam, Opt); // return Nclu; } // Double_t TrkUtil::Nclusters(Double_t begam, Int_t Opt) { // // Opt = 0: He 90 - Isobutane 10 // = 1: pure He // = 2: Argon 50 - Ethane 50 // = 3: pure Argon // // const Int_t Npt = 18; Double_t bg[Npt] = { 0.5, 0.8, 1., 2., 3., 4., 5., 8., 10., 12., 15., 20., 50., 100., 200., 500., 1000., 10000. }; // // He 90 - Isobutane 10 Double_t ncl_He_Iso[Npt] = { 42.94, 23.6,18.97,12.98,12.2,12.13, 12.24,12.73,13.03,13.29,13.63,14.08,15.56,16.43,16.8,16.95,16.98, 16.98 }; // // pure He Double_t ncl_He[Npt] = { 11.79,6.5,5.23,3.59,3.38,3.37,3.4,3.54,3.63, 3.7,3.8,3.92,4.33,4.61,4.78,4.87,4.89, 4.89 }; // // Argon 50 - Ethane 50 Double_t ncl_Ar_Eth[Npt] = { 130.04,71.55,57.56,39.44,37.08,36.9, 37.25,38.76,39.68,40.49,41.53,42.91,46.8,48.09,48.59,48.85,48.93,48.93 }; // // pure Argon Double_t ncl_Ar[Npt] = { 88.69,48.93,39.41,27.09,25.51,25.43,25.69, 26.78,27.44,28.02,28.77,29.78,32.67,33.75,34.24,34.57,34.68, 34.68 }; // Double_t ncl[Npt]; switch (Opt) { case 0: std::copy(ncl_He_Iso, ncl_He_Iso + Npt, ncl); // He-Isobutane break; case 1: std::copy(ncl_He, ncl_He + Npt, ncl); // pure He break; case 2: std::copy(ncl_Ar_Eth, ncl_Ar_Eth + Npt, ncl); // Argon - Ethane break; case 3: std::copy(ncl_Ar, ncl_Ar + Npt, ncl); // pure Argon break; } // Double_t interp = 0.0; TSpline3* sp3 = new TSpline3("sp3", bg, ncl, Npt); if (begam > bg[0] && begam < bg[Npt - 1]) interp = sp3->Eval(begam); return 100 * interp; } // Double_t TrkUtil::funcNcl(Double_t* xp, Double_t* par) { Double_t bg = xp[0]; return Nclusters(bg); } // void TrkUtil::SetGasMix(Int_t Opt) { if (Opt < 0 || Opt > 3) { std::cout << "TrkUtil::SetGasMix Gas option not allowed. No action." << std::endl; } else fGasSel = Opt; }