#include "TrkUtil.h" #include #include // Constructor TrkUtil::TrkUtil(Double_t Bz) { fBz = Bz; } TrkUtil::TrkUtil() { fBz = 0.0; } // // Destructor TrkUtil::~TrkUtil() { fBz = 0.0; } // // Helix parameters from position and momentum // static TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q, Double_t Bz) { // TVectorD Par(5); // Transverse parameters Double_t a = -Q * Bz * cSpeed(); // Units are Tesla, GeV and meters Double_t pt = p.Pt(); Double_t C = a / (2 * pt); // Half curvature //cout << "ObsTrk::XPtoPar: fB = " << fB << ", a = " << a << ", pt = " << pt << ", C = " << C << endl; Double_t r2 = x.Perp2(); Double_t cross = x(0) * p(1) - x(1) * p(0); Double_t T = TMath::Sqrt(pt * pt - 2 * a * cross + a * a * r2); Double_t phi0 = TMath::ATan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi0 Double_t D; // Impact parameter D if (pt < 10.0) D = (T - pt) / a; else D = (-2 * cross + a * r2) / (T + pt); // Par(0) = D; // Store D Par(1) = phi0; // Store phi0 Par(2) = C; // Store C //Longitudinal parameters Double_t B = C * TMath::Sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D)); Double_t st = TMath::ASin(B) / C; Double_t ct = p(2) / pt; Double_t z0 = x(2) - ct * st; // Par(3) = z0; // Store z0 Par(4) = ct; // Store cot(theta) // return Par; } // non-static TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q) { // TVectorD Par(5); Double_t Bz = fBz; Par = XPtoPar(x, p, Q, Bz); // return Par; } // TVector3 TrkUtil::ParToX(TVectorD Par) { Double_t D = Par(0); Double_t phi0 = Par(1); Double_t z0 = Par(3); // TVector3 Xval; Xval(0) = -D * TMath::Sin(phi0); Xval(1) = D * TMath::Cos(phi0); Xval(2) = z0; // return Xval; } // TVector3 TrkUtil::ParToP(TVectorD Par) { if (fBz == 0.0) std::cout << "TrkUtil::ParToP: Warning Bz not set" << std::endl; // return ParToP(Par,fBz); } // TVector3 TrkUtil::ParToP(TVectorD Par, Double_t Bz) { Double_t C = Par(2); Double_t phi0 = Par(1); Double_t ct = Par(4); // TVector3 Pval; Double_t pt = Bz * cSpeed() / TMath::Abs(2 * C); Pval(0) = pt * TMath::Cos(phi0); Pval(1) = pt * TMath::Sin(phi0); Pval(2) = pt * ct; // return Pval; } // Double_t TrkUtil::ParToQ(TVectorD Par) { return TMath::Sign(1.0, -Par(2)); } // // Parameter conversion to ACTS format TVectorD TrkUtil::ParToACTS(TVectorD Par) { TVectorD pACTS(6); // Return vector // Double_t b = -cSpeed() * fBz / 2.; pACTS(0) = 1000 * Par(0); // D from m to mm pACTS(1) = 1000 * Par(3); // z0 from m to mm pACTS(2) = Par(1); // Phi0 is unchanged pACTS(3) = TMath::ATan2(1.0, Par(4)); // Theta in [0, pi] range pACTS(4) = Par(2) / (b * TMath::Sqrt(1 + Par(4) * Par(4))); // q/p in GeV pACTS(5) = 0.0; // Time: currently undefined // return pACTS; } // Covariance conversion to ACTS format TMatrixDSym TrkUtil::CovToACTS(TVectorD Par, TMatrixDSym Cov) { TMatrixDSym cACTS(6); cACTS.Zero(); Double_t b = -cSpeed() * fBz / 2.; // // Fill derivative matrix TMatrixD A(5, 5); A.Zero(); Double_t ct = Par(4); // cot(theta) Double_t C = Par(2); // half curvature A(0, 0) = 1000.; // D-D conversion to mm A(1, 2) = 1.0; // phi0-phi0 A(2, 4) = 1.0 / (TMath::Sqrt(1.0 + ct * ct) * b); // q/p-C A(3, 1) = 1000.; // z0-z0 conversion to mm A(4, 3) = -1.0 / (1.0 + ct * ct); // theta - cot(theta) A(4, 4) = -C * ct / (b * TMath::Power(1.0 + ct * ct, 3.0 / 2.0)); // q/p-cot(theta) // TMatrixDSym Cv = Cov; TMatrixD At(5, 5); At.Transpose(A); Cv.Similarity(At); TMatrixDSub(cACTS, 0, 4, 0, 4) = Cv; cACTS(5, 5) = 0.1; // Currently undefined: set to arbitrary value to avoid crashes // return cACTS; } // // Parameter conversion to ILC format TVectorD TrkUtil::ParToILC(TVectorD Par) { TVectorD pILC(5); // Return vector // pILC(0) = Par(0) * 1.0e3; // d0 in mm pILC(1) = Par(1); // phi0 is unchanged pILC(2) = -2 * Par(2) * 1.0e-3; // w in mm^-1 pILC(3) = Par(3) * 1.0e3; // z0 in mm pILC(4) = Par(4); // tan(lambda) = cot(theta) // return pILC; } // Covariance conversion to ILC format TMatrixDSym TrkUtil::CovToILC(TMatrixDSym Cov) { TMatrixDSym cILC(5); cILC.Zero(); // // Fill derivative matrix TMatrixD A(5, 5); A.Zero(); // A(0, 0) = 1.0e3; // D-d0 in mm A(1, 1) = 1.0; // phi0-phi0 A(2, 2) = -2.0e-3; // w-C A(3, 3) = 1.0e3; // z0-z0 conversion to mm A(4, 4) = 1.0; // tan(lambda) - cot(theta) // TMatrixDSym Cv = Cov; TMatrixD At(5, 5); At.Transpose(A); Cv.Similarity(At); cILC = Cv; // return cILC; } // // Conversion from meters to mm TVectorD TrkUtil::ParToMm(TVectorD Par) // Parameter conversion { TVectorD Pmm(5); // Return vector // Pmm(0) = Par(0) * 1.0e3; // d0 in mm Pmm(1) = Par(1); // phi0 is unchanged Pmm(2) = Par(2) * 1.0e-3; // C in mm^-1 Pmm(3) = Par(3) * 1.0e3; // z0 in mm Pmm(4) = Par(4); // tan(lambda) = cot(theta) unchanged // return Pmm; } TMatrixDSym TrkUtil::CovToMm(TMatrixDSym Cov) // Covariance conversion { TMatrixDSym Cmm(5); Cmm.Zero(); // // Fill derivative matrix TMatrixD A(5, 5); A.Zero(); // A(0, 0) = 1.0e3; // D-d0 in mm A(1, 1) = 1.0; // phi0-phi0 A(2, 2) = 1.0e-3; // C-C A(3, 3) = 1.0e3; // z0-z0 conversion to mm A(4, 4) = 1.0; // lambda - cot(theta) // TMatrixDSym Cv = Cov; TMatrixD At(5, 5); At.Transpose(A); Cv.Similarity(At); Cmm = Cv; // return Cmm; }