/* This macro shows how to compute jet energy scale. root -l examples/Example4.C'("delphes_output.root", "plots.root")' The output ROOT file contains the pT(MC)/pT(Reco) distributions for various pT(Reco) and |eta| bins. The peak value of such distribution is interpreted as the jet energy correction to be applied for that given pT(Reco), |eta| bin. This can be done by modifying the "ScaleFormula" input parameter to the JetEnergyScale module in the delphes_card_XXX.tcl e.g a smooth function: set ScaleFormula { sqrt(3.0 - 0.1*(abs(eta)))^2 / pt + 1.0) } or a binned function: set ScaleFormula {(abs(eta) > 0.0 && abs(eta) <= 2.5) * (pt > 20.0 && pt <= 50.0) * (1.10) + (abs(eta) > 0.0 && abs(eta) <= 2.5) * (pt > 50.0 && pt <= 100.0) * (1.05) + (abs(eta) > 0.0 && abs(eta) <= 2.5) * (pt > 100.0) * (1.00) + (abs(eta) > 2.5 && abs(eta) <= 5.0) * (pt > 20.0 && pt <= 50.0) * (1.10) + (abs(eta) > 2.5 && abs(eta) <= 5.0) * (pt > 50.0 && pt <= 100.0) * (1.05) + (abs(eta) > 2.5 && abs(eta) <= 5.0) * (pt > 100.0) * (1.00)} Be aware that a binned jet energy scale can produce "steps" in the corrected jet pt distribution ... */ #ifdef __CLING__ R__LOAD_LIBRARY(libDelphes) #include "classes/DelphesClasses.h" #include "external/ExRootAnalysis/ExRootTreeReader.h" #include "external/ExRootAnalysis/ExRootResult.h" #else class ExRootTreeReader; class ExRootResult; #endif //------------------------------------------------------------------------------ struct TestPlots { TH1 *fJetPT; TH1 *fJetRes_Pt_20_50_Eta_0_25; TH1 *fJetRes_Pt_20_50_Eta_25_5; TH1 *fJetRes_Pt_50_100_Eta_0_25; TH1 *fJetRes_Pt_50_100_Eta_25_5; TH1 *fJetRes_Pt_100_200_Eta_0_25; TH1 *fJetRes_Pt_100_200_Eta_25_5; TH1 *fJetRes_Pt_200_500_Eta_0_25; TH1 *fJetRes_Pt_200_500_Eta_25_5; TH1 *fJetRes_Pt_500_inf_Eta_0_25; TH1 *fJetRes_Pt_500_inf_Eta_25_5; }; //------------------------------------------------------------------------------ class ExRootResult; class ExRootTreeReader; //------------------------------------------------------------------------------ void BookHistograms(ExRootResult *result, TestPlots *plots) { TLegend *legend; TPaveText *comment; plots->fJetPT = result->AddHist1D( "jet_pt", "p_{T}^{jet}", "p_{T}^{jet} GeV/c", "number of jets", 100, 0.0, 1000.0); plots->fJetRes_Pt_20_50_Eta_0_25 = result->AddHist1D( "jet_delta_pt_20_50_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 20 < p_{T} < 50 , 0 < | #eta | < 2.5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_20_50_Eta_0_25->SetStats(); plots->fJetRes_Pt_20_50_Eta_25_5 = result->AddHist1D( "jet_delta_pt_20_50_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 20 < p_{T} < 50 , 2.5 < | #eta | < 5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_20_50_Eta_25_5->SetStats(); plots->fJetRes_Pt_50_100_Eta_0_25 = result->AddHist1D( "jet_delta_pt_50_100_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 50 < p_{T} < 100 , 0 < | #eta | < 2.5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_50_100_Eta_0_25->SetStats(); plots->fJetRes_Pt_50_100_Eta_25_5 = result->AddHist1D( "jet_delta_pt_50_100_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 50 < p_{T} < 100 , 2.5 < | #eta | < 5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_50_100_Eta_25_5->SetStats(); plots->fJetRes_Pt_100_200_Eta_0_25 = result->AddHist1D( "jet_delta_pt_100_200_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 100 < p_{T} < 200 , 0 < | #eta | < 2.5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_100_200_Eta_0_25->SetStats(); plots->fJetRes_Pt_100_200_Eta_25_5 = result->AddHist1D( "jet_delta_pt_100_200_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 100 < p_{T} < 200 , 2.5 < | #eta | < 5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_100_200_Eta_25_5->SetStats(); plots->fJetRes_Pt_200_500_Eta_0_25 = result->AddHist1D( "jet_delta_pt_200_500_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 200 < p_{T} < 500 , 0 < | #eta | < 2.5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_200_500_Eta_0_25->SetStats(); plots->fJetRes_Pt_200_500_Eta_25_5 = result->AddHist1D( "jet_delta_pt_200_500_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 200 < p_{T} < 500 , 2.5 < | #eta | < 5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_200_500_Eta_25_5->SetStats(); plots->fJetRes_Pt_500_inf_Eta_0_25 = result->AddHist1D( "jet_delta_pt_500_1000_cen", "p_{T}^{truth,parton}/p_{T}^{jet} , 500 < p_{T} < 1000, 0 < | #eta | < 2.5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_500_inf_Eta_0_25->SetStats(); plots->fJetRes_Pt_500_inf_Eta_25_5 = result->AddHist1D( "jet_delta_pt_500_1000_fwd", "p_{T}^{truth,parton}/p_{T}^{jet} , 500 < p_{T} < 1000, 2.5 < | #eta | < 5 ", "p_{T}^{truth,parton}/p_{T}^{jet}", "number of jets", 100, 0.0, 2.0); plots->fJetRes_Pt_500_inf_Eta_25_5->SetStats(); } //------------------------------------------------------------------------------ void AnalyseEvents(ExRootTreeReader *treeReader, TestPlots *plots) { TClonesArray *branchParticle = treeReader->UseBranch("Particle"); TClonesArray *branchGenJet = treeReader->UseBranch("GenJet"); TClonesArray *branchJet = treeReader->UseBranch("Jet"); Long64_t allEntries = treeReader->GetEntries(); cout << "** Chain contains " << allEntries << " events" << endl; Jet *jet, *genjet; GenParticle *particle; TObject *object; TLorentzVector jetMomentum, genJetMomentum, bestGenJetMomentum; Float_t deltaR; Float_t pt, eta; Long64_t entry; Int_t i, j; // Loop over all events for(entry = 0; entry < allEntries; ++entry) { // Load selected branches with data from specified event treeReader->ReadEntry(entry); if(entry%500 == 0) cout << "Event number: "<< entry <GetEntriesFast(); ++i) { jet = (Jet*) branchJet->At(i); jetMomentum = jet->P4(); plots->fJetPT->Fill(jetMomentum.Pt()); deltaR = 999; // Loop over all hard partons in event for(j = 0; j < branchParticle->GetEntriesFast(); ++j) { particle = (GenParticle*) branchParticle->At(j); genJetMomentum = particle->P4(); // this is simply to avoid warnings from initial state particle // having infite rapidity ... if(genJetMomentum.Px() == 0 && genJetMomentum.Py() == 0) continue; // take the closest parton candidate if(genJetMomentum.DeltaR(jetMomentum) < deltaR) { deltaR = genJetMomentum.DeltaR(jetMomentum); bestGenJetMomentum = genJetMomentum; } } if(deltaR < 0.3) { pt = jetMomentum.Pt(); eta = TMath::Abs(jetMomentum.Eta()); if(pt > 20.0 && pt < 50.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_20_50_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 20.0 && pt < 50.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_20_50_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 50.0 && pt < 100.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_50_100_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 50.0 && pt < 100.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_50_100_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 100.0 && pt < 200.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_100_200_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 100.0 && pt < 200.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_100_200_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 200.0 && pt < 500.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_200_500_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 200.0 && pt < 500.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_200_500_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 500.0 && eta > 0.0 && eta < 2.5) plots -> fJetRes_Pt_500_inf_Eta_0_25->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); if(pt > 500.0 && eta > 2.5 && eta < 5.0) plots -> fJetRes_Pt_500_inf_Eta_25_5->Fill(bestGenJetMomentum.Pt()/jetMomentum.Pt()); } } } } //------------------------------------------------------------------------------ void Example4(const char *inputFile, const char *outputFile) { gSystem->Load("libDelphes"); TChain *chain = new TChain("Delphes"); chain->Add(inputFile); ExRootTreeReader *treeReader = new ExRootTreeReader(chain); ExRootResult *result = new ExRootResult(); TestPlots *plots = new TestPlots; BookHistograms(result, plots); AnalyseEvents(treeReader, plots); result->Write(outputFile); cout << "** Exiting..." << endl; delete plots; delete result; delete treeReader; delete chain; } //------------------------------------------------------------------------------