/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include "TAxis.h" #include "TGeoManager.h" #include "TGeoVolume.h" #include "TGeoMedium.h" #include "TGeoNode.h" #include "TGeoCompositeShape.h" #include "TGeoMatrix.h" #include "TGeoTube.h" #include "TGeoCone.h" #include "TGeoArb8.h" #include "TF2.h" #include "TFormula.h" #include "TH1F.h" #include "TMath.h" #include "TString.h" #include "display/Delphes3DGeometry.h" #include "classes/DelphesClasses.h" #include "external/ExRootAnalysis/ExRootConfReader.h" using namespace std; Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom, bool transp) { //--- the geometry manager geom_ = geom==NULL? gGeoManager : geom; //gGeoManager->DefaultColors(); //--- define some materials TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0); TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7); // placeholder if(transp) { matVacuum->SetTransparency(85); matAl->SetTransparency(85); } //--- define some media TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum); TGeoMedium *Al = new TGeoMedium("Root Material",2, matAl); vacuum_ = Vacuum; tkmed_ = Vacuum; // placeholder calomed_ = Al; // placeholder mudetmed_ = Al; // placeholder // custom parameters contingency_ = 10.; calo_barrel_thickness_ = 50.; calo_endcap_thickness_ = 75.; muonSystem_thickn_ = 10.; // read these parameters from the Delphes Card (with default values) etaAxis_ = NULL; phiAxis_ = NULL; tk_radius_ = 120.; tk_length_ = 150.; tk_etamax_ = 3.0; tk_Bz_ = 1.; muonSystem_radius_ = 200.; } void Delphes3DGeometry::readFile(const char *configFile, const char* ParticlePropagator, const char* TrackingEfficiency, const char* MuonEfficiency, const char* Calorimeters) { ExRootConfReader *confReader = new ExRootConfReader; confReader->ReadFile(configFile); tk_radius_ = confReader->GetDouble(Form("%s::Radius",ParticlePropagator), 1.0)*100.; // tk_radius tk_length_ = confReader->GetDouble(Form("%s::HalfLength",ParticlePropagator), 3.0)*100.; // tk_length tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz TString buffer; const char *it; { TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",TrackingEfficiency),"abs(eta)<3.0"); tkEffFormula.ReplaceAll("pt","x"); tkEffFormula.ReplaceAll("eta","y"); tkEffFormula.ReplaceAll("phi","0."); buffer.Clear(); for(it = tkEffFormula.Data(); *it; ++it) { if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\' ) continue; buffer.Append(*it); } TF2* tkEffFunction = new TF2("tkEff",buffer,0,1000,-10,10); TH1F etaHisto("eta","eta",100,5.,-5.); Double_t pt,eta; for(int i=0;i<1000;++i) { tkEffFunction->GetRandom2(pt,eta); etaHisto.Fill(eta); } Int_t bin = -1; bin = etaHisto.FindFirstBinAbove(0.5); Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.; bin = etaHisto.FindLastBinAbove(0.5); Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.; tk_etamax_ = TMath::Max(fabs(etamin),fabs(etamax)); // tk_etamax delete tkEffFunction; } { muondets_.push_back("muons"); TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",MuonEfficiency),"abs(eta)<2.0"); muonEffFormula.ReplaceAll("pt","x"); muonEffFormula.ReplaceAll("eta","y"); muonEffFormula.ReplaceAll("phi","0."); buffer.Clear(); for(it = muonEffFormula.Data(); *it; ++it) { if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\' ) continue; buffer.Append(*it); } TF2* muEffFunction = new TF2("muEff",buffer,0,1000,-10,10); TH1F etaHisto("eta2","eta2",100,5.,-5.); Double_t pt,eta; for(int i=0;i<1000;++i) { muEffFunction->GetRandom2(pt,eta); etaHisto.Fill(eta); } Int_t bin = -1; bin = etaHisto.FindFirstBinAbove(0.5); Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.; bin = etaHisto.FindLastBinAbove(0.5); Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.; muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin),fabs(etamax)); // muonSystem_etamax delete muEffFunction; } std::string s(Calorimeters); std::replace( s.begin(), s.end(), ',', ' ' ); std::istringstream stream( s ); std::string word; while (stream >> word) calorimeters_.push_back(word); caloBinning_.clear(); // calo binning for(std::vector::const_iterator calo=calorimeters_.begin();calo!=calorimeters_.end(); ++calo) { set< pair > caloBinning; ExRootConfParam paramEtaBins, paramPhiBins; ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins",calo->c_str())); Int_t size = param.GetSize(); for(int i = 0; i < size/2; ++i) { paramEtaBins = param[i*2]; paramPhiBins = param[i*2+1]; assert(paramEtaBins.GetSize()==1); caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(),paramPhiBins.GetSize()-1)); } caloBinning_[*calo] = caloBinning; } set< pair > caloBinning = caloBinning_[*calorimeters_.begin()]; Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo unsigned int ii = 0; for(set< pair >::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet) { etaBins[ii++] = itEtaSet->first; } etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins); phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_+calo_barrel_thickness_)*calorimeters_.size() + muonSystem_thickn_; muonSystem_length_ = tk_length_ + contingency_ + (contingency_+calo_endcap_thickness_)*calorimeters_.size() + muonSystem_thickn_; delete confReader; } TGeoVolume* Delphes3DGeometry::getDetector(bool withTowers) { // compute the envelope Double_t system_radius = tk_radius_+calo_barrel_thickness_+3*contingency_; Double_t system_length = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size()+contingency_; // the detector volume TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length); // build the detector std::pair limits = addTracker(top); Double_t radius = limits.first; Double_t length = limits.second; for(std::vector::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) { limits = addCalorimeter(top,calo->c_str(),radius,length,caloBinning_[*calo]); if (withTowers) { addCaloTowers(top,calo->c_str(),radius,length,caloBinning_[*calo]); } radius = limits.first; length = limits.second; } for(std::vector::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon) { limits = addMuonDets(top, muon->c_str(), radius, length); radius = limits.first; length = limits.second; } // return the result return top; } std::pair Delphes3DGeometry::addTracker(TGeoVolume *top) { // tracker: a cylinder with two cones substracted new TGeoCone("forwardTkAcceptance",(tk_length_/2.+0.05),0.,tk_radius_,(tk_length_)*2.*exp(-tk_etamax_)/(1-exp(-2.*tk_etamax_)),tk_radius_); TGeoTranslation *tr1 = new TGeoTranslation("tkacc1",0., 0., tk_length_/2.); tr1->RegisterYourself(); TGeoRotation *negz = new TGeoRotation("tknegz",0,180,0); negz->RegisterYourself(); TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2",0.,0.,-tk_length_/2.,negz); tr2->RegisterYourself(); TGeoCompositeShape* tracker_cs = new TGeoCompositeShape("tracker_cs","forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2"); TGeoVolume *tracker = new TGeoVolume("tracker",tracker_cs,tkmed_); tracker->SetLineColor(kYellow); top->AddNode(tracker,1); return std::make_pair(tk_radius_,tk_length_); } std::pair Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char* name, Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair >& caloBinning) { // parameters derived from the inputs Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first),fabs(caloBinning.rbegin()->first)); Double_t calo_barrel_innerRadius = innerBarrelRadius+contingency_; Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_; Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength)); Double_t calo_endcap_innerRadius1 = innerBarrelLength*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax)); Double_t calo_endcap_innerRadius2 = (innerBarrelLength+calo_endcap_thickness_)*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax)); Double_t calo_endcap_outerRadius1 = innerBarrelRadius; Double_t calo_endcap_outerRadius2 = innerBarrelRadius+calo_barrel_thickness_; Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_); Double_t calo_endcap_diskThickness = TMath::Max(0.,calo_endcap_thickness_-calo_endcap_coneThickness); // calorimeters: tube truncated in eta + cones new TGeoTube(Form("%s_barrel_cylinder",name),calo_barrel_innerRadius,calo_barrel_innerRadius+calo_barrel_thickness_,calo_barrel_length); new TGeoCone(Form("%s_endcap_cone",name),calo_endcap_coneThickness/2.,calo_endcap_innerRadius1,calo_endcap_outerRadius1,calo_endcap_innerRadius2,calo_endcap_outerRadius2); new TGeoTube(Form("%s_endcap_disk",name),calo_endcap_innerRadius2,tk_radius_+calo_barrel_thickness_,calo_endcap_diskThickness/2.); TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1",name),0., 0., (calo_endcap_coneThickness+calo_endcap_diskThickness)/2.); tr1->RegisterYourself(); TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs",name),Form("%s_endcap_cone+%s_endcap_disk:%s_tr1",name,name,name)); TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.); trc1->RegisterYourself(); TGeoRotation *negz = new TGeoRotation(Form("%s_negz",name),0,180,0); TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.),negz); trc2->RegisterYourself(); TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.+contingency_); trc1c->RegisterYourself(); TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.)-contingency_,negz); trc2c->RegisterYourself(); TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap",name),calo_endcap_cs,calomed_); TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs",name), Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position",name,name,name,name,name)); TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel",name),calo_barrel_cs,calomed_); calo_endcap->SetLineColor(kViolet); calo_endcap->SetFillColor(kViolet); calo_barrel->SetLineColor(kRed); top->AddNode(calo_endcap,1,trc1c); top->AddNode(calo_endcap,2,trc2c); top->AddNode(calo_barrel,1); return std::make_pair(calo_barrel_innerRadius+calo_barrel_thickness_,innerBarrelLength+calo_endcap_thickness_+contingency_); } std::pair Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char* name, Double_t innerBarrelRadius, Double_t innerBarrelLength) { // muon system: tube + disks Double_t muonSystem_radius = innerBarrelRadius + contingency_; Double_t muonSystem_length = innerBarrelLength + contingency_; Double_t muonSystem_rmin = muonSystem_length*2.*exp(-muonSystem_etamax_[name])/(1-exp(-2.*muonSystem_etamax_[name])); TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel",name),mudetmed_,muonSystem_radius,muonSystem_radius+muonSystem_thickn_,muonSystem_length); muon_barrel->SetLineColor(kBlue); top->AddNode(muon_barrel,1); TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap",name),mudetmed_,muonSystem_rmin,muonSystem_radius+muonSystem_thickn_,muonSystem_thickn_/2.); muon_endcap->SetLineColor(kBlue); TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position",name),0.,0.,muonSystem_length); trm1->RegisterYourself(); TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position",name),0.,0.,-muonSystem_length); trm1->RegisterYourself(); top->AddNode(muon_endcap,1,trm1); top->AddNode(muon_endcap,2,trm2); return std::make_pair(muonSystem_radius,muonSystem_length); } void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char* name, Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair >& caloBinning) { TGeoVolume* calo_endcap = top->GetNode(Form("%s_endcap_1",name))->GetVolume(); TGeoVolume* calo_barrel = top->GetNode(Form("%s_barrel_1",name))->GetVolume(); Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength)); Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_); // calo towers in the barrel Double_t vertices[16] = {0.,0.,0.,0.,0.,0.,0.,0.}; // summit of the pyramid Double_t R = tk_radius_ + contingency_+(contingency_+calo_barrel_thickness_)*calorimeters_.size(); // radius of the muons system = height of the pyramid Int_t nEtaBins = caloBinning.size(); // this rotation is to make the tower point "up" TGeoRotation* initTowerRot = new TGeoRotation(Form("%s_initTowerRot",name),0.,90.,0.); TGeoCombiTrans* initTower = new TGeoCombiTrans(Form("%s_initTower",name),0.,-R/2.,0.,initTowerRot); initTower->RegisterYourself(); // eta bins... we build one pyramid per eta slice and then translate it nphi times. // phi bins represented by rotations around z Double_t *y = new Double_t[nEtaBins]; Double_t *dx = new Double_t[nEtaBins]; Int_t *nphi = new Int_t[nEtaBins]; Int_t etaslice = 0; std::map, TGeoRotation*> phirotations; for(set< pair >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) { if(abs(bin->first)>calo_endcap_etamin) continue; // only in the barrel nphi[etaslice] = bin->second; y[etaslice] = 0.5*R*(1-exp(-2*bin->first))/exp(-bin->first); Double_t phiRotationAngle = 360./nphi[etaslice]; dx[etaslice] = R*tan(TMath::Pi()*phiRotationAngle/360.); for(int phislice=0;phisliceRegisterYourself(); } ++etaslice; } nEtaBins = etaslice; for(int i=0;iSetLineColor(kRed); for(int j=0;jAddNode(finaltower,j,phirotations[make_pair(i,j)]); } } delete[] y; delete[] dx; delete[] nphi; //the towers in the forward region R = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size(); // Z of the muons system = height of the pyramid nEtaBins = caloBinning.size(); // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place) TGeoTranslation* towerdz = new TGeoTranslation(Form("%s_towerdz",name),0.,0.,R/2.-(innerBarrelLength+calo_endcap_coneThickness/2.)); towerdz->RegisterYourself(); // eta bins... we build one pyramid per eta slice and then translate it nphi times. Double_t *r = new Double_t[nEtaBins]; nphi = new Int_t[nEtaBins]; etaslice = 0; phirotations.clear(); for(set< pair >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) { if(bin->firstfirst)/(1-exp(-2*bin->first)); nphi[etaslice] = bin->second; Double_t phiRotationAngle = 360./nphi[etaslice]; for(int phislice=0;phisliceRegisterYourself(); } ++etaslice; } nEtaBins = etaslice; for(int i=0;iSetLineColor(kViolet); for(int j=0;jAddNode(finalfwdtower,j,phirotations[make_pair(i,j)]); } } delete[] r; delete[] nphi; }