/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include "TAxis.h" #include "TF2.h" #include "TFormula.h" #include "TGeoArb8.h" #include "TGeoCompositeShape.h" #include "TGeoCone.h" #include "TGeoManager.h" #include "TGeoMatrix.h" #include "TGeoMedium.h" #include "TGeoNode.h" #include "TGeoTube.h" #include "TGeoVolume.h" #include "TH1F.h" #include "TMath.h" #include "TString.h" #include "display/Delphes3DGeometry.h" #include "classes/DelphesClasses.h" #include "external/ExRootAnalysis/ExRootConfReader.h" using namespace std; Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom, bool transp) { //--- the geometry manager geom_ = geom == NULL ? gGeoManager : geom; //gGeoManager->DefaultColors(); //--- define some materials TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0, 0, 0); TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98, 13, 2.7); // placeholder if(transp) { matVacuum->SetTransparency(85); matAl->SetTransparency(85); } //--- define some media TGeoMedium *Vacuum = new TGeoMedium("Vacuum", 1, matVacuum); TGeoMedium *Al = new TGeoMedium("Root Material", 2, matAl); vacuum_ = Vacuum; tkmed_ = Vacuum; // placeholder calomed_ = Al; // placeholder mudetmed_ = Al; // placeholder // custom parameters contingency_ = 10.; calo_barrel_thickness_ = 50.; calo_endcap_thickness_ = 75.; muonSystem_thickn_ = 10.; // read these parameters from the Delphes Card (with default values) etaAxis_ = NULL; phiAxis_ = NULL; tk_radius_ = 120.; tk_length_ = 150.; tk_etamax_ = 3.0; tk_Bz_ = 1.; muonSystem_radius_ = 200.; } void Delphes3DGeometry::readFile(const char *configFile, const char *ParticlePropagator, const char *TrackingEfficiency, const char *MuonEfficiency, const char *Calorimeters) { ExRootConfReader *confReader = new ExRootConfReader; confReader->ReadFile(configFile); tk_radius_ = confReader->GetDouble(Form("%s::Radius", ParticlePropagator), 1.0) * 100.; // tk_radius tk_length_ = confReader->GetDouble(Form("%s::HalfLength", ParticlePropagator), 3.0) * 100.; // tk_length tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz TString buffer; const char *it; { TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula", TrackingEfficiency), "abs(eta)<3.0"); tkEffFormula.ReplaceAll("pt", "x"); tkEffFormula.ReplaceAll("eta", "y"); tkEffFormula.ReplaceAll("phi", "0."); buffer.Clear(); for(it = tkEffFormula.Data(); *it; ++it) { if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\') continue; buffer.Append(*it); } TF2 *tkEffFunction = new TF2("tkEff", buffer, 0, 1000, -10, 10); TH1F etaHisto("eta", "eta", 100, 5., -5.); Double_t pt, eta; for(int i = 0; i < 1000; ++i) { tkEffFunction->GetRandom2(pt, eta); etaHisto.Fill(eta); } Int_t bin = -1; bin = etaHisto.FindFirstBinAbove(0.5); Double_t etamin = (bin > -1) ? etaHisto.GetBinLowEdge(bin) : -10.; bin = etaHisto.FindLastBinAbove(0.5); Double_t etamax = (bin > -1) ? etaHisto.GetBinLowEdge(bin + 1) : -10.; tk_etamax_ = TMath::Max(fabs(etamin), fabs(etamax)); // tk_etamax delete tkEffFunction; } { muondets_.push_back("muons"); TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula", MuonEfficiency), "abs(eta)<2.0"); muonEffFormula.ReplaceAll("pt", "x"); muonEffFormula.ReplaceAll("eta", "y"); muonEffFormula.ReplaceAll("phi", "0."); buffer.Clear(); for(it = muonEffFormula.Data(); *it; ++it) { if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\') continue; buffer.Append(*it); } TF2 *muEffFunction = new TF2("muEff", buffer, 0, 1000, -10, 10); TH1F etaHisto("eta2", "eta2", 100, 5., -5.); Double_t pt, eta; for(int i = 0; i < 1000; ++i) { muEffFunction->GetRandom2(pt, eta); etaHisto.Fill(eta); } Int_t bin = -1; bin = etaHisto.FindFirstBinAbove(0.5); Double_t etamin = (bin > -1) ? etaHisto.GetBinLowEdge(bin) : -10.; bin = etaHisto.FindLastBinAbove(0.5); Double_t etamax = (bin > -1) ? etaHisto.GetBinLowEdge(bin + 1) : -10.; muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin), fabs(etamax)); // muonSystem_etamax delete muEffFunction; } std::string s(Calorimeters); std::replace(s.begin(), s.end(), ',', ' '); std::istringstream stream(s); std::string word; while(stream >> word) calorimeters_.push_back(word); caloBinning_.clear(); // calo binning for(std::vector::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) { set > caloBinning; ExRootConfParam paramEtaBins, paramPhiBins; ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins", calo->c_str())); Int_t size = param.GetSize(); for(int i = 0; i < size / 2; ++i) { paramEtaBins = param[i * 2]; paramPhiBins = param[i * 2 + 1]; assert(paramEtaBins.GetSize() == 1); caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(), paramPhiBins.GetSize() - 1)); } caloBinning_[*calo] = caloBinning; } set > caloBinning = caloBinning_[*calorimeters_.begin()]; Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo unsigned int ii = 0; for(set >::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet) { etaBins[ii++] = itEtaSet->first; } etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins); phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_ + calo_barrel_thickness_) * calorimeters_.size() + muonSystem_thickn_; muonSystem_length_ = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size() + muonSystem_thickn_; delete confReader; } TGeoVolume *Delphes3DGeometry::getDetector(bool withTowers) { // compute the envelope Double_t system_radius = tk_radius_ + calo_barrel_thickness_ + 3 * contingency_; Double_t system_length = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size() + contingency_; // the detector volume TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length); // build the detector std::pair limits = addTracker(top); Double_t radius = limits.first; Double_t length = limits.second; for(std::vector::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) { limits = addCalorimeter(top, calo->c_str(), radius, length, caloBinning_[*calo]); if(withTowers) { addCaloTowers(top, calo->c_str(), radius, length, caloBinning_[*calo]); } radius = limits.first; length = limits.second; } for(std::vector::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon) { limits = addMuonDets(top, muon->c_str(), radius, length); radius = limits.first; length = limits.second; } // return the result return top; } std::pair Delphes3DGeometry::addTracker(TGeoVolume *top) { // tracker: a cylinder with two cones substracted new TGeoCone("forwardTkAcceptance", (tk_length_ / 2. + 0.05), 0., tk_radius_, (tk_length_)*2. * exp(-tk_etamax_) / (1 - exp(-2. * tk_etamax_)), tk_radius_); TGeoTranslation *tr1 = new TGeoTranslation("tkacc1", 0., 0., tk_length_ / 2.); tr1->RegisterYourself(); TGeoRotation *negz = new TGeoRotation("tknegz", 0, 180, 0); negz->RegisterYourself(); TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2", 0., 0., -tk_length_ / 2., negz); tr2->RegisterYourself(); TGeoCompositeShape *tracker_cs = new TGeoCompositeShape("tracker_cs", "forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2"); TGeoVolume *tracker = new TGeoVolume("tracker", tracker_cs, tkmed_); tracker->SetLineColor(kYellow); top->AddNode(tracker, 1); return std::make_pair(tk_radius_, tk_length_); } std::pair Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char *name, Double_t innerBarrelRadius, Double_t innerBarrelLength, set > &caloBinning) { // parameters derived from the inputs Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first), fabs(caloBinning.rbegin()->first)); Double_t calo_barrel_innerRadius = innerBarrelRadius + contingency_; Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_; Double_t calo_endcap_etamin = -log(innerBarrelRadius / (2 * innerBarrelLength)); Double_t calo_endcap_innerRadius1 = innerBarrelLength * 2. * exp(-calo_endcap_etamax) / (1 - exp(-2. * calo_endcap_etamax)); Double_t calo_endcap_innerRadius2 = (innerBarrelLength + calo_endcap_thickness_) * 2. * exp(-calo_endcap_etamax) / (1 - exp(-2. * calo_endcap_etamax)); Double_t calo_endcap_outerRadius1 = innerBarrelRadius; Double_t calo_endcap_outerRadius2 = innerBarrelRadius + calo_barrel_thickness_; Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1 - exp(-2. * calo_endcap_etamin)) / (2. * exp(-calo_endcap_etamin)), calo_endcap_thickness_); Double_t calo_endcap_diskThickness = TMath::Max(0., calo_endcap_thickness_ - calo_endcap_coneThickness); // calorimeters: tube truncated in eta + cones new TGeoTube(Form("%s_barrel_cylinder", name), calo_barrel_innerRadius, calo_barrel_innerRadius + calo_barrel_thickness_, calo_barrel_length); new TGeoCone(Form("%s_endcap_cone", name), calo_endcap_coneThickness / 2., calo_endcap_innerRadius1, calo_endcap_outerRadius1, calo_endcap_innerRadius2, calo_endcap_outerRadius2); new TGeoTube(Form("%s_endcap_disk", name), calo_endcap_innerRadius2, tk_radius_ + calo_barrel_thickness_, calo_endcap_diskThickness / 2.); TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1", name), 0., 0., (calo_endcap_coneThickness + calo_endcap_diskThickness) / 2.); tr1->RegisterYourself(); TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs", name), Form("%s_endcap_cone+%s_endcap_disk:%s_tr1", name, name, name)); TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position", name), 0., 0., innerBarrelLength + calo_endcap_coneThickness / 2.); trc1->RegisterYourself(); TGeoRotation *negz = new TGeoRotation(Form("%s_negz", name), 0, 180, 0); TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position", name), 0., 0., -(innerBarrelLength + calo_endcap_coneThickness / 2.), negz); trc2->RegisterYourself(); TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont", name), 0., 0., innerBarrelLength + calo_endcap_coneThickness / 2. + contingency_); trc1c->RegisterYourself(); TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont", name), 0., 0., -(innerBarrelLength + calo_endcap_coneThickness / 2.) - contingency_, negz); trc2c->RegisterYourself(); TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap", name), calo_endcap_cs, calomed_); TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs", name), Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position", name, name, name, name, name)); TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel", name), calo_barrel_cs, calomed_); calo_endcap->SetLineColor(kViolet); calo_endcap->SetFillColor(kViolet); calo_barrel->SetLineColor(kRed); top->AddNode(calo_endcap, 1, trc1c); top->AddNode(calo_endcap, 2, trc2c); top->AddNode(calo_barrel, 1); return std::make_pair(calo_barrel_innerRadius + calo_barrel_thickness_, innerBarrelLength + calo_endcap_thickness_ + contingency_); } std::pair Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char *name, Double_t innerBarrelRadius, Double_t innerBarrelLength) { // muon system: tube + disks Double_t muonSystem_radius = innerBarrelRadius + contingency_; Double_t muonSystem_length = innerBarrelLength + contingency_; Double_t muonSystem_rmin = muonSystem_length * 2. * exp(-muonSystem_etamax_[name]) / (1 - exp(-2. * muonSystem_etamax_[name])); TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel", name), mudetmed_, muonSystem_radius, muonSystem_radius + muonSystem_thickn_, muonSystem_length); muon_barrel->SetLineColor(kBlue); top->AddNode(muon_barrel, 1); TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap", name), mudetmed_, muonSystem_rmin, muonSystem_radius + muonSystem_thickn_, muonSystem_thickn_ / 2.); muon_endcap->SetLineColor(kBlue); TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position", name), 0., 0., muonSystem_length); trm1->RegisterYourself(); TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position", name), 0., 0., -muonSystem_length); trm1->RegisterYourself(); top->AddNode(muon_endcap, 1, trm1); top->AddNode(muon_endcap, 2, trm2); return std::make_pair(muonSystem_radius, muonSystem_length); } void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char *name, Double_t innerBarrelRadius, Double_t innerBarrelLength, set > &caloBinning) { TGeoVolume *calo_endcap = top->GetNode(Form("%s_endcap_1", name))->GetVolume(); TGeoVolume *calo_barrel = top->GetNode(Form("%s_barrel_1", name))->GetVolume(); Double_t calo_endcap_etamin = -log(innerBarrelRadius / (2 * innerBarrelLength)); Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1 - exp(-2. * calo_endcap_etamin)) / (2. * exp(-calo_endcap_etamin)), calo_endcap_thickness_); // calo towers in the barrel Double_t vertices[16] = {0., 0., 0., 0., 0., 0., 0., 0.}; // summit of the pyramid Double_t R = tk_radius_ + contingency_ + (contingency_ + calo_barrel_thickness_) * calorimeters_.size(); // radius of the muons system = height of the pyramid Int_t nEtaBins = caloBinning.size(); // this rotation is to make the tower point "up" TGeoRotation *initTowerRot = new TGeoRotation(Form("%s_initTowerRot", name), 0., 90., 0.); TGeoCombiTrans *initTower = new TGeoCombiTrans(Form("%s_initTower", name), 0., -R / 2., 0., initTowerRot); initTower->RegisterYourself(); // eta bins... we build one pyramid per eta slice and then translate it nphi times. // phi bins represented by rotations around z Double_t *y = new Double_t[nEtaBins]; Double_t *dx = new Double_t[nEtaBins]; Int_t *nphi = new Int_t[nEtaBins]; Int_t etaslice = 0; std::map, TGeoRotation *> phirotations; for(set >::const_iterator bin = caloBinning.begin(); bin != caloBinning.end(); ++bin) { if(abs(bin->first) > calo_endcap_etamin) continue; // only in the barrel nphi[etaslice] = bin->second; y[etaslice] = 0.5 * R * (1 - exp(-2 * bin->first)) / exp(-bin->first); Double_t phiRotationAngle = 360. / nphi[etaslice]; dx[etaslice] = R * tan(TMath::Pi() * phiRotationAngle / 360.); for(int phislice = 0; phislice < nphi[etaslice]; ++phislice) { phirotations[make_pair(etaslice, phislice)] = new TGeoRotation(Form("%s_phi%d_%d", name, etaslice, phislice), phiRotationAngle * phislice, 0., 0.); phirotations[make_pair(etaslice, phislice)]->RegisterYourself(); } ++etaslice; } nEtaBins = etaslice; for(int i = 0; i < nEtaBins - 1; ++i) { // loop on the eta slices vertices[8] = -dx[i]; vertices[9] = y[i]; vertices[10] = -dx[i]; vertices[11] = y[i + 1]; vertices[12] = dx[i]; vertices[13] = y[i + 1]; vertices[14] = dx[i]; vertices[15] = y[i]; new TGeoArb8(Form("%s_tower%d", name, i), R / 2., vertices); // tower in the proper eta slice, at phi=0 // intersection between the tower and the calo_barrel TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("%s_ftower%d_cs", name, i), Form("%s_tower%d:%s_initTower*%s_barrel_cs", name, i, name, name)); TGeoVolume *finaltower = new TGeoVolume(Form("%s_ftower%d", name, i), finaltower_cs, calomed_); finaltower->SetLineColor(kRed); for(int j = 0; j < nphi[i]; ++j) { // loop on the phi slices calo_barrel->AddNode(finaltower, j, phirotations[make_pair(i, j)]); } } delete[] y; delete[] dx; delete[] nphi; //the towers in the forward region R = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size(); // Z of the muons system = height of the pyramid nEtaBins = caloBinning.size(); // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place) TGeoTranslation *towerdz = new TGeoTranslation(Form("%s_towerdz", name), 0., 0., R / 2. - (innerBarrelLength + calo_endcap_coneThickness / 2.)); towerdz->RegisterYourself(); // eta bins... we build one pyramid per eta slice and then translate it nphi times. Double_t *r = new Double_t[nEtaBins]; nphi = new Int_t[nEtaBins]; etaslice = 0; phirotations.clear(); for(set >::const_iterator bin = caloBinning.begin(); bin != caloBinning.end(); ++bin) { if(bin->first < calo_endcap_etamin) continue; // only in the + endcap r[etaslice] = R * 2 * exp(-bin->first) / (1 - exp(-2 * bin->first)); nphi[etaslice] = bin->second; Double_t phiRotationAngle = 360. / nphi[etaslice]; for(int phislice = 0; phislice < nphi[etaslice]; ++phislice) { phirotations[make_pair(etaslice, phislice)] = new TGeoRotation(Form("%s_forward_phi%d_%d", name, etaslice, phislice), phiRotationAngle * phislice, 0., 0.); phirotations[make_pair(etaslice, phislice)]->RegisterYourself(); } ++etaslice; } nEtaBins = etaslice; for(int i = 0; i < nEtaBins - 1; ++i) { // loop on the eta slices vertices[8] = -r[i + 1] * sin(TMath::Pi() / nphi[i]); vertices[9] = r[i + 1] * cos(TMath::Pi() / nphi[i]); vertices[10] = -r[i] * sin(TMath::Pi() / nphi[i]); vertices[11] = r[i] * cos(TMath::Pi() / nphi[i]); vertices[12] = r[i] * sin(TMath::Pi() / nphi[i]); vertices[13] = r[i] * cos(TMath::Pi() / nphi[i]); vertices[14] = r[i + 1] * sin(TMath::Pi() / nphi[i]); vertices[15] = r[i + 1] * cos(TMath::Pi() / nphi[i]); new TGeoArb8(Form("%sfwdtower%d", name, i), R / 2., vertices); // tower in the proper eta slice, at phi=0 // intersection between the tower and the calo_endcap TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("%sffwdtower%d_cs", name, i), Form("%sfwdtower%d:%s_towerdz*%s_endcap_cs", name, i, name, name)); TGeoVolume *finalfwdtower = new TGeoVolume(Form("%sffwdtower%d", name, i), finalfwdtower_cs, calomed_); finalfwdtower->SetLineColor(kViolet); for(int j = 0; j < nphi[i]; ++j) { // loop on the phi slices calo_endcap->AddNode(finalfwdtower, j, phirotations[make_pair(i, j)]); } } delete[] r; delete[] nphi; }