/* * Delphes: a framework for fast simulation of a generic collider experiment * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef DelphesClasses_h #define DelphesClasses_h /** * * Definition of classes to be stored in the root tree. * Function CompareXYZ sorts objects by the variable XYZ that MUST be * present in the data members of the root tree class of the branch. * * \author P. Demin - UCL, Louvain-la-Neuve * */ // Dependencies (#includes) #include "TRef.h" #include "TObject.h" #include "TRefArray.h" #include "TLorentzVector.h" #include "classes/SortableObject.h" class DelphesFactory; //--------------------------------------------------------------------------- class Event: public TObject { public: Long64_t Number; // event number Float_t ReadTime; Float_t ProcTime; ClassDef(Event, 1) }; //--------------------------------------------------------------------------- class LHCOEvent: public Event { public: Int_t Trigger; // trigger word ClassDef(LHCOEvent, 1) }; //--------------------------------------------------------------------------- class LHEFEvent: public Event { public: Int_t ProcessID; // subprocess code for the event | hepup.IDPRUP Float_t Weight; // weight for the event | hepup.XWGTUP Float_t ScalePDF; // scale in GeV used in the calculation of the PDFs in the event | hepup.SCALUP Float_t AlphaQED; // value of the QED coupling used in the event | hepup.AQEDUP Float_t AlphaQCD; // value of the QCD coupling used in the event | hepup.AQCDUP ClassDef(LHEFEvent, 2) }; //--------------------------------------------------------------------------- class LHEFWeight: public TObject { public: Int_t ID; // weight ID Float_t Weight; // weight value ClassDef(LHEFWeight, 1) }; //--------------------------------------------------------------------------- class HepMCEvent: public Event { public: Int_t ProcessID; // unique signal process id | signal_process_id() Int_t MPI; // number of multi parton interactions | mpi () Float_t Weight; // weight for the event Float_t Scale; // energy scale, see hep-ph/0109068 | event_scale() Float_t AlphaQED; // QED coupling, see hep-ph/0109068 | alphaQED() Float_t AlphaQCD; // QCD coupling, see hep-ph/0109068 | alphaQCD() Int_t ID1; // flavour code of first parton | pdf_info()->id1() Int_t ID2; // flavour code of second parton | pdf_info()->id2() Float_t X1; // fraction of beam momentum carried by first parton ("beam side") | pdf_info()->x1() Float_t X2; // fraction of beam momentum carried by second parton ("target side") | pdf_info()->x2() Float_t ScalePDF; // Q-scale used in evaluation of PDF's (in GeV) | pdf_info()->scalePDF() Float_t PDF1; // PDF (id1, x1, Q) | pdf_info()->pdf1() Float_t PDF2; // PDF (id2, x2, Q) | pdf_info()->pdf2() ClassDef(HepMCEvent, 2) }; //--------------------------------------------------------------------------- class GenParticle: public SortableObject { public: Int_t PID; // particle HEP ID number | hepevt.idhep[number] Int_t Status; // particle status | hepevt.isthep[number] Int_t IsPU; // 0 or 1 for particles from pile-up interactions Int_t M1; // particle 1st mother | hepevt.jmohep[number][0] - 1 Int_t M2; // particle 2nd mother | hepevt.jmohep[number][1] - 1 Int_t D1; // particle 1st daughter | hepevt.jdahep[number][0] - 1 Int_t D2; // particle last daughter | hepevt.jdahep[number][1] - 1 Int_t Charge; // particle charge Float_t Mass; // particle mass Float_t E; // particle energy | hepevt.phep[number][3] Float_t Px; // particle momentum vector (x component) | hepevt.phep[number][0] Float_t Py; // particle momentum vector (y component) | hepevt.phep[number][1] Float_t Pz; // particle momentum vector (z component) | hepevt.phep[number][2] Float_t PT; // particle transverse momentum Float_t Eta; // particle pseudorapidity Float_t Phi; // particle azimuthal angle Float_t Rapidity; // particle rapidity Float_t T; // particle vertex position (t component) | hepevt.vhep[number][3] Float_t X; // particle vertex position (x component) | hepevt.vhep[number][0] Float_t Y; // particle vertex position (y component) | hepevt.vhep[number][1] Float_t Z; // particle vertex position (z component) | hepevt.vhep[number][2] static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } TLorentzVector P4() const; ClassDef(GenParticle, 1) }; //--------------------------------------------------------------------------- class Vertex: public TObject { public: Float_t T; // vertex position (t component) Float_t X; // vertex position (x component) Float_t Y; // vertex position (y component) Float_t Z; // vertex position (z component) ClassDef(Vertex, 1) }; //--------------------------------------------------------------------------- class MissingET: public TObject { public: Float_t MET; // mising transverse energy Float_t Eta; // mising energy pseudorapidity Float_t Phi; // mising energy azimuthal angle TLorentzVector P4() const; ClassDef(MissingET, 1) }; //--------------------------------------------------------------------------- class ScalarHT: public TObject { public: Float_t HT; // scalar sum of transverse momenta ClassDef(ScalarHT, 1) }; //--------------------------------------------------------------------------- class Rho: public TObject { public: Float_t Rho; // rho energy density Float_t Edges[2]; // pseudorapidity range edges ClassDef(Rho, 1) }; //--------------------------------------------------------------------------- class Weight: public TObject { public: Float_t Weight; // weight for the event ClassDef(Weight, 1) }; //--------------------------------------------------------------------------- class Photon: public SortableObject { public: Float_t PT; // photon transverse momentum Float_t Eta; // photon pseudorapidity Float_t Phi; // photon azimuthal angle Float_t E; // photon energy Float_t T; //particle arrival time of flight Float_t EhadOverEem; // ratio of the hadronic versus electromagnetic energy deposited in the calorimeter TRefArray Particles; // references to generated particles // Isolation variables Float_t IsolationVar; Float_t IsolationVarRhoCorr; Float_t SumPtCharged; Float_t SumPtNeutral; Float_t SumPtChargedPU; Float_t SumPt; static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } TLorentzVector P4() const; ClassDef(Photon, 2) }; //--------------------------------------------------------------------------- class Electron: public SortableObject { public: Float_t PT; // electron transverse momentum Float_t Eta; // electron pseudorapidity Float_t Phi; // electron azimuthal angle Float_t T; //particle arrival time of flight Int_t Charge; // electron charge Float_t EhadOverEem; // ratio of the hadronic versus electromagnetic energy deposited in the calorimeter TRef Particle; // reference to generated particle // Isolation variables Float_t IsolationVar; Float_t IsolationVarRhoCorr; Float_t SumPtCharged; Float_t SumPtNeutral; Float_t SumPtChargedPU; Float_t SumPt; static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } TLorentzVector P4() const; ClassDef(Electron, 2) }; //--------------------------------------------------------------------------- class Muon: public SortableObject { public: Float_t PT; // muon transverse momentum Float_t Eta; // muon pseudorapidity Float_t Phi; // muon azimuthal angle Float_t T; //particle arrival time of flight Int_t Charge; // muon charge TRef Particle; // reference to generated particle // Isolation variables Float_t IsolationVar; Float_t IsolationVarRhoCorr; Float_t SumPtCharged; Float_t SumPtNeutral; Float_t SumPtChargedPU; Float_t SumPt; static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } TLorentzVector P4() const; ClassDef(Muon, 2) }; //--------------------------------------------------------------------------- class Jet: public SortableObject { public: Float_t PT; // jet transverse momentum Float_t Eta; // jet pseudorapidity Float_t Phi; // jet azimuthal angle Float_t T; //particle arrival time of flight Float_t Mass; // jet invariant mass Float_t DeltaEta; // jet radius in pseudorapidity Float_t DeltaPhi; // jet radius in azimuthal angle UInt_t BTag; // 0 or 1 for a jet that has been tagged as containing a heavy quark UInt_t BTagAlgo; UInt_t BTagDefault; UInt_t BTagPhysics; UInt_t BTagNearest2; UInt_t BTagNearest3; UInt_t BTagHeaviest; UInt_t BTagHighestPt; UInt_t FlavorAlgo; UInt_t FlavorDefault; UInt_t FlavorPhysics; UInt_t FlavorNearest2; UInt_t FlavorNearest3; UInt_t FlavorHeaviest; UInt_t FlavorHighestPt; UInt_t TauTag; // 0 or 1 for a jet that has been tagged as a tau Int_t Charge; // tau charge Float_t EhadOverEem; // ratio of the hadronic versus electromagnetic energy deposited in the calorimeter Int_t NCharged; // number of charged constituents Int_t NNeutrals; // number of neutral constituents Float_t Beta; // (sum pt of charged pile-up constituents)/(sum pt of charged constituents) Float_t BetaStar; // (sum pt of charged constituents coming from hard interaction)/(sum pt of charged constituents) Float_t MeanSqDeltaR; // average distance (squared) between constituent and jet weighted by pt (squared) of constituent Float_t PTD; // average pt between constituent and jet weighted by pt of constituent Float_t FracPt[5]; // (sum pt of constituents within a ring 0.1*i < DeltaR < 0.1*(i+1))/(sum pt of constituents) Float_t Tau[5]; // N-subjettiness TLorentzVector TrimmedP4[5]; // first entry (i = 0) is the total Trimmed Jet 4-momenta and from i = 1 to 4 are the trimmed subjets 4-momenta TLorentzVector PrunedP4[5]; // first entry (i = 0) is the total Pruned Jet 4-momenta and from i = 1 to 4 are the pruned subjets 4-momenta TLorentzVector SoftDroppedP4[5]; // first entry (i = 0) is the total SoftDropped Jet 4-momenta and from i = 1 to 4 are the pruned subjets 4-momenta Int_t NSubJetsTrimmed; // number of subjets trimmed Int_t NSubJetsPruned; // number of subjets pruned Int_t NSubJetsSoftDropped; // number of subjets soft-dropped TRefArray Constituents; // references to constituents TRefArray Particles; // references to generated particles static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } TLorentzVector P4() const; TLorentzVector Area; ClassDef(Jet, 3) }; //--------------------------------------------------------------------------- class Track: public SortableObject { public: Int_t PID; // HEP ID number Int_t Charge; // track charge Float_t PT; // track transverse momentum Float_t Eta; // track pseudorapidity Float_t Phi; // track azimuthal angle Float_t EtaOuter; // track pseudorapidity at the tracker edge Float_t PhiOuter; // track azimuthal angle at the tracker edge Float_t X; // track vertex position (x component) Float_t Y; // track vertex position (y component) Float_t Z; // track vertex position (z component) Float_t T; // track vertex position (z component) Float_t XOuter; // track position (x component) at the tracker edge Float_t YOuter; // track position (y component) at the tracker edge Float_t ZOuter; // track position (z component) at the tracker edge Float_t TOuter; // track position (z component) at the tracker edge Float_t Dxy; // track signed transverse impact parameter Float_t SDxy; // signed error on the track signed transverse impact parameter Float_t Xd; // X coordinate of point of closest approach to vertex Float_t Yd; // Y coordinate of point of closest approach to vertex Float_t Zd; // Z coordinate of point of closest approach to vertex TRef Particle; // reference to generated particle static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } TLorentzVector P4() const; ClassDef(Track, 2) }; //--------------------------------------------------------------------------- class Tower: public SortableObject { public: Float_t ET; // calorimeter tower transverse energy Float_t Eta; // calorimeter tower pseudorapidity Float_t Phi; // calorimeter tower azimuthal angle Float_t E; // calorimeter tower energy Float_t T; // ecal deposit time, averaged by sqrt(EM energy) over all particles, not smeared Int_t Ntimes; // number of hits contributing to time measurement Float_t Eem; // calorimeter tower electromagnetic energy Float_t Ehad; // calorimeter tower hadronic energy Float_t Edges[4]; // calorimeter tower edges TRefArray Particles; // references to generated particles static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } TLorentzVector P4() const; ClassDef(Tower, 1) }; //--------------------------------------------------------------------------- class HectorHit: public SortableObject { public: Float_t E; // reconstructed energy [GeV] Float_t Tx; // angle of the momentum in the horizontal (x,z) plane [urad] Float_t Ty; // angle of the momentum in the verical (y,z) plane [urad] Float_t T; // time of flight to the detector [s] Float_t X; // horizontal distance to the beam [um] Float_t Y; // vertical distance to the beam [um] Float_t S; // distance to the interaction point [m] TRef Particle; // reference to generated particle static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } ClassDef(HectorHit, 1) }; //--------------------------------------------------------------------------- class Candidate: public SortableObject { friend class DelphesFactory; public: Candidate(); Int_t PID; Int_t Status; Int_t M1, M2, D1, D2; Int_t Charge; Float_t Mass; Int_t IsPU; Int_t IsRecoPU; Int_t IsConstituent; UInt_t BTag; UInt_t BTagAlgo; UInt_t BTagDefault; UInt_t BTagPhysics; UInt_t BTagNearest2; UInt_t BTagNearest3; UInt_t BTagHeaviest; UInt_t BTagHighestPt; UInt_t FlavorAlgo; UInt_t FlavorDefault; UInt_t FlavorPhysics; UInt_t FlavorNearest2; UInt_t FlavorNearest3; UInt_t FlavorHeaviest; UInt_t FlavorHighestPt; UInt_t TauTag; Float_t Eem; Float_t Ehad; Float_t Edges[4]; Float_t DeltaEta; Float_t DeltaPhi; TLorentzVector Momentum, Position, Area; Float_t Dxy; Float_t SDxy; Float_t Xd; Float_t Yd; Float_t Zd; // PileUpJetID variables Int_t NCharged; Int_t NNeutrals; Float_t Beta; Float_t BetaStar; Float_t MeanSqDeltaR; Float_t PTD; Float_t FracPt[5]; //Timing information Int_t Ntimes; std::vector > Ecal_E_t; // Isolation variables Float_t IsolationVar; Float_t IsolationVarRhoCorr; Float_t SumPtCharged; Float_t SumPtNeutral; Float_t SumPtChargedPU; Float_t SumPt; // N-subjettiness variables Float_t Tau[5]; // Other Substructure variables TLorentzVector TrimmedP4[5]; // first entry (i = 0) is the total Trimmed Jet 4-momenta and from i = 1 to 4 are the trimmed subjets 4-momenta TLorentzVector PrunedP4[5]; // first entry (i = 0) is the total Pruned Jet 4-momenta and from i = 1 to 4 are the pruned subjets 4-momenta TLorentzVector SoftDroppedP4[5]; // first entry (i = 0) is the total SoftDropped Jet 4-momenta and from i = 1 to 4 are the pruned subjets 4-momenta Int_t NSubJetsTrimmed; // number of subjets trimmed Int_t NSubJetsPruned; // number of subjets pruned Int_t NSubJetsSoftDropped; // number of subjets soft-dropped static CompBase *fgCompare; //! const CompBase *GetCompare() const { return fgCompare; } void AddCandidate(Candidate *object); TObjArray *GetCandidates(); Bool_t Overlaps(const Candidate *object) const; virtual void Copy(TObject &object) const; virtual TObject *Clone(const char *newname = "") const; virtual void Clear(Option_t* option = ""); private: DelphesFactory *fFactory; //! TObjArray *fArray; //! void SetFactory(DelphesFactory *factory) { fFactory = factory; } ClassDef(Candidate, 3) }; #endif // DelphesClasses_h