/*
* Delphes: a framework for fast simulation of a generic collider experiment
* Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifndef DelphesClasses_h
#define DelphesClasses_h
/**
*
* Definition of classes to be stored in the root tree.
* Function CompareXYZ sorts objects by the variable XYZ that MUST be
* present in the data members of the root tree class of the branch.
*
* \author P. Demin - UCL, Louvain-la-Neuve
*
*/
// Dependencies (#includes)
#include "TLorentzVector.h"
#include "TMatrixDSym.h"
#include "TObject.h"
#include "TRef.h"
#include "TRefArray.h"
#include "classes/SortableObject.h"
class DelphesFactory;
//---------------------------------------------------------------------------
class Event: public TObject
{
public:
Long64_t Number; // event number
Float_t ReadTime; // read time
Float_t ProcTime; // processing time
ClassDef(Event, 1)
};
//---------------------------------------------------------------------------
class LHCOEvent: public Event
{
public:
Int_t Trigger; // trigger word
ClassDef(LHCOEvent, 1)
};
//---------------------------------------------------------------------------
class LHEFEvent: public Event
{
public:
Int_t ProcessID; // subprocess code for the event | hepup.IDPRUP
Float_t Weight; // weight for the event | hepup.XWGTUP
Float_t CrossSection; // cross-section (read from init, implemented only for Wizard evgen)
Float_t ScalePDF; // scale in GeV used in the calculation of the PDFs in the event | hepup.SCALUP
Float_t AlphaQED; // value of the QED coupling used in the event | hepup.AQEDUP
Float_t AlphaQCD; // value of the QCD coupling used in the event | hepup.AQCDUP
ClassDef(LHEFEvent, 3)
};
//---------------------------------------------------------------------------
class LHEFWeight: public TObject
{
public:
Int_t ID; // weight ID
Float_t Weight; // weight value
ClassDef(LHEFWeight, 1)
};
//---------------------------------------------------------------------------
class HepMCEvent: public Event
{
public:
Int_t ProcessID; // unique signal process id | signal_process_id()
Int_t MPI; // number of multi parton interactions | mpi ()
Float_t Weight; // weight for the event
Float_t CrossSection; // cross-section in pb
Float_t CrossSectionError; // cross-section error in pb
Float_t Scale; // energy scale, see hep-ph/0109068 | event_scale()
Float_t AlphaQED; // QED coupling, see hep-ph/0109068 | alphaQED()
Float_t AlphaQCD; // QCD coupling, see hep-ph/0109068 | alphaQCD()
Int_t ID1; // flavour code of first parton | pdf_info()->id1()
Int_t ID2; // flavour code of second parton | pdf_info()->id2()
Float_t X1; // fraction of beam momentum carried by first parton ("beam side") | pdf_info()->x1()
Float_t X2; // fraction of beam momentum carried by second parton ("target side") | pdf_info()->x2()
Float_t ScalePDF; // Q-scale used in evaluation of PDF's (in GeV) | pdf_info()->scalePDF()
Float_t PDF1; // PDF (id1, x1, Q) | pdf_info()->pdf1()
Float_t PDF2; // PDF (id2, x2, Q) | pdf_info()->pdf2()
ClassDef(HepMCEvent, 3)
};
//---------------------------------------------------------------------------
class GenParticle: public SortableObject
{
public:
Int_t PID; // particle HEP ID number | hepevt.idhep[number]
Int_t Status; // particle status | hepevt.isthep[number]
Int_t IsPU; // 0 or 1 for particles from pile-up interactions
Int_t M1; // particle 1st mother | hepevt.jmohep[number][0] - 1
Int_t M2; // particle 2nd mother | hepevt.jmohep[number][1] - 1
Int_t D1; // particle 1st daughter | hepevt.jdahep[number][0] - 1
Int_t D2; // particle last daughter | hepevt.jdahep[number][1] - 1
Int_t Charge; // particle charge
Float_t Mass; // particle mass
Float_t E; // particle energy | hepevt.phep[number][3]
Float_t Px; // particle momentum vector (x component) | hepevt.phep[number][0]
Float_t Py; // particle momentum vector (y component) | hepevt.phep[number][1]
Float_t Pz; // particle momentum vector (z component) | hepevt.phep[number][2]
Float_t P; // particle momentum
Float_t PT; // particle transverse momentum
Float_t Eta; // particle pseudorapidity
Float_t Phi; // particle azimuthal angle
Float_t Rapidity; // particle rapidity
Float_t T; // particle vertex position (t component) | hepevt.vhep[number][3]
Float_t X; // particle vertex position (x component) | hepevt.vhep[number][0]
Float_t Y; // particle vertex position (y component) | hepevt.vhep[number][1]
Float_t Z; // particle vertex position (z component) | hepevt.vhep[number][2]
Float_t decayX;
Float_t decayY;
Float_t decayZ;
Float_t decayT;
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
TLorentzVector P4() const;
ClassDef(GenParticle, 2)
};
//---------------------------------------------------------------------------
class Vertex: public SortableObject
{
public:
Float_t T; // vertex position (t component)
Float_t X; // vertex position (x component)
Float_t Y; // vertex position (y component)
Float_t Z; // vertex position (z component)
Double_t ErrorT; // vertex position error (t component)
Double_t ErrorX; // vertex position error (x component)
Double_t ErrorY; // vertex position error (y component)
Double_t ErrorZ; // vertex position error (z component)
Int_t Index; // vertex index
Int_t NDF; // number of degrees of freedom
Double_t Sigma; // vertex position (z component) error
Double_t SumPT2; // sum pt^2 of tracks attached to the vertex
Double_t GenSumPT2; // sum pt^2 of gen tracks attached to the vertex
Double_t GenDeltaZ; // distance in z to closest generated vertex
Double_t BTVSumPT2; // sum pt^2 of tracks attached to the secondary vertex
TRefArray Constituents; // references to constituents
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
ClassDef(Vertex, 3)
};
//---------------------------------------------------------------------------
class MissingET: public TObject
{
public:
Float_t MET; // mising transverse energy
Float_t Eta; // mising energy pseudorapidity
Float_t Phi; // mising energy azimuthal angle
TLorentzVector P4() const;
ClassDef(MissingET, 1)
};
//---------------------------------------------------------------------------
class ScalarHT: public TObject
{
public:
Float_t HT; // scalar sum of transverse momenta
ClassDef(ScalarHT, 1)
};
//---------------------------------------------------------------------------
class Rho: public TObject
{
public:
Float_t Rho; // rho energy density
Float_t Edges[2]; // pseudorapidity range edges
ClassDef(Rho, 1)
};
//---------------------------------------------------------------------------
class Weight: public TObject
{
public:
Float_t Weight; // weight for the event
ClassDef(Weight, 1)
};
//---------------------------------------------------------------------------
class Photon: public SortableObject
{
public:
Float_t PT; // photon transverse momentum
Float_t Eta; // photon pseudorapidity
Float_t Phi; // photon azimuthal angle
Float_t E; // photon energy
Float_t T; // particle arrival time of flight
Float_t EhadOverEem; // ratio of the hadronic versus electromagnetic energy deposited in the calorimeter
TRefArray Particles; // references to generated particles
Float_t IsolationVar; // isolation variable
Float_t IsolationVarRhoCorr; // isolation variable
Float_t SumPtCharged; // isolation variable
Float_t SumPtNeutral; // isolation variable
Float_t SumPtChargedPU; // isolation variable
Float_t SumPt; // isolation variable
Int_t Status; // 1: prompt -- 2: non prompt -- 3: fake
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
TLorentzVector P4() const;
ClassDef(Photon, 4)
};
//---------------------------------------------------------------------------
class Electron: public SortableObject
{
public:
Float_t PT; // electron transverse momentum
Float_t Eta; // electron pseudorapidity
Float_t Phi; // electron azimuthal angle
Float_t T; // particle arrival time of flight
Int_t Charge; // electron charge
Float_t EhadOverEem; // ratio of the hadronic versus electromagnetic energy deposited in the calorimeter
TRef Particle; // reference to generated particle
Float_t IsolationVar; // isolation variable
Float_t IsolationVarRhoCorr; // isolation variable
Float_t SumPtCharged; // isolation variable
Float_t SumPtNeutral; // isolation variable
Float_t SumPtChargedPU; // isolation variable
Float_t SumPt; // isolation variable
Float_t D0; // track transverse impact parameter
Float_t DZ; // track longitudinal impact parameter
Float_t ErrorD0; // track transverse impact parameter error
Float_t ErrorDZ; // track longitudinal impact parameter error
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
TLorentzVector P4() const;
ClassDef(Electron, 4)
};
//---------------------------------------------------------------------------
class Muon: public SortableObject
{
public:
Float_t PT; // muon transverse momentum
Float_t Eta; // muon pseudorapidity
Float_t Phi; // muon azimuthal angle
Float_t T; // particle arrival time of flight
Int_t Charge; // muon charge
TRef Particle; // reference to generated particle
Float_t IsolationVar; // isolation variable
Float_t IsolationVarRhoCorr; // isolation variable
Float_t SumPtCharged; // isolation variable
Float_t SumPtNeutral; // isolation variable
Float_t SumPtChargedPU; // isolation variable
Float_t SumPt; // isolation variable
Float_t D0; // track transverse impact parameter
Float_t DZ; // track longitudinal impact parameter
Float_t ErrorD0; // track transverse impact parameter error
Float_t ErrorDZ; // track longitudinal impact parameter error
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
TLorentzVector P4() const;
ClassDef(Muon, 4)
};
//---------------------------------------------------------------------------
class Jet: public SortableObject
{
public:
Float_t PT; // jet transverse momentum
Float_t Eta; // jet pseudorapidity
Float_t Phi; // jet azimuthal angle
Float_t T; //particle arrival time of flight
Float_t Mass; // jet invariant mass
Float_t DeltaEta; // jet radius in pseudorapidity
Float_t DeltaPhi; // jet radius in azimuthal angle
UInt_t Flavor; // jet flavor
UInt_t FlavorAlgo; // jet flavor
UInt_t FlavorPhys; // jet flavor
UInt_t BTag; // 0 or 1 for a jet that has been tagged as containing a heavy quark
UInt_t BTagAlgo; // 0 or 1 for a jet that has been tagged as containing a heavy quark
UInt_t BTagPhys; // 0 or 1 for a jet that has been tagged as containing a heavy quark
UInt_t TauTag; // 0 or 1 for a jet that has been tagged as a tau
Float_t TauWeight; // probability for jet to be identified as tau
Int_t Charge; // tau charge
Float_t EhadOverEem; // ratio of the hadronic versus electromagnetic energy deposited in the calorimeter
Int_t NCharged; // number of charged constituents
Int_t NNeutrals; // number of neutral constituents
Float_t NeutralEnergyFraction; // charged energy fraction
Float_t ChargedEnergyFraction; // neutral energy fraction
Float_t Beta; // (sum pt of charged pile-up constituents)/(sum pt of charged constituents)
Float_t BetaStar; // (sum pt of charged constituents coming from hard interaction)/(sum pt of charged constituents)
Float_t MeanSqDeltaR; // average distance (squared) between constituent and jet weighted by pt (squared) of constituent
Float_t PTD; // average pt between constituent and jet weighted by pt of constituent
Float_t FracPt[5]; // (sum pt of constituents within a ring 0.1*i < DeltaR < 0.1*(i+1))/(sum pt of constituents)
Float_t Tau[5]; // N-subjettiness
TLorentzVector SoftDroppedJet;
TLorentzVector SoftDroppedSubJet1;
TLorentzVector SoftDroppedSubJet2;
TLorentzVector TrimmedP4[5]; // first entry (i = 0) is the total Trimmed Jet 4-momenta and from i = 1 to 4 are the trimmed subjets 4-momenta
TLorentzVector PrunedP4[5]; // first entry (i = 0) is the total Pruned Jet 4-momenta and from i = 1 to 4 are the pruned subjets 4-momenta
TLorentzVector SoftDroppedP4[5]; // first entry (i = 0) is the total SoftDropped Jet 4-momenta and from i = 1 to 4 are the pruned subjets 4-momenta
Int_t NSubJetsTrimmed; // number of subjets trimmed
Int_t NSubJetsPruned; // number of subjets pruned
Int_t NSubJetsSoftDropped; // number of subjets soft-dropped
Double_t ExclYmerge23;
Double_t ExclYmerge34;
Double_t ExclYmerge45;
Double_t ExclYmerge56;
TRefArray Constituents; // references to constituents
TRefArray Particles; // references to generated particles
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
TLorentzVector P4() const;
TLorentzVector Area;
ClassDef(Jet, 4)
};
//---------------------------------------------------------------------------
class Track: public SortableObject
{
public:
Int_t PID; // HEP ID number
Int_t Charge; // track charge
Float_t P; // track momentum
Float_t PT; // track transverse momentum
Float_t Eta; // track pseudorapidity
Float_t Phi; // track azimuthal angle
Float_t CtgTheta; // track cotangent of theta
Float_t C; // track curvature inverse
Float_t Mass; // particle mass
Float_t EtaOuter; // track pseudorapidity at the tracker edge
Float_t PhiOuter; // track azimuthal angle at the tracker edge
Float_t T; // track vertex position (t component)
Float_t X; // track vertex position (x component)
Float_t Y; // track vertex position (y component)
Float_t Z; // track vertex position (z component)
Float_t TOuter; // track position (t component) at the tracker edge
Float_t XOuter; // track position (x component) at the tracker edge
Float_t YOuter; // track position (y component) at the tracker edge
Float_t ZOuter; // track position (z component) at the tracker edge
Float_t Xd; // X coordinate of point of closest approach to vertex
Float_t Yd; // Y coordinate of point of closest approach to vertex
Float_t Zd; // Z coordinate of point of closest approach to vertex
Float_t XFirstHit; // X coordinate of point of closest approach to vertex
Float_t YFirstHit; // Y coordinate of point of closest approach to vertex
Float_t ZFirstHit; // Z coordinate of point of closest approach to vertex
Float_t L; // track path length
Float_t D0; // track transverse impact parameter
Float_t DZ; // track longitudinal impact parameter
Float_t Nclusters; // Number of ionization clusters
Float_t dNdx; // Number of ionization clusters
Float_t ErrorP; // track momentum error
Float_t ErrorPT; // track transverse momentum error
Float_t ErrorPhi; // track azimuthal angle error
Float_t ErrorCtgTheta; // track cotangent of theta error
Float_t ErrorT; // time measurement error
Float_t ErrorD0; // track transverse impact parameter error
Float_t ErrorDZ; // track longitudinal impact parameter error
Float_t ErrorC; // track curvature error
// track covariance off-diagonal terms
Float_t ErrorD0Phi;
Float_t ErrorD0C;
Float_t ErrorD0DZ;
Float_t ErrorD0CtgTheta;
Float_t ErrorPhiC;
Float_t ErrorPhiDZ;
Float_t ErrorPhiCtgTheta ;
Float_t ErrorCDZ;
Float_t ErrorCCtgTheta;
Float_t ErrorDZCtgTheta;
TRef Particle; // reference to generated particle
Int_t VertexIndex; // reference to vertex
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
TLorentzVector P4() const;
TMatrixDSym CovarianceMatrix() const;
ClassDef(Track, 3)
};
//---------------------------------------------------------------------------
class Tower: public SortableObject
{
public:
Float_t ET; // calorimeter tower transverse energy
Float_t Eta; // calorimeter tower pseudorapidity
Float_t Phi; // calorimeter tower azimuthal angle
Float_t E; // calorimeter tower energy
Float_t T; // ecal deposit time, averaged by sqrt(EM energy) over all particles, not smeared
Int_t NTimeHits; // number of hits contributing to time measurement
Float_t Eem; // calorimeter tower electromagnetic energy
Float_t Ehad; // calorimeter tower hadronic energy
Float_t Etrk; // total charged energy hitting tower
Float_t Edges[4]; // calorimeter tower edges
TRefArray Particles; // references to generated particles
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
TLorentzVector P4() const;
ClassDef(Tower, 3)
};
//---------------------------------------------------------------------------
class ParticleFlowCandidate: public SortableObject
{
public:
Int_t PID; // HEP ID number
Int_t Charge; // track charge
Float_t E; // reconstructed energy [GeV]
Float_t P; // track momentum
Float_t PT; // track transverse momentum
Float_t Eta; // track pseudorapidity
Float_t Phi; // track azimuthal angle
Float_t CtgTheta; // track cotangent of theta
Float_t C; // track curvature inverse
Float_t Mass; // particle mass
Float_t EtaOuter; // track pseudorapidity at the tracker edge
Float_t PhiOuter; // track azimuthal angle at the tracker edge
Float_t T; // track vertex position (t component)
Float_t X; // track vertex position (x component)
Float_t Y; // track vertex position (y component)
Float_t Z; // track vertex position (z component)
Float_t TOuter; // track position (t component) at the tracker edge
Float_t XOuter; // track position (x component) at the tracker edge
Float_t YOuter; // track position (y component) at the tracker edge
Float_t ZOuter; // track position (z component) at the tracker edge
Float_t Xd; // X coordinate of point of closest approach to vertex
Float_t Yd; // Y coordinate of point of closest approach to vertex
Float_t Zd; // Z coordinate of point of closest approach to vertex
Float_t XFirstHit; // X coordinate of point of closest approach to vertex
Float_t YFirstHit; // Y coordinate of point of closest approach to vertex
Float_t ZFirstHit; // Z coordinate of point of closest approach to vertex
Float_t L; // track path length
Float_t D0; // track transverse impact parameter
Float_t DZ; // track longitudinal impact parameter
Float_t Nclusters; // Number of ionization clusters
Float_t dNdx; // Number of ionization clusters
Float_t ErrorP; // track momentum error
Float_t ErrorPT; // track transverse momentum error
Float_t ErrorPhi; // track azimuthal angle error
Float_t ErrorCtgTheta; // track cotangent of theta error
Float_t ErrorT; // time measurement error
Float_t ErrorD0; // track transverse impact parameter error
Float_t ErrorDZ; // track longitudinal impact parameter error
Float_t ErrorC; // track curvature error
// track covariance off-diagonal terms
Float_t ErrorD0Phi;
Float_t ErrorD0C;
Float_t ErrorD0DZ;
Float_t ErrorD0CtgTheta;
Float_t ErrorPhiC;
Float_t ErrorPhiDZ;
Float_t ErrorPhiCtgTheta ;
Float_t ErrorCDZ;
Float_t ErrorCCtgTheta;
Float_t ErrorDZCtgTheta;
Int_t VertexIndex; // reference to vertex
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
TLorentzVector P4() const;
TMatrixDSym CovarianceMatrix() const;
Int_t NTimeHits; // number of hits contributing to time measurement
Float_t Eem; // calorimeter tower electromagnetic energy
Float_t Ehad; // calorimeter tower hadronic energy
Float_t Etrk; // total charged energy hitting tower
Float_t Edges[4]; // calorimeter tower edges
TRefArray Particles; // references to generated particles
ClassDef(ParticleFlowCandidate, 3)
};
//---------------------------------------------------------------------------
class HectorHit: public SortableObject
{
public:
Float_t E; // reconstructed energy [GeV]
Float_t Tx; // angle of the momentum in the horizontal (x,z) plane [urad]
Float_t Ty; // angle of the momentum in the verical (y,z) plane [urad]
Float_t T; // time of flight to the detector [s]
Float_t X; // horizontal distance to the beam [um]
Float_t Y; // vertical distance to the beam [um]
Float_t S; // distance to the interaction point [m]
TRef Particle; // reference to generated particle
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
ClassDef(HectorHit, 1)
};
//---------------------------------------------------------------------------
class CscCluster: public SortableObject
{
public:
Float_t Eta; // eta of LLP
Float_t Phi; // phi of LLP
Float_t PT; // pt of LLP
Float_t Px;// px of LLP
Float_t Py;// py of LLP
Float_t Pz;// pz of LLP
Float_t E; // E of LLP
Float_t Ehad; // had energy of LLP
Float_t Eem; // em energy of LLP
Float_t pid; // LLP pid
Float_t T; // LLP decay time-photon travel time
Float_t X; // LLP decay x
Float_t Y; // LLP decay y
Float_t Z; // LLP decay z
Float_t R; // LLP decay z
Float_t beta; // LLP beta
Float_t ctau; //LLP ctau
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
ClassDef(CscCluster, 5)
};
//---------------------------------------------------------------------------
class Candidate: public SortableObject
{
friend class DelphesFactory;
public:
Candidate();
Int_t PID;
Int_t Status;
Int_t M1, M2, D1, D2;
Int_t Charge;
Float_t Mass;
Int_t IsPU;
Int_t IsRecoPU;
Int_t IsConstituent;
Int_t IsFromConversion;
UInt_t Flavor;
UInt_t FlavorAlgo;
UInt_t FlavorPhys;
UInt_t BTag;
UInt_t BTagAlgo;
UInt_t BTagPhys;
UInt_t TauTag;
Float_t TauWeight;
Float_t Eem;
Float_t Ehad;
Float_t Etrk;
Float_t Edges[4];
Float_t DeltaEta;
Float_t DeltaPhi;
TLorentzVector Momentum, Position, InitialPosition, PositionError, DecayPosition, Area;
Float_t L; // path length
Float_t DZ;
Float_t ErrorDZ;
Float_t ErrorT; // path length
Float_t D0;
Float_t ErrorD0;
Float_t C;
Float_t ErrorC;
Float_t P;
Float_t ErrorP;
Float_t PT;
Float_t ErrorPT;
Float_t CtgTheta;
Float_t ErrorCtgTheta;
Float_t Phi;
Float_t ErrorPhi;
Float_t Nclusters; // Number of ionization clusters
Float_t dNdx; // Number of ionization clusters per unit length
Float_t Xd;
Float_t Yd;
Float_t Zd;
Float_t XFirstHit;
Float_t YFirstHit;
Float_t ZFirstHit;
// tracking resolution
Float_t TrackResolution;
// PileUpJetID variables
Int_t NCharged;
Int_t NNeutrals;
Float_t Beta;
Float_t BetaStar;
Float_t MeanSqDeltaR;
Float_t PTD;
Float_t FracPt[5];
Float_t NeutralEnergyFraction; // charged energy fraction
Float_t ChargedEnergyFraction; // neutral energy fraction
// Timing information
Int_t NTimeHits;
std::vector > ECalEnergyTimePairs;
// Isolation variables
Float_t IsolationVar;
Float_t IsolationVarRhoCorr;
Float_t SumPtCharged;
Float_t SumPtNeutral;
Float_t SumPtChargedPU;
Float_t SumPt;
// ACTS compliant 6x6 track covariance (D0, phi, Curvature, dz, ctg(theta))
TMatrixDSym TrackCovariance;
// vertex variables
Int_t ClusterIndex;
Int_t ClusterNDF;
Double_t ClusterSigma;
Double_t SumPT2;
Double_t BTVSumPT2;
Double_t GenDeltaZ;
Double_t GenSumPT2;
// N-subjettiness variables
Float_t Tau[5];
// Other Substructure variables
TLorentzVector SoftDroppedJet;
TLorentzVector SoftDroppedSubJet1;
TLorentzVector SoftDroppedSubJet2;
TLorentzVector TrimmedP4[5]; // first entry (i = 0) is the total Trimmed Jet 4-momenta and from i = 1 to 4 are the trimmed subjets 4-momenta
TLorentzVector PrunedP4[5]; // first entry (i = 0) is the total Pruned Jet 4-momenta and from i = 1 to 4 are the pruned subjets 4-momenta
TLorentzVector SoftDroppedP4[5]; // first entry (i = 0) is the total SoftDropped Jet 4-momenta and from i = 1 to 4 are the pruned subjets 4-momenta
Int_t NSubJetsTrimmed; // number of subjets trimmed
Int_t NSubJetsPruned; // number of subjets pruned
Int_t NSubJetsSoftDropped; // number of subjets soft-dropped
// Exclusive clustering variables
Double_t ExclYmerge23;
Double_t ExclYmerge34;
Double_t ExclYmerge45;
Double_t ExclYmerge56;
// event characteristics variables
Double_t ParticleDensity; // particle multiplicity density in the proximity of the particle
static CompBase *fgCompare; //!
const CompBase *GetCompare() const { return fgCompare; }
void AddCandidate(Candidate *object);
TObjArray *GetCandidates();
Bool_t Overlaps(const Candidate *object) const;
virtual void Copy(TObject &object) const;
virtual TObject *Clone(const char *newname = "") const;
virtual void Clear(Option_t *option = "");
private:
DelphesFactory *fFactory; //!
TObjArray *fArray; //!
void SetFactory(DelphesFactory *factory) { fFactory = factory; }
ClassDef(Candidate, 6)
};
#endif // DelphesClasses_h