1 | // -*- C++ -*-
|
---|
2 | // ---------------------------------------------------------------------------
|
---|
3 | //
|
---|
4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
5 | //
|
---|
6 | // This is the implementation of the Hep2Vector class.
|
---|
7 | //
|
---|
8 | //-------------------------------------------------------------
|
---|
9 |
|
---|
10 | #include "CLHEP/Vector/defs.h"
|
---|
11 | #include "CLHEP/Vector/TwoVector.h"
|
---|
12 | #include "CLHEP/Vector/ZMxpv.h"
|
---|
13 | #include "CLHEP/Vector/ThreeVector.h"
|
---|
14 |
|
---|
15 | #include <cmath>
|
---|
16 | #include <iostream>
|
---|
17 |
|
---|
18 | namespace CLHEP {
|
---|
19 |
|
---|
20 | double Hep2Vector::tolerance = Hep2Vector::ZMpvToleranceTicks * 2.22045e-16;
|
---|
21 |
|
---|
22 | double Hep2Vector::setTolerance (double tol) {
|
---|
23 | // Set the tolerance for Hep2Vectors to be considered near one another
|
---|
24 | double oldTolerance (tolerance);
|
---|
25 | tolerance = tol;
|
---|
26 | return oldTolerance;
|
---|
27 | }
|
---|
28 |
|
---|
29 | double Hep2Vector::operator () (int i) const {
|
---|
30 | if (i == 0) {
|
---|
31 | return x();
|
---|
32 | }else if (i == 1) {
|
---|
33 | return y();
|
---|
34 | }else{
|
---|
35 | ZMthrowA(ZMxpvIndexRange(
|
---|
36 | "Hep2Vector::operator(): bad index"));
|
---|
37 | return 0.0;
|
---|
38 | }
|
---|
39 | }
|
---|
40 |
|
---|
41 | double & Hep2Vector::operator () (int i) {
|
---|
42 | static double dummy;
|
---|
43 | switch(i) {
|
---|
44 | case X:
|
---|
45 | return dx;
|
---|
46 | case Y:
|
---|
47 | return dy;
|
---|
48 | default:
|
---|
49 | ZMthrowA (ZMxpvIndexRange(
|
---|
50 | "Hep2Vector::operator() : bad index"));
|
---|
51 | return dummy;
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | void Hep2Vector::rotate(double angle) {
|
---|
56 | double s = sin(angle);
|
---|
57 | double c = cos(angle);
|
---|
58 | double xx = dx;
|
---|
59 | dx = c*xx - s*dy;
|
---|
60 | dy = s*xx + c*dy;
|
---|
61 | }
|
---|
62 |
|
---|
63 | Hep2Vector operator/ (const Hep2Vector & p, double a) {
|
---|
64 | if (a==0) {
|
---|
65 | ZMthrowA(ZMxpvInfiniteVector( "Division of Hep2Vector by zero"));
|
---|
66 | }
|
---|
67 | return Hep2Vector(p.x()/a, p.y()/a);
|
---|
68 | }
|
---|
69 |
|
---|
70 | std::ostream & operator << (std::ostream & os, const Hep2Vector & q) {
|
---|
71 | os << "(" << q.x() << ", " << q.y() << ")";
|
---|
72 | return os;
|
---|
73 | }
|
---|
74 |
|
---|
75 | void ZMinput2doubles ( std::istream & is, const char * type,
|
---|
76 | double & x, double & y );
|
---|
77 |
|
---|
78 | std::istream & operator>>(std::istream & is, Hep2Vector & p) {
|
---|
79 | double x, y;
|
---|
80 | ZMinput2doubles ( is, "Hep2Vector", x, y );
|
---|
81 | p.set(x, y);
|
---|
82 | return is;
|
---|
83 | } // operator>>()
|
---|
84 |
|
---|
85 | Hep2Vector::operator Hep3Vector () const {
|
---|
86 | return Hep3Vector ( dx, dy, 0.0 );
|
---|
87 | }
|
---|
88 |
|
---|
89 | int Hep2Vector::compare (const Hep2Vector & v) const {
|
---|
90 | if ( dy > v.dy ) {
|
---|
91 | return 1;
|
---|
92 | } else if ( dy < v.dy ) {
|
---|
93 | return -1;
|
---|
94 | } else if ( dx > v.dx ) {
|
---|
95 | return 1;
|
---|
96 | } else if ( dx < v.dx ) {
|
---|
97 | return -1;
|
---|
98 | } else {
|
---|
99 | return 0;
|
---|
100 | }
|
---|
101 | } /* Compare */
|
---|
102 |
|
---|
103 |
|
---|
104 | bool Hep2Vector::operator > (const Hep2Vector & v) const {
|
---|
105 | return (compare(v) > 0);
|
---|
106 | }
|
---|
107 | bool Hep2Vector::operator < (const Hep2Vector & v) const {
|
---|
108 | return (compare(v) < 0);
|
---|
109 | }
|
---|
110 | bool Hep2Vector::operator>= (const Hep2Vector & v) const {
|
---|
111 | return (compare(v) >= 0);
|
---|
112 | }
|
---|
113 | bool Hep2Vector::operator<= (const Hep2Vector & v) const {
|
---|
114 | return (compare(v) <= 0);
|
---|
115 | }
|
---|
116 |
|
---|
117 | bool Hep2Vector::isNear(const Hep2Vector & p, double epsilon) const {
|
---|
118 | double limit = dot(p)*epsilon*epsilon;
|
---|
119 | return ( (*this - p).mag2() <= limit );
|
---|
120 | } /* isNear() */
|
---|
121 |
|
---|
122 | double Hep2Vector::howNear(const Hep2Vector & p ) const {
|
---|
123 | double d = (*this - p).mag2();
|
---|
124 | double pdp = dot(p);
|
---|
125 | if ( (pdp > 0) && (d < pdp) ) {
|
---|
126 | return sqrt (d/pdp);
|
---|
127 | } else if ( (pdp == 0) && (d == 0) ) {
|
---|
128 | return 0;
|
---|
129 | } else {
|
---|
130 | return 1;
|
---|
131 | }
|
---|
132 | } /* howNear */
|
---|
133 |
|
---|
134 | double Hep2Vector::howParallel (const Hep2Vector & v) const {
|
---|
135 | // | V1 x V2 | / | V1 dot V2 |
|
---|
136 | // Of course, the "cross product" is fictitious but the math is valid
|
---|
137 | double v1v2 = fabs(dot(v));
|
---|
138 | if ( v1v2 == 0 ) {
|
---|
139 | // Zero is parallel to no other vector except for zero.
|
---|
140 | return ( (mag2() == 0) && (v.mag2() == 0) ) ? 0 : 1;
|
---|
141 | }
|
---|
142 | double abscross = fabs ( dx * v.y() - dy - v.x() );
|
---|
143 | if ( abscross >= v1v2 ) {
|
---|
144 | return 1;
|
---|
145 | } else {
|
---|
146 | return abscross/v1v2;
|
---|
147 | }
|
---|
148 | } /* howParallel() */
|
---|
149 |
|
---|
150 | bool Hep2Vector::isParallel (const Hep2Vector & v,
|
---|
151 | double epsilon) const {
|
---|
152 | // | V1 x V2 | <= epsilon * | V1 dot V2 |
|
---|
153 | // Of course, the "cross product" is fictitious but the math is valid
|
---|
154 | double v1v2 = fabs(dot(v));
|
---|
155 | if ( v1v2 == 0 ) {
|
---|
156 | // Zero is parallel to no other vector except for zero.
|
---|
157 | return ( (mag2() == 0) && (v.mag2() == 0) );
|
---|
158 | }
|
---|
159 | double abscross = fabs ( dx * v.y() - dy - v.x() );
|
---|
160 | return ( abscross <= epsilon * v1v2 );
|
---|
161 | } /* isParallel() */
|
---|
162 |
|
---|
163 | double Hep2Vector::howOrthogonal (const Hep2Vector & v) const {
|
---|
164 | // | V1 dot V2 | / | V1 x V2 |
|
---|
165 | // Of course, the "cross product" is fictitious but the math is valid
|
---|
166 | double v1v2 = fabs(dot(v));
|
---|
167 | if ( v1v2 == 0 ) {
|
---|
168 | return 0; // Even if one or both are 0, they are considered orthogonal
|
---|
169 | }
|
---|
170 | double abscross = fabs ( dx * v.y() - dy - v.x() );
|
---|
171 | if ( v1v2 >= abscross ) {
|
---|
172 | return 1;
|
---|
173 | } else {
|
---|
174 | return v1v2/abscross;
|
---|
175 | }
|
---|
176 | } /* howOrthogonal() */
|
---|
177 |
|
---|
178 | bool Hep2Vector::isOrthogonal (const Hep2Vector & v,
|
---|
179 | double epsilon) const {
|
---|
180 | // | V1 dot V2 | <= epsilon * | V1 x V2 |
|
---|
181 | // Of course, the "cross product" is fictitious but the math is valid
|
---|
182 | double v1v2 = fabs(dot(v));
|
---|
183 | double abscross = fabs ( dx * v.y() - dy - v.x() );
|
---|
184 | return ( v1v2 <= epsilon * abscross );
|
---|
185 | } /* isOrthogonal() */
|
---|
186 |
|
---|
187 | } // namespace CLHEP
|
---|