[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // ---------------------------------------------------------------------------
|
---|
| 3 | //
|
---|
| 4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 5 | //
|
---|
| 6 | // This is the implementation of the Hep2Vector class.
|
---|
| 7 | //
|
---|
| 8 | //-------------------------------------------------------------
|
---|
| 9 |
|
---|
| 10 | #include "CLHEP/Vector/defs.h"
|
---|
| 11 | #include "CLHEP/Vector/TwoVector.h"
|
---|
| 12 | #include "CLHEP/Vector/ZMxpv.h"
|
---|
| 13 | #include "CLHEP/Vector/ThreeVector.h"
|
---|
| 14 |
|
---|
| 15 | #include <cmath>
|
---|
| 16 | #include <iostream>
|
---|
| 17 |
|
---|
| 18 | namespace CLHEP {
|
---|
| 19 |
|
---|
| 20 | double Hep2Vector::tolerance = Hep2Vector::ZMpvToleranceTicks * 2.22045e-16;
|
---|
| 21 |
|
---|
| 22 | double Hep2Vector::setTolerance (double tol) {
|
---|
| 23 | // Set the tolerance for Hep2Vectors to be considered near one another
|
---|
| 24 | double oldTolerance (tolerance);
|
---|
| 25 | tolerance = tol;
|
---|
| 26 | return oldTolerance;
|
---|
| 27 | }
|
---|
| 28 |
|
---|
| 29 | double Hep2Vector::operator () (int i) const {
|
---|
| 30 | if (i == 0) {
|
---|
| 31 | return x();
|
---|
| 32 | }else if (i == 1) {
|
---|
| 33 | return y();
|
---|
| 34 | }else{
|
---|
| 35 | ZMthrowA(ZMxpvIndexRange(
|
---|
| 36 | "Hep2Vector::operator(): bad index"));
|
---|
| 37 | return 0.0;
|
---|
| 38 | }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | double & Hep2Vector::operator () (int i) {
|
---|
| 42 | static double dummy;
|
---|
| 43 | switch(i) {
|
---|
| 44 | case X:
|
---|
| 45 | return dx;
|
---|
| 46 | case Y:
|
---|
| 47 | return dy;
|
---|
| 48 | default:
|
---|
| 49 | ZMthrowA (ZMxpvIndexRange(
|
---|
| 50 | "Hep2Vector::operator() : bad index"));
|
---|
| 51 | return dummy;
|
---|
| 52 | }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | void Hep2Vector::rotate(double angle) {
|
---|
| 56 | double s = sin(angle);
|
---|
| 57 | double c = cos(angle);
|
---|
| 58 | double xx = dx;
|
---|
| 59 | dx = c*xx - s*dy;
|
---|
| 60 | dy = s*xx + c*dy;
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | Hep2Vector operator/ (const Hep2Vector & p, double a) {
|
---|
| 64 | if (a==0) {
|
---|
| 65 | ZMthrowA(ZMxpvInfiniteVector( "Division of Hep2Vector by zero"));
|
---|
| 66 | }
|
---|
| 67 | return Hep2Vector(p.x()/a, p.y()/a);
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | std::ostream & operator << (std::ostream & os, const Hep2Vector & q) {
|
---|
| 71 | os << "(" << q.x() << ", " << q.y() << ")";
|
---|
| 72 | return os;
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | void ZMinput2doubles ( std::istream & is, const char * type,
|
---|
| 76 | double & x, double & y );
|
---|
| 77 |
|
---|
| 78 | std::istream & operator>>(std::istream & is, Hep2Vector & p) {
|
---|
| 79 | double x, y;
|
---|
| 80 | ZMinput2doubles ( is, "Hep2Vector", x, y );
|
---|
| 81 | p.set(x, y);
|
---|
| 82 | return is;
|
---|
| 83 | } // operator>>()
|
---|
| 84 |
|
---|
| 85 | Hep2Vector::operator Hep3Vector () const {
|
---|
| 86 | return Hep3Vector ( dx, dy, 0.0 );
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | int Hep2Vector::compare (const Hep2Vector & v) const {
|
---|
| 90 | if ( dy > v.dy ) {
|
---|
| 91 | return 1;
|
---|
| 92 | } else if ( dy < v.dy ) {
|
---|
| 93 | return -1;
|
---|
| 94 | } else if ( dx > v.dx ) {
|
---|
| 95 | return 1;
|
---|
| 96 | } else if ( dx < v.dx ) {
|
---|
| 97 | return -1;
|
---|
| 98 | } else {
|
---|
| 99 | return 0;
|
---|
| 100 | }
|
---|
| 101 | } /* Compare */
|
---|
| 102 |
|
---|
| 103 |
|
---|
| 104 | bool Hep2Vector::operator > (const Hep2Vector & v) const {
|
---|
| 105 | return (compare(v) > 0);
|
---|
| 106 | }
|
---|
| 107 | bool Hep2Vector::operator < (const Hep2Vector & v) const {
|
---|
| 108 | return (compare(v) < 0);
|
---|
| 109 | }
|
---|
| 110 | bool Hep2Vector::operator>= (const Hep2Vector & v) const {
|
---|
| 111 | return (compare(v) >= 0);
|
---|
| 112 | }
|
---|
| 113 | bool Hep2Vector::operator<= (const Hep2Vector & v) const {
|
---|
| 114 | return (compare(v) <= 0);
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | bool Hep2Vector::isNear(const Hep2Vector & p, double epsilon) const {
|
---|
| 118 | double limit = dot(p)*epsilon*epsilon;
|
---|
| 119 | return ( (*this - p).mag2() <= limit );
|
---|
| 120 | } /* isNear() */
|
---|
| 121 |
|
---|
| 122 | double Hep2Vector::howNear(const Hep2Vector & p ) const {
|
---|
| 123 | double d = (*this - p).mag2();
|
---|
| 124 | double pdp = dot(p);
|
---|
| 125 | if ( (pdp > 0) && (d < pdp) ) {
|
---|
| 126 | return sqrt (d/pdp);
|
---|
| 127 | } else if ( (pdp == 0) && (d == 0) ) {
|
---|
| 128 | return 0;
|
---|
| 129 | } else {
|
---|
| 130 | return 1;
|
---|
| 131 | }
|
---|
| 132 | } /* howNear */
|
---|
| 133 |
|
---|
| 134 | double Hep2Vector::howParallel (const Hep2Vector & v) const {
|
---|
| 135 | // | V1 x V2 | / | V1 dot V2 |
|
---|
| 136 | // Of course, the "cross product" is fictitious but the math is valid
|
---|
| 137 | double v1v2 = fabs(dot(v));
|
---|
| 138 | if ( v1v2 == 0 ) {
|
---|
| 139 | // Zero is parallel to no other vector except for zero.
|
---|
| 140 | return ( (mag2() == 0) && (v.mag2() == 0) ) ? 0 : 1;
|
---|
| 141 | }
|
---|
| 142 | double abscross = fabs ( dx * v.y() - dy - v.x() );
|
---|
| 143 | if ( abscross >= v1v2 ) {
|
---|
| 144 | return 1;
|
---|
| 145 | } else {
|
---|
| 146 | return abscross/v1v2;
|
---|
| 147 | }
|
---|
| 148 | } /* howParallel() */
|
---|
| 149 |
|
---|
| 150 | bool Hep2Vector::isParallel (const Hep2Vector & v,
|
---|
| 151 | double epsilon) const {
|
---|
| 152 | // | V1 x V2 | <= epsilon * | V1 dot V2 |
|
---|
| 153 | // Of course, the "cross product" is fictitious but the math is valid
|
---|
| 154 | double v1v2 = fabs(dot(v));
|
---|
| 155 | if ( v1v2 == 0 ) {
|
---|
| 156 | // Zero is parallel to no other vector except for zero.
|
---|
| 157 | return ( (mag2() == 0) && (v.mag2() == 0) );
|
---|
| 158 | }
|
---|
| 159 | double abscross = fabs ( dx * v.y() - dy - v.x() );
|
---|
| 160 | return ( abscross <= epsilon * v1v2 );
|
---|
| 161 | } /* isParallel() */
|
---|
| 162 |
|
---|
| 163 | double Hep2Vector::howOrthogonal (const Hep2Vector & v) const {
|
---|
| 164 | // | V1 dot V2 | / | V1 x V2 |
|
---|
| 165 | // Of course, the "cross product" is fictitious but the math is valid
|
---|
| 166 | double v1v2 = fabs(dot(v));
|
---|
| 167 | if ( v1v2 == 0 ) {
|
---|
| 168 | return 0; // Even if one or both are 0, they are considered orthogonal
|
---|
| 169 | }
|
---|
| 170 | double abscross = fabs ( dx * v.y() - dy - v.x() );
|
---|
| 171 | if ( v1v2 >= abscross ) {
|
---|
| 172 | return 1;
|
---|
| 173 | } else {
|
---|
| 174 | return v1v2/abscross;
|
---|
| 175 | }
|
---|
| 176 | } /* howOrthogonal() */
|
---|
| 177 |
|
---|
| 178 | bool Hep2Vector::isOrthogonal (const Hep2Vector & v,
|
---|
| 179 | double epsilon) const {
|
---|
| 180 | // | V1 dot V2 | <= epsilon * | V1 x V2 |
|
---|
| 181 | // Of course, the "cross product" is fictitious but the math is valid
|
---|
| 182 | double v1v2 = fabs(dot(v));
|
---|
| 183 | double abscross = fabs ( dx * v.y() - dy - v.x() );
|
---|
| 184 | return ( v1v2 <= epsilon * abscross );
|
---|
| 185 | } /* isOrthogonal() */
|
---|
| 186 |
|
---|
| 187 | } // namespace CLHEP
|
---|