1 | // -*- C++ -*-
|
---|
2 | // $Id: ThreeVector.cc,v 1.1 2008-06-04 14:15:11 demin Exp $
|
---|
3 | // ---------------------------------------------------------------------------
|
---|
4 | //
|
---|
5 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
6 | //
|
---|
7 | // This is the implementation of the Hep3Vector class.
|
---|
8 | //
|
---|
9 | // See also ThreeVectorR.cc for implementation of Hep3Vector methods which
|
---|
10 | // would couple in all the HepRotation methods.
|
---|
11 | //
|
---|
12 |
|
---|
13 | #ifdef GNUPRAGMA
|
---|
14 | #pragma implementation
|
---|
15 | #endif
|
---|
16 |
|
---|
17 | #include "CLHEP/Vector/defs.h"
|
---|
18 | #include "CLHEP/Vector/ThreeVector.h"
|
---|
19 | #include "CLHEP/Vector/ZMxpv.h"
|
---|
20 | #include "CLHEP/Units/PhysicalConstants.h"
|
---|
21 |
|
---|
22 | #include <cmath>
|
---|
23 | #include <iostream>
|
---|
24 |
|
---|
25 | namespace CLHEP {
|
---|
26 |
|
---|
27 | void Hep3Vector::setMag(double ma) {
|
---|
28 | double factor = mag();
|
---|
29 | if (factor == 0) {
|
---|
30 | ZMthrowA ( ZMxpvZeroVector (
|
---|
31 | "Hep3Vector::setMag : zero vector can't be stretched"));
|
---|
32 | }else{
|
---|
33 | factor = ma/factor;
|
---|
34 | setX(x()*factor);
|
---|
35 | setY(y()*factor);
|
---|
36 | setZ(z()*factor);
|
---|
37 | }
|
---|
38 | }
|
---|
39 |
|
---|
40 | double Hep3Vector::operator () (int i) const {
|
---|
41 | switch(i) {
|
---|
42 | case X:
|
---|
43 | return x();
|
---|
44 | case Y:
|
---|
45 | return y();
|
---|
46 | case Z:
|
---|
47 | return z();
|
---|
48 | default:
|
---|
49 | std::cerr << "Hep3Vector subscripting: bad index (" << i << ")"
|
---|
50 | << std::endl;
|
---|
51 | }
|
---|
52 | return 0.;
|
---|
53 | }
|
---|
54 |
|
---|
55 | double & Hep3Vector::operator () (int i) {
|
---|
56 | static double dummy;
|
---|
57 | switch(i) {
|
---|
58 | case X:
|
---|
59 | return dx;
|
---|
60 | case Y:
|
---|
61 | return dy;
|
---|
62 | case Z:
|
---|
63 | return dz;
|
---|
64 | default:
|
---|
65 | std::cerr
|
---|
66 | << "Hep3Vector subscripting: bad index (" << i << ")"
|
---|
67 | << std::endl;
|
---|
68 | return dummy;
|
---|
69 | }
|
---|
70 | }
|
---|
71 |
|
---|
72 | Hep3Vector & Hep3Vector::rotateUz(const Hep3Vector& NewUzVector) {
|
---|
73 | // NewUzVector must be normalized !
|
---|
74 |
|
---|
75 | double u1 = NewUzVector.x();
|
---|
76 | double u2 = NewUzVector.y();
|
---|
77 | double u3 = NewUzVector.z();
|
---|
78 | double up = u1*u1 + u2*u2;
|
---|
79 |
|
---|
80 | if (up>0) {
|
---|
81 | up = sqrt(up);
|
---|
82 | double px = dx, py = dy, pz = dz;
|
---|
83 | dx = (u1*u3*px - u2*py)/up + u1*pz;
|
---|
84 | dy = (u2*u3*px + u1*py)/up + u2*pz;
|
---|
85 | dz = -up*px + u3*pz;
|
---|
86 | }
|
---|
87 | else if (u3 < 0.) { dx = -dx; dz = -dz; } // phi=0 teta=pi
|
---|
88 | else {};
|
---|
89 | return *this;
|
---|
90 | }
|
---|
91 |
|
---|
92 | double Hep3Vector::pseudoRapidity() const {
|
---|
93 | double m = mag();
|
---|
94 | if ( m== 0 ) return 0.0;
|
---|
95 | if ( m== z() ) return 1.0E72;
|
---|
96 | if ( m== -z() ) return -1.0E72;
|
---|
97 | return 0.5*log( (m+z())/(m-z()) );
|
---|
98 | }
|
---|
99 |
|
---|
100 | std::ostream & operator<< (std::ostream & os, const Hep3Vector & v) {
|
---|
101 | return os << "(" << v.x() << "," << v.y() << "," << v.z() << ")";
|
---|
102 | }
|
---|
103 |
|
---|
104 | void ZMinput3doubles ( std::istream & is, const char * type,
|
---|
105 | double & x, double & y, double & z );
|
---|
106 |
|
---|
107 | std::istream & operator>>(std::istream & is, Hep3Vector & v) {
|
---|
108 | double x, y, z;
|
---|
109 | ZMinput3doubles ( is, "Hep3Vector", x, y, z );
|
---|
110 | v.set(x, y, z);
|
---|
111 | return is;
|
---|
112 | } // operator>>()
|
---|
113 |
|
---|
114 | const Hep3Vector HepXHat(1.0, 0.0, 0.0);
|
---|
115 | const Hep3Vector HepYHat(0.0, 1.0, 0.0);
|
---|
116 | const Hep3Vector HepZHat(0.0, 0.0, 1.0);
|
---|
117 |
|
---|
118 | //-------------------
|
---|
119 | //
|
---|
120 | // New methods introduced when ZOOM PhysicsVectors was merged in:
|
---|
121 | //
|
---|
122 | //-------------------
|
---|
123 |
|
---|
124 | Hep3Vector & Hep3Vector::rotateX (double phi) {
|
---|
125 | double sinphi = sin(phi);
|
---|
126 | double cosphi = cos(phi);
|
---|
127 | double ty;
|
---|
128 | ty = dy * cosphi - dz * sinphi;
|
---|
129 | dz = dz * cosphi + dy * sinphi;
|
---|
130 | dy = ty;
|
---|
131 | return *this;
|
---|
132 | } /* rotateX */
|
---|
133 |
|
---|
134 | Hep3Vector & Hep3Vector::rotateY (double phi) {
|
---|
135 | double sinphi = sin(phi);
|
---|
136 | double cosphi = cos(phi);
|
---|
137 | double tz;
|
---|
138 | tz = dz * cosphi - dx * sinphi;
|
---|
139 | dx = dx * cosphi + dz * sinphi;
|
---|
140 | dz = tz;
|
---|
141 | return *this;
|
---|
142 | } /* rotateY */
|
---|
143 |
|
---|
144 | Hep3Vector & Hep3Vector::rotateZ (double phi) {
|
---|
145 | double sinphi = sin(phi);
|
---|
146 | double cosphi = cos(phi);
|
---|
147 | double tx;
|
---|
148 | tx = dx * cosphi - dy * sinphi;
|
---|
149 | dy = dy * cosphi + dx * sinphi;
|
---|
150 | dx = tx;
|
---|
151 | return *this;
|
---|
152 | } /* rotateZ */
|
---|
153 |
|
---|
154 | bool Hep3Vector::isNear(const Hep3Vector & v, double epsilon) const {
|
---|
155 | double limit = dot(v)*epsilon*epsilon;
|
---|
156 | return ( (*this - v).mag2() <= limit );
|
---|
157 | } /* isNear() */
|
---|
158 |
|
---|
159 | double Hep3Vector::howNear(const Hep3Vector & v ) const {
|
---|
160 | // | V1 - V2 | **2 / V1 dot V2, up to 1
|
---|
161 | double d = (*this - v).mag2();
|
---|
162 | double vdv = dot(v);
|
---|
163 | if ( (vdv > 0) && (d < vdv) ) {
|
---|
164 | return sqrt (d/vdv);
|
---|
165 | } else if ( (vdv == 0) && (d == 0) ) {
|
---|
166 | return 0;
|
---|
167 | } else {
|
---|
168 | return 1;
|
---|
169 | }
|
---|
170 | } /* howNear */
|
---|
171 |
|
---|
172 | double Hep3Vector::deltaPhi (const Hep3Vector & v2) const {
|
---|
173 | double dphi = v2.getPhi() - getPhi();
|
---|
174 | if ( dphi > CLHEP::pi ) {
|
---|
175 | dphi -= CLHEP::twopi;
|
---|
176 | } else if ( dphi <= -CLHEP::pi ) {
|
---|
177 | dphi += CLHEP::twopi;
|
---|
178 | }
|
---|
179 | return dphi;
|
---|
180 | } /* deltaPhi */
|
---|
181 |
|
---|
182 | double Hep3Vector::deltaR ( const Hep3Vector & v ) const {
|
---|
183 | double a = eta() - v.eta();
|
---|
184 | double b = deltaPhi(v);
|
---|
185 | return sqrt ( a*a + b*b );
|
---|
186 | } /* deltaR */
|
---|
187 |
|
---|
188 | double Hep3Vector::cosTheta(const Hep3Vector & q) const {
|
---|
189 | double arg;
|
---|
190 | double ptot2 = mag2()*q.mag2();
|
---|
191 | if(ptot2 <= 0) {
|
---|
192 | arg = 0.0;
|
---|
193 | }else{
|
---|
194 | arg = dot(q)/sqrt(ptot2);
|
---|
195 | if(arg > 1.0) arg = 1.0;
|
---|
196 | if(arg < -1.0) arg = -1.0;
|
---|
197 | }
|
---|
198 | return arg;
|
---|
199 | }
|
---|
200 |
|
---|
201 | double Hep3Vector::cos2Theta(const Hep3Vector & q) const {
|
---|
202 | double arg;
|
---|
203 | double ptot2 = mag2();
|
---|
204 | double qtot2 = q.mag2();
|
---|
205 | if ( ptot2 == 0 || qtot2 == 0 ) {
|
---|
206 | arg = 1.0;
|
---|
207 | }else{
|
---|
208 | double pdq = dot(q);
|
---|
209 | arg = (pdq/ptot2) * (pdq/qtot2);
|
---|
210 | // More naive methods overflow on vectors which can be squared
|
---|
211 | // but can't be raised to the 4th power.
|
---|
212 | if(arg > 1.0) arg = 1.0;
|
---|
213 | }
|
---|
214 | return arg;
|
---|
215 | }
|
---|
216 |
|
---|
217 | void Hep3Vector::setEta (double eta) {
|
---|
218 | double phi = 0;
|
---|
219 | double r;
|
---|
220 | if ( (dx == 0) && (dy == 0) ) {
|
---|
221 | if (dz == 0) {
|
---|
222 | ZMthrowC (ZMxpvZeroVector(
|
---|
223 | "Attempt to set eta of zero vector -- vector is unchanged"));
|
---|
224 | return;
|
---|
225 | }
|
---|
226 | ZMthrowC (ZMxpvZeroVector(
|
---|
227 | "Attempt to set eta of vector along Z axis -- will use phi = 0"));
|
---|
228 | r = fabs(dz);
|
---|
229 | } else {
|
---|
230 | r = getR();
|
---|
231 | phi = getPhi();
|
---|
232 | }
|
---|
233 | double tanHalfTheta = exp ( -eta );
|
---|
234 | double cosTheta =
|
---|
235 | (1 - tanHalfTheta*tanHalfTheta) / (1 + tanHalfTheta*tanHalfTheta);
|
---|
236 | dz = r * cosTheta;
|
---|
237 | double rho = r*sqrt(1 - cosTheta*cosTheta);
|
---|
238 | dy = rho * sin (phi);
|
---|
239 | dx = rho * cos (phi);
|
---|
240 | return;
|
---|
241 | }
|
---|
242 |
|
---|
243 | void Hep3Vector::setCylTheta (double theta) {
|
---|
244 |
|
---|
245 | // In cylindrical coords, set theta while keeping rho and phi fixed
|
---|
246 |
|
---|
247 | if ( (dx == 0) && (dy == 0) ) {
|
---|
248 | if (dz == 0) {
|
---|
249 | ZMthrowC (ZMxpvZeroVector(
|
---|
250 | "Attempt to set cylTheta of zero vector -- vector is unchanged"));
|
---|
251 | return;
|
---|
252 | }
|
---|
253 | if (theta == 0) {
|
---|
254 | dz = fabs(dz);
|
---|
255 | return;
|
---|
256 | }
|
---|
257 | if (theta == CLHEP::pi) {
|
---|
258 | dz = -fabs(dz);
|
---|
259 | return;
|
---|
260 | }
|
---|
261 | ZMthrowC (ZMxpvZeroVector(
|
---|
262 | "Attempt set cylindrical theta of vector along Z axis "
|
---|
263 | "to a non-trivial value, while keeping rho fixed -- "
|
---|
264 | "will return zero vector"));
|
---|
265 | dz = 0;
|
---|
266 | return;
|
---|
267 | }
|
---|
268 | if ( (theta < 0) || (theta > CLHEP::pi) ) {
|
---|
269 | ZMthrowC (ZMxpvUnusualTheta(
|
---|
270 | "Setting Cyl theta of a vector based on a value not in [0, PI]"));
|
---|
271 | // No special return needed if warning is ignored.
|
---|
272 | }
|
---|
273 | double phi (getPhi());
|
---|
274 | double rho = getRho();
|
---|
275 | if ( (theta == 0) || (theta == CLHEP::pi) ) {
|
---|
276 | ZMthrowC (ZMxpvInfiniteVector(
|
---|
277 | "Attempt to set cylindrical theta to 0 or PI "
|
---|
278 | "while keeping rho fixed -- infinite Z will be computed"));
|
---|
279 | dz = (theta==0) ? 1.0E72 : -1.0E72;
|
---|
280 | return;
|
---|
281 | }
|
---|
282 | dz = rho / tan (theta);
|
---|
283 | dy = rho * sin (phi);
|
---|
284 | dx = rho * cos (phi);
|
---|
285 |
|
---|
286 | } /* setCylTheta */
|
---|
287 |
|
---|
288 | void Hep3Vector::setCylEta (double eta) {
|
---|
289 |
|
---|
290 | // In cylindrical coords, set eta while keeping rho and phi fixed
|
---|
291 |
|
---|
292 | double theta = 2 * atan ( exp (-eta) );
|
---|
293 |
|
---|
294 | //-| The remaining code is similar to setCylTheta, The reason for
|
---|
295 | //-| using a copy is so as to be able to change the messages in the
|
---|
296 | //-| ZMthrows to say eta rather than theta. Besides, we assumedly
|
---|
297 | //-| need not check for theta of 0 or PI.
|
---|
298 |
|
---|
299 | if ( (dx == 0) && (dy == 0) ) {
|
---|
300 | if (dz == 0) {
|
---|
301 | ZMthrowC (ZMxpvZeroVector(
|
---|
302 | "Attempt to set cylEta of zero vector -- vector is unchanged"));
|
---|
303 | return;
|
---|
304 | }
|
---|
305 | if (theta == 0) {
|
---|
306 | dz = fabs(dz);
|
---|
307 | return;
|
---|
308 | }
|
---|
309 | if (theta == CLHEP::pi) {
|
---|
310 | dz = -fabs(dz);
|
---|
311 | return;
|
---|
312 | }
|
---|
313 | ZMthrowC (ZMxpvZeroVector(
|
---|
314 | "Attempt set cylindrical eta of vector along Z axis "
|
---|
315 | "to a non-trivial value, while keeping rho fixed -- "
|
---|
316 | "will return zero vector"));
|
---|
317 | dz = 0;
|
---|
318 | return;
|
---|
319 | }
|
---|
320 | double phi (getPhi());
|
---|
321 | double rho = getRho();
|
---|
322 | dz = rho / tan (theta);
|
---|
323 | dy = rho * sin (phi);
|
---|
324 | dx = rho * cos (phi);
|
---|
325 |
|
---|
326 | } /* setCylEta */
|
---|
327 |
|
---|
328 |
|
---|
329 | Hep3Vector operator/ ( const Hep3Vector & v1, double c ) {
|
---|
330 | if (c == 0) {
|
---|
331 | ZMthrowA ( ZMxpvInfiniteVector (
|
---|
332 | "Attempt to divide vector by 0 -- "
|
---|
333 | "will produce infinities and/or NANs"));
|
---|
334 | }
|
---|
335 | double oneOverC = 1.0/c;
|
---|
336 | return Hep3Vector ( v1.x() * oneOverC,
|
---|
337 | v1.y() * oneOverC,
|
---|
338 | v1.z() * oneOverC );
|
---|
339 | } /* v / c */
|
---|
340 |
|
---|
341 | Hep3Vector & Hep3Vector::operator/= (double c) {
|
---|
342 | if (c == 0) {
|
---|
343 | ZMthrowA (ZMxpvInfiniteVector(
|
---|
344 | "Attempt to do vector /= 0 -- "
|
---|
345 | "division by zero would produce infinite or NAN components"));
|
---|
346 | }
|
---|
347 | double oneOverC = 1.0/c;
|
---|
348 | dx *= oneOverC;
|
---|
349 | dy *= oneOverC;
|
---|
350 | dz *= oneOverC;
|
---|
351 | return *this;
|
---|
352 | }
|
---|
353 |
|
---|
354 | double Hep3Vector::tolerance = Hep3Vector::ToleranceTicks * 2.22045e-16;
|
---|
355 |
|
---|
356 | } // namespace CLHEP
|
---|
357 |
|
---|
358 |
|
---|
359 |
|
---|