[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // $Id: ThreeVector.cc,v 1.1 2008-06-04 14:15:11 demin Exp $
|
---|
| 3 | // ---------------------------------------------------------------------------
|
---|
| 4 | //
|
---|
| 5 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 6 | //
|
---|
| 7 | // This is the implementation of the Hep3Vector class.
|
---|
| 8 | //
|
---|
| 9 | // See also ThreeVectorR.cc for implementation of Hep3Vector methods which
|
---|
| 10 | // would couple in all the HepRotation methods.
|
---|
| 11 | //
|
---|
| 12 |
|
---|
| 13 | #ifdef GNUPRAGMA
|
---|
| 14 | #pragma implementation
|
---|
| 15 | #endif
|
---|
| 16 |
|
---|
| 17 | #include "CLHEP/Vector/defs.h"
|
---|
| 18 | #include "CLHEP/Vector/ThreeVector.h"
|
---|
| 19 | #include "CLHEP/Vector/ZMxpv.h"
|
---|
| 20 | #include "CLHEP/Units/PhysicalConstants.h"
|
---|
| 21 |
|
---|
| 22 | #include <cmath>
|
---|
| 23 | #include <iostream>
|
---|
| 24 |
|
---|
| 25 | namespace CLHEP {
|
---|
| 26 |
|
---|
| 27 | void Hep3Vector::setMag(double ma) {
|
---|
| 28 | double factor = mag();
|
---|
| 29 | if (factor == 0) {
|
---|
| 30 | ZMthrowA ( ZMxpvZeroVector (
|
---|
| 31 | "Hep3Vector::setMag : zero vector can't be stretched"));
|
---|
| 32 | }else{
|
---|
| 33 | factor = ma/factor;
|
---|
| 34 | setX(x()*factor);
|
---|
| 35 | setY(y()*factor);
|
---|
| 36 | setZ(z()*factor);
|
---|
| 37 | }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | double Hep3Vector::operator () (int i) const {
|
---|
| 41 | switch(i) {
|
---|
| 42 | case X:
|
---|
| 43 | return x();
|
---|
| 44 | case Y:
|
---|
| 45 | return y();
|
---|
| 46 | case Z:
|
---|
| 47 | return z();
|
---|
| 48 | default:
|
---|
| 49 | std::cerr << "Hep3Vector subscripting: bad index (" << i << ")"
|
---|
| 50 | << std::endl;
|
---|
| 51 | }
|
---|
| 52 | return 0.;
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | double & Hep3Vector::operator () (int i) {
|
---|
| 56 | static double dummy;
|
---|
| 57 | switch(i) {
|
---|
| 58 | case X:
|
---|
| 59 | return dx;
|
---|
| 60 | case Y:
|
---|
| 61 | return dy;
|
---|
| 62 | case Z:
|
---|
| 63 | return dz;
|
---|
| 64 | default:
|
---|
| 65 | std::cerr
|
---|
| 66 | << "Hep3Vector subscripting: bad index (" << i << ")"
|
---|
| 67 | << std::endl;
|
---|
| 68 | return dummy;
|
---|
| 69 | }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | Hep3Vector & Hep3Vector::rotateUz(const Hep3Vector& NewUzVector) {
|
---|
| 73 | // NewUzVector must be normalized !
|
---|
| 74 |
|
---|
| 75 | double u1 = NewUzVector.x();
|
---|
| 76 | double u2 = NewUzVector.y();
|
---|
| 77 | double u3 = NewUzVector.z();
|
---|
| 78 | double up = u1*u1 + u2*u2;
|
---|
| 79 |
|
---|
| 80 | if (up>0) {
|
---|
| 81 | up = sqrt(up);
|
---|
| 82 | double px = dx, py = dy, pz = dz;
|
---|
| 83 | dx = (u1*u3*px - u2*py)/up + u1*pz;
|
---|
| 84 | dy = (u2*u3*px + u1*py)/up + u2*pz;
|
---|
| 85 | dz = -up*px + u3*pz;
|
---|
| 86 | }
|
---|
| 87 | else if (u3 < 0.) { dx = -dx; dz = -dz; } // phi=0 teta=pi
|
---|
| 88 | else {};
|
---|
| 89 | return *this;
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | double Hep3Vector::pseudoRapidity() const {
|
---|
| 93 | double m = mag();
|
---|
| 94 | if ( m== 0 ) return 0.0;
|
---|
| 95 | if ( m== z() ) return 1.0E72;
|
---|
| 96 | if ( m== -z() ) return -1.0E72;
|
---|
| 97 | return 0.5*log( (m+z())/(m-z()) );
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | std::ostream & operator<< (std::ostream & os, const Hep3Vector & v) {
|
---|
| 101 | return os << "(" << v.x() << "," << v.y() << "," << v.z() << ")";
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | void ZMinput3doubles ( std::istream & is, const char * type,
|
---|
| 105 | double & x, double & y, double & z );
|
---|
| 106 |
|
---|
| 107 | std::istream & operator>>(std::istream & is, Hep3Vector & v) {
|
---|
| 108 | double x, y, z;
|
---|
| 109 | ZMinput3doubles ( is, "Hep3Vector", x, y, z );
|
---|
| 110 | v.set(x, y, z);
|
---|
| 111 | return is;
|
---|
| 112 | } // operator>>()
|
---|
| 113 |
|
---|
| 114 | const Hep3Vector HepXHat(1.0, 0.0, 0.0);
|
---|
| 115 | const Hep3Vector HepYHat(0.0, 1.0, 0.0);
|
---|
| 116 | const Hep3Vector HepZHat(0.0, 0.0, 1.0);
|
---|
| 117 |
|
---|
| 118 | //-------------------
|
---|
| 119 | //
|
---|
| 120 | // New methods introduced when ZOOM PhysicsVectors was merged in:
|
---|
| 121 | //
|
---|
| 122 | //-------------------
|
---|
| 123 |
|
---|
| 124 | Hep3Vector & Hep3Vector::rotateX (double phi) {
|
---|
| 125 | double sinphi = sin(phi);
|
---|
| 126 | double cosphi = cos(phi);
|
---|
| 127 | double ty;
|
---|
| 128 | ty = dy * cosphi - dz * sinphi;
|
---|
| 129 | dz = dz * cosphi + dy * sinphi;
|
---|
| 130 | dy = ty;
|
---|
| 131 | return *this;
|
---|
| 132 | } /* rotateX */
|
---|
| 133 |
|
---|
| 134 | Hep3Vector & Hep3Vector::rotateY (double phi) {
|
---|
| 135 | double sinphi = sin(phi);
|
---|
| 136 | double cosphi = cos(phi);
|
---|
| 137 | double tz;
|
---|
| 138 | tz = dz * cosphi - dx * sinphi;
|
---|
| 139 | dx = dx * cosphi + dz * sinphi;
|
---|
| 140 | dz = tz;
|
---|
| 141 | return *this;
|
---|
| 142 | } /* rotateY */
|
---|
| 143 |
|
---|
| 144 | Hep3Vector & Hep3Vector::rotateZ (double phi) {
|
---|
| 145 | double sinphi = sin(phi);
|
---|
| 146 | double cosphi = cos(phi);
|
---|
| 147 | double tx;
|
---|
| 148 | tx = dx * cosphi - dy * sinphi;
|
---|
| 149 | dy = dy * cosphi + dx * sinphi;
|
---|
| 150 | dx = tx;
|
---|
| 151 | return *this;
|
---|
| 152 | } /* rotateZ */
|
---|
| 153 |
|
---|
| 154 | bool Hep3Vector::isNear(const Hep3Vector & v, double epsilon) const {
|
---|
| 155 | double limit = dot(v)*epsilon*epsilon;
|
---|
| 156 | return ( (*this - v).mag2() <= limit );
|
---|
| 157 | } /* isNear() */
|
---|
| 158 |
|
---|
| 159 | double Hep3Vector::howNear(const Hep3Vector & v ) const {
|
---|
| 160 | // | V1 - V2 | **2 / V1 dot V2, up to 1
|
---|
| 161 | double d = (*this - v).mag2();
|
---|
| 162 | double vdv = dot(v);
|
---|
| 163 | if ( (vdv > 0) && (d < vdv) ) {
|
---|
| 164 | return sqrt (d/vdv);
|
---|
| 165 | } else if ( (vdv == 0) && (d == 0) ) {
|
---|
| 166 | return 0;
|
---|
| 167 | } else {
|
---|
| 168 | return 1;
|
---|
| 169 | }
|
---|
| 170 | } /* howNear */
|
---|
| 171 |
|
---|
| 172 | double Hep3Vector::deltaPhi (const Hep3Vector & v2) const {
|
---|
| 173 | double dphi = v2.getPhi() - getPhi();
|
---|
| 174 | if ( dphi > CLHEP::pi ) {
|
---|
| 175 | dphi -= CLHEP::twopi;
|
---|
| 176 | } else if ( dphi <= -CLHEP::pi ) {
|
---|
| 177 | dphi += CLHEP::twopi;
|
---|
| 178 | }
|
---|
| 179 | return dphi;
|
---|
| 180 | } /* deltaPhi */
|
---|
| 181 |
|
---|
| 182 | double Hep3Vector::deltaR ( const Hep3Vector & v ) const {
|
---|
| 183 | double a = eta() - v.eta();
|
---|
| 184 | double b = deltaPhi(v);
|
---|
| 185 | return sqrt ( a*a + b*b );
|
---|
| 186 | } /* deltaR */
|
---|
| 187 |
|
---|
| 188 | double Hep3Vector::cosTheta(const Hep3Vector & q) const {
|
---|
| 189 | double arg;
|
---|
| 190 | double ptot2 = mag2()*q.mag2();
|
---|
| 191 | if(ptot2 <= 0) {
|
---|
| 192 | arg = 0.0;
|
---|
| 193 | }else{
|
---|
| 194 | arg = dot(q)/sqrt(ptot2);
|
---|
| 195 | if(arg > 1.0) arg = 1.0;
|
---|
| 196 | if(arg < -1.0) arg = -1.0;
|
---|
| 197 | }
|
---|
| 198 | return arg;
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | double Hep3Vector::cos2Theta(const Hep3Vector & q) const {
|
---|
| 202 | double arg;
|
---|
| 203 | double ptot2 = mag2();
|
---|
| 204 | double qtot2 = q.mag2();
|
---|
| 205 | if ( ptot2 == 0 || qtot2 == 0 ) {
|
---|
| 206 | arg = 1.0;
|
---|
| 207 | }else{
|
---|
| 208 | double pdq = dot(q);
|
---|
| 209 | arg = (pdq/ptot2) * (pdq/qtot2);
|
---|
| 210 | // More naive methods overflow on vectors which can be squared
|
---|
| 211 | // but can't be raised to the 4th power.
|
---|
| 212 | if(arg > 1.0) arg = 1.0;
|
---|
| 213 | }
|
---|
| 214 | return arg;
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | void Hep3Vector::setEta (double eta) {
|
---|
| 218 | double phi = 0;
|
---|
| 219 | double r;
|
---|
| 220 | if ( (dx == 0) && (dy == 0) ) {
|
---|
| 221 | if (dz == 0) {
|
---|
| 222 | ZMthrowC (ZMxpvZeroVector(
|
---|
| 223 | "Attempt to set eta of zero vector -- vector is unchanged"));
|
---|
| 224 | return;
|
---|
| 225 | }
|
---|
| 226 | ZMthrowC (ZMxpvZeroVector(
|
---|
| 227 | "Attempt to set eta of vector along Z axis -- will use phi = 0"));
|
---|
| 228 | r = fabs(dz);
|
---|
| 229 | } else {
|
---|
| 230 | r = getR();
|
---|
| 231 | phi = getPhi();
|
---|
| 232 | }
|
---|
| 233 | double tanHalfTheta = exp ( -eta );
|
---|
| 234 | double cosTheta =
|
---|
| 235 | (1 - tanHalfTheta*tanHalfTheta) / (1 + tanHalfTheta*tanHalfTheta);
|
---|
| 236 | dz = r * cosTheta;
|
---|
| 237 | double rho = r*sqrt(1 - cosTheta*cosTheta);
|
---|
| 238 | dy = rho * sin (phi);
|
---|
| 239 | dx = rho * cos (phi);
|
---|
| 240 | return;
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 | void Hep3Vector::setCylTheta (double theta) {
|
---|
| 244 |
|
---|
| 245 | // In cylindrical coords, set theta while keeping rho and phi fixed
|
---|
| 246 |
|
---|
| 247 | if ( (dx == 0) && (dy == 0) ) {
|
---|
| 248 | if (dz == 0) {
|
---|
| 249 | ZMthrowC (ZMxpvZeroVector(
|
---|
| 250 | "Attempt to set cylTheta of zero vector -- vector is unchanged"));
|
---|
| 251 | return;
|
---|
| 252 | }
|
---|
| 253 | if (theta == 0) {
|
---|
| 254 | dz = fabs(dz);
|
---|
| 255 | return;
|
---|
| 256 | }
|
---|
| 257 | if (theta == CLHEP::pi) {
|
---|
| 258 | dz = -fabs(dz);
|
---|
| 259 | return;
|
---|
| 260 | }
|
---|
| 261 | ZMthrowC (ZMxpvZeroVector(
|
---|
| 262 | "Attempt set cylindrical theta of vector along Z axis "
|
---|
| 263 | "to a non-trivial value, while keeping rho fixed -- "
|
---|
| 264 | "will return zero vector"));
|
---|
| 265 | dz = 0;
|
---|
| 266 | return;
|
---|
| 267 | }
|
---|
| 268 | if ( (theta < 0) || (theta > CLHEP::pi) ) {
|
---|
| 269 | ZMthrowC (ZMxpvUnusualTheta(
|
---|
| 270 | "Setting Cyl theta of a vector based on a value not in [0, PI]"));
|
---|
| 271 | // No special return needed if warning is ignored.
|
---|
| 272 | }
|
---|
| 273 | double phi (getPhi());
|
---|
| 274 | double rho = getRho();
|
---|
| 275 | if ( (theta == 0) || (theta == CLHEP::pi) ) {
|
---|
| 276 | ZMthrowC (ZMxpvInfiniteVector(
|
---|
| 277 | "Attempt to set cylindrical theta to 0 or PI "
|
---|
| 278 | "while keeping rho fixed -- infinite Z will be computed"));
|
---|
| 279 | dz = (theta==0) ? 1.0E72 : -1.0E72;
|
---|
| 280 | return;
|
---|
| 281 | }
|
---|
| 282 | dz = rho / tan (theta);
|
---|
| 283 | dy = rho * sin (phi);
|
---|
| 284 | dx = rho * cos (phi);
|
---|
| 285 |
|
---|
| 286 | } /* setCylTheta */
|
---|
| 287 |
|
---|
| 288 | void Hep3Vector::setCylEta (double eta) {
|
---|
| 289 |
|
---|
| 290 | // In cylindrical coords, set eta while keeping rho and phi fixed
|
---|
| 291 |
|
---|
| 292 | double theta = 2 * atan ( exp (-eta) );
|
---|
| 293 |
|
---|
| 294 | //-| The remaining code is similar to setCylTheta, The reason for
|
---|
| 295 | //-| using a copy is so as to be able to change the messages in the
|
---|
| 296 | //-| ZMthrows to say eta rather than theta. Besides, we assumedly
|
---|
| 297 | //-| need not check for theta of 0 or PI.
|
---|
| 298 |
|
---|
| 299 | if ( (dx == 0) && (dy == 0) ) {
|
---|
| 300 | if (dz == 0) {
|
---|
| 301 | ZMthrowC (ZMxpvZeroVector(
|
---|
| 302 | "Attempt to set cylEta of zero vector -- vector is unchanged"));
|
---|
| 303 | return;
|
---|
| 304 | }
|
---|
| 305 | if (theta == 0) {
|
---|
| 306 | dz = fabs(dz);
|
---|
| 307 | return;
|
---|
| 308 | }
|
---|
| 309 | if (theta == CLHEP::pi) {
|
---|
| 310 | dz = -fabs(dz);
|
---|
| 311 | return;
|
---|
| 312 | }
|
---|
| 313 | ZMthrowC (ZMxpvZeroVector(
|
---|
| 314 | "Attempt set cylindrical eta of vector along Z axis "
|
---|
| 315 | "to a non-trivial value, while keeping rho fixed -- "
|
---|
| 316 | "will return zero vector"));
|
---|
| 317 | dz = 0;
|
---|
| 318 | return;
|
---|
| 319 | }
|
---|
| 320 | double phi (getPhi());
|
---|
| 321 | double rho = getRho();
|
---|
| 322 | dz = rho / tan (theta);
|
---|
| 323 | dy = rho * sin (phi);
|
---|
| 324 | dx = rho * cos (phi);
|
---|
| 325 |
|
---|
| 326 | } /* setCylEta */
|
---|
| 327 |
|
---|
| 328 |
|
---|
| 329 | Hep3Vector operator/ ( const Hep3Vector & v1, double c ) {
|
---|
| 330 | if (c == 0) {
|
---|
| 331 | ZMthrowA ( ZMxpvInfiniteVector (
|
---|
| 332 | "Attempt to divide vector by 0 -- "
|
---|
| 333 | "will produce infinities and/or NANs"));
|
---|
| 334 | }
|
---|
| 335 | double oneOverC = 1.0/c;
|
---|
| 336 | return Hep3Vector ( v1.x() * oneOverC,
|
---|
| 337 | v1.y() * oneOverC,
|
---|
| 338 | v1.z() * oneOverC );
|
---|
| 339 | } /* v / c */
|
---|
| 340 |
|
---|
| 341 | Hep3Vector & Hep3Vector::operator/= (double c) {
|
---|
| 342 | if (c == 0) {
|
---|
| 343 | ZMthrowA (ZMxpvInfiniteVector(
|
---|
| 344 | "Attempt to do vector /= 0 -- "
|
---|
| 345 | "division by zero would produce infinite or NAN components"));
|
---|
| 346 | }
|
---|
| 347 | double oneOverC = 1.0/c;
|
---|
| 348 | dx *= oneOverC;
|
---|
| 349 | dy *= oneOverC;
|
---|
| 350 | dz *= oneOverC;
|
---|
| 351 | return *this;
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | double Hep3Vector::tolerance = Hep3Vector::ToleranceTicks * 2.22045e-16;
|
---|
| 355 |
|
---|
| 356 | } // namespace CLHEP
|
---|
| 357 |
|
---|
| 358 |
|
---|
| 359 |
|
---|