[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // ---------------------------------------------------------------------------
|
---|
| 3 | //
|
---|
| 4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 5 | //
|
---|
| 6 | // SpaceVector
|
---|
| 7 | //
|
---|
| 8 | // This is the implementation of those methods of the Hep3Vector class which
|
---|
| 9 | // originated from the ZOOM SpaceVector class. Several groups of these methods
|
---|
| 10 | // have been separated off into the following code units:
|
---|
| 11 | //
|
---|
| 12 | // SpaceVectorR.cc All methods involving rotation
|
---|
| 13 | // SpaceVectorD.cc All methods involving angle decomposition
|
---|
| 14 | // SpaceVectorP.cc Intrinsic properties and methods involving second vector
|
---|
| 15 | //
|
---|
| 16 |
|
---|
| 17 | #ifdef GNUPRAGMA
|
---|
| 18 | #pragma implementation
|
---|
| 19 | #endif
|
---|
| 20 |
|
---|
| 21 | #include "CLHEP/Vector/defs.h"
|
---|
| 22 | #include "CLHEP/Vector/ThreeVector.h"
|
---|
| 23 | #include "CLHEP/Vector/ZMxpv.h"
|
---|
| 24 | #include "CLHEP/Units/PhysicalConstants.h"
|
---|
| 25 |
|
---|
| 26 | #include <cmath>
|
---|
| 27 |
|
---|
| 28 | namespace CLHEP {
|
---|
| 29 |
|
---|
| 30 | //-*****************************
|
---|
| 31 | // - 1 -
|
---|
| 32 | // set (multiple components)
|
---|
| 33 | // in various coordinate systems
|
---|
| 34 | //
|
---|
| 35 | //-*****************************
|
---|
| 36 |
|
---|
| 37 | void Hep3Vector::setSpherical (
|
---|
| 38 | double r,
|
---|
| 39 | double theta,
|
---|
| 40 | double phi) {
|
---|
| 41 | if ( r < 0 ) {
|
---|
| 42 | ZMthrowC (ZMxpvNegativeR(
|
---|
| 43 | "Spherical coordinates set with negative R"));
|
---|
| 44 | // No special return needed if warning is ignored.
|
---|
| 45 | }
|
---|
| 46 | if ( (theta < 0) || (theta > CLHEP::pi) ) {
|
---|
| 47 | ZMthrowC (ZMxpvUnusualTheta(
|
---|
| 48 | "Spherical coordinates set with theta not in [0, PI]"));
|
---|
| 49 | // No special return needed if warning is ignored.
|
---|
| 50 | }
|
---|
| 51 | dz = r * cos(theta);
|
---|
| 52 | double rho ( r*sin(theta));
|
---|
| 53 | dy = rho * sin (phi);
|
---|
| 54 | dx = rho * cos (phi);
|
---|
| 55 | return;
|
---|
| 56 | } /* setSpherical (r, theta, phi) */
|
---|
| 57 |
|
---|
| 58 | void Hep3Vector::setCylindrical (
|
---|
| 59 | double rho,
|
---|
| 60 | double phi,
|
---|
| 61 | double z) {
|
---|
| 62 | if ( rho < 0 ) {
|
---|
| 63 | ZMthrowC (ZMxpvNegativeR(
|
---|
| 64 | "Cylindrical coordinates supplied with negative Rho"));
|
---|
| 65 | // No special return needed if warning is ignored.
|
---|
| 66 | }
|
---|
| 67 | dz = z;
|
---|
| 68 | dy = rho * sin (phi);
|
---|
| 69 | dx = rho * cos (phi);
|
---|
| 70 | return;
|
---|
| 71 | } /* setCylindrical (r, phi, z) */
|
---|
| 72 |
|
---|
| 73 | void Hep3Vector::setRhoPhiTheta (
|
---|
| 74 | double rho,
|
---|
| 75 | double phi,
|
---|
| 76 | double theta) {
|
---|
| 77 | if (rho == 0) {
|
---|
| 78 | ZMthrowC (ZMxpvZeroVector(
|
---|
| 79 | "Attempt set vector components rho, phi, theta with zero rho -- "
|
---|
| 80 | "zero vector is returned, ignoring theta and phi"));
|
---|
| 81 | dx = 0; dy = 0; dz = 0;
|
---|
| 82 | return;
|
---|
| 83 | }
|
---|
| 84 | if ( (theta == 0) || (theta == CLHEP::pi) ) {
|
---|
| 85 | ZMthrowA (ZMxpvInfiniteVector(
|
---|
| 86 | "Attempt set cylindrical vector vector with finite rho and "
|
---|
| 87 | "theta along the Z axis: infinite Z would be computed"));
|
---|
| 88 | }
|
---|
| 89 | if ( (theta < 0) || (theta > CLHEP::pi) ) {
|
---|
| 90 | ZMthrowC (ZMxpvUnusualTheta(
|
---|
| 91 | "Rho, phi, theta set with theta not in [0, PI]"));
|
---|
| 92 | // No special return needed if warning is ignored.
|
---|
| 93 | }
|
---|
| 94 | dz = rho / tan (theta);
|
---|
| 95 | dy = rho * sin (phi);
|
---|
| 96 | dx = rho * cos (phi);
|
---|
| 97 | return;
|
---|
| 98 | } /* setCyl (rho, phi, theta) */
|
---|
| 99 |
|
---|
| 100 | void Hep3Vector::setRhoPhiEta (
|
---|
| 101 | double rho,
|
---|
| 102 | double phi,
|
---|
| 103 | double eta ) {
|
---|
| 104 | if (rho == 0) {
|
---|
| 105 | ZMthrowC (ZMxpvZeroVector(
|
---|
| 106 | "Attempt set vector components rho, phi, eta with zero rho -- "
|
---|
| 107 | "zero vector is returned, ignoring eta and phi"));
|
---|
| 108 | dx = 0; dy = 0; dz = 0;
|
---|
| 109 | return;
|
---|
| 110 | }
|
---|
| 111 | double theta (2 * atan ( exp (-eta) ));
|
---|
| 112 | dz = rho / tan (theta);
|
---|
| 113 | dy = rho * sin (phi);
|
---|
| 114 | dx = rho * cos (phi);
|
---|
| 115 | return;
|
---|
| 116 | } /* setCyl (rho, phi, eta) */
|
---|
| 117 |
|
---|
| 118 | |
---|
| 119 |
|
---|
| 120 | //************
|
---|
| 121 | // - 3 -
|
---|
| 122 | // Comparisons
|
---|
| 123 | //
|
---|
| 124 | //************
|
---|
| 125 |
|
---|
| 126 | int Hep3Vector::compare (const Hep3Vector & v) const {
|
---|
| 127 | if ( dz > v.dz ) {
|
---|
| 128 | return 1;
|
---|
| 129 | } else if ( dz < v.dz ) {
|
---|
| 130 | return -1;
|
---|
| 131 | } else if ( dy > v.dy ) {
|
---|
| 132 | return 1;
|
---|
| 133 | } else if ( dy < v.dy ) {
|
---|
| 134 | return -1;
|
---|
| 135 | } else if ( dx > v.dx ) {
|
---|
| 136 | return 1;
|
---|
| 137 | } else if ( dx < v.dx ) {
|
---|
| 138 | return -1;
|
---|
| 139 | } else {
|
---|
| 140 | return 0;
|
---|
| 141 | }
|
---|
| 142 | } /* Compare */
|
---|
| 143 |
|
---|
| 144 |
|
---|
| 145 | bool Hep3Vector::operator > (const Hep3Vector & v) const {
|
---|
| 146 | return (compare(v) > 0);
|
---|
| 147 | }
|
---|
| 148 | bool Hep3Vector::operator < (const Hep3Vector & v) const {
|
---|
| 149 | return (compare(v) < 0);
|
---|
| 150 | }
|
---|
| 151 | bool Hep3Vector::operator>= (const Hep3Vector & v) const {
|
---|
| 152 | return (compare(v) >= 0);
|
---|
| 153 | }
|
---|
| 154 | bool Hep3Vector::operator<= (const Hep3Vector & v) const {
|
---|
| 155 | return (compare(v) <= 0);
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | |
---|
| 159 |
|
---|
| 160 |
|
---|
| 161 | //-********
|
---|
| 162 | // Nearness
|
---|
| 163 | //-********
|
---|
| 164 |
|
---|
| 165 | // These methods all assume you can safely take mag2() of each vector.
|
---|
| 166 | // Absolutely safe but slower and much uglier alternatives were
|
---|
| 167 | // provided as build-time options in ZOOM SpaceVectors.
|
---|
| 168 | // Also, much smaller codes were provided tht assume you can square
|
---|
| 169 | // mag2() of each vector; but those return bad answers without warning
|
---|
| 170 | // when components exceed 10**90.
|
---|
| 171 | //
|
---|
| 172 | // IsNear, HowNear, and DeltaR are found in ThreeVector.cc
|
---|
| 173 |
|
---|
| 174 | double Hep3Vector::howParallel (const Hep3Vector & v) const {
|
---|
| 175 | // | V1 x V2 | / | V1 dot V2 |
|
---|
| 176 | double v1v2 = fabs(dot(v));
|
---|
| 177 | if ( v1v2 == 0 ) {
|
---|
| 178 | // Zero is parallel to no other vector except for zero.
|
---|
| 179 | return ( (mag2() == 0) && (v.mag2() == 0) ) ? 0 : 1;
|
---|
| 180 | }
|
---|
| 181 | Hep3Vector v1Xv2 ( cross(v) );
|
---|
| 182 | double abscross = v1Xv2.mag();
|
---|
| 183 | if ( abscross >= v1v2 ) {
|
---|
| 184 | return 1;
|
---|
| 185 | } else {
|
---|
| 186 | return abscross/v1v2;
|
---|
| 187 | }
|
---|
| 188 | } /* howParallel() */
|
---|
| 189 |
|
---|
| 190 | bool Hep3Vector::isParallel (const Hep3Vector & v,
|
---|
| 191 | double epsilon) const {
|
---|
| 192 | // | V1 x V2 | **2 <= epsilon **2 | V1 dot V2 | **2
|
---|
| 193 | // V1 is *this, V2 is v
|
---|
| 194 |
|
---|
| 195 | static const double TOOBIG = pow(2.0,507);
|
---|
| 196 | static const double SCALE = pow(2.0,-507);
|
---|
| 197 | double v1v2 = fabs(dot(v));
|
---|
| 198 | if ( v1v2 == 0 ) {
|
---|
| 199 | return ( (mag2() == 0) && (v.mag2() == 0) );
|
---|
| 200 | }
|
---|
| 201 | if ( v1v2 >= TOOBIG ) {
|
---|
| 202 | Hep3Vector sv1 ( *this * SCALE );
|
---|
| 203 | Hep3Vector sv2 ( v * SCALE );
|
---|
| 204 | Hep3Vector sv1Xsv2 = sv1.cross(sv2);
|
---|
| 205 | double x2 = sv1Xsv2.mag2();
|
---|
| 206 | double limit = v1v2*SCALE*SCALE;
|
---|
| 207 | limit = epsilon*epsilon*limit*limit;
|
---|
| 208 | return ( x2 <= limit );
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | // At this point we know v1v2 can be squared.
|
---|
| 212 |
|
---|
| 213 | Hep3Vector v1Xv2 ( cross(v) );
|
---|
| 214 | if ( (fabs (v1Xv2.dx) > TOOBIG) ||
|
---|
| 215 | (fabs (v1Xv2.dy) > TOOBIG) ||
|
---|
| 216 | (fabs (v1Xv2.dz) > TOOBIG) ) {
|
---|
| 217 | return false;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | return ( (v1Xv2.mag2()) <= ((epsilon * v1v2) * (epsilon * v1v2)) );
|
---|
| 221 |
|
---|
| 222 | } /* isParallel() */
|
---|
| 223 |
|
---|
| 224 |
|
---|
| 225 | double Hep3Vector::howOrthogonal (const Hep3Vector & v) const {
|
---|
| 226 | // | V1 dot V2 | / | V1 x V2 |
|
---|
| 227 |
|
---|
| 228 | double v1v2 = fabs(dot(v));
|
---|
| 229 | //-| Safe because both v1 and v2 can be squared
|
---|
| 230 | if ( v1v2 == 0 ) {
|
---|
| 231 | return 0; // Even if one or both are 0, they are considered orthogonal
|
---|
| 232 | }
|
---|
| 233 | Hep3Vector v1Xv2 ( cross(v) );
|
---|
| 234 | double abscross = v1Xv2.mag();
|
---|
| 235 | if ( v1v2 >= abscross ) {
|
---|
| 236 | return 1;
|
---|
| 237 | } else {
|
---|
| 238 | return v1v2/abscross;
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | } /* howOrthogonal() */
|
---|
| 242 |
|
---|
| 243 | bool Hep3Vector::isOrthogonal (const Hep3Vector & v,
|
---|
| 244 | double epsilon) const {
|
---|
| 245 | // | V1 x V2 | **2 <= epsilon **2 | V1 dot V2 | **2
|
---|
| 246 | // V1 is *this, V2 is v
|
---|
| 247 |
|
---|
| 248 | static const double TOOBIG = pow(2.0,507);
|
---|
| 249 | static const double SCALE = pow(2.0,-507);
|
---|
| 250 | double v1v2 = fabs(dot(v));
|
---|
| 251 | //-| Safe because both v1 and v2 can be squared
|
---|
| 252 | if ( v1v2 >= TOOBIG ) {
|
---|
| 253 | Hep3Vector sv1 ( *this * SCALE );
|
---|
| 254 | Hep3Vector sv2 ( v * SCALE );
|
---|
| 255 | Hep3Vector sv1Xsv2 = sv1.cross(sv2);
|
---|
| 256 | double x2 = sv1Xsv2.mag2();
|
---|
| 257 | double limit = epsilon*epsilon*x2;
|
---|
| 258 | double y2 = v1v2*SCALE*SCALE;
|
---|
| 259 | return ( y2*y2 <= limit );
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 | // At this point we know v1v2 can be squared.
|
---|
| 263 |
|
---|
| 264 | Hep3Vector eps_v1Xv2 ( cross(epsilon*v) );
|
---|
| 265 | if ( (fabs (eps_v1Xv2.dx) > TOOBIG) ||
|
---|
| 266 | (fabs (eps_v1Xv2.dy) > TOOBIG) ||
|
---|
| 267 | (fabs (eps_v1Xv2.dz) > TOOBIG) ) {
|
---|
| 268 | return true;
|
---|
| 269 | }
|
---|
| 270 |
|
---|
| 271 | // At this point we know all the math we need can be done.
|
---|
| 272 |
|
---|
| 273 | return ( v1v2*v1v2 <= eps_v1Xv2.mag2() );
|
---|
| 274 |
|
---|
| 275 | } /* isOrthogonal() */
|
---|
| 276 |
|
---|
| 277 | double Hep3Vector::setTolerance (double tol) {
|
---|
| 278 | // Set the tolerance for Hep3Vectors to be considered near one another
|
---|
| 279 | double oldTolerance (tolerance);
|
---|
| 280 | tolerance = tol;
|
---|
| 281 | return oldTolerance;
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | |
---|
| 285 |
|
---|
| 286 | //-***********************
|
---|
| 287 | // Helper Methods:
|
---|
| 288 | // negativeInfinity()
|
---|
| 289 | //-***********************
|
---|
| 290 |
|
---|
| 291 | double Hep3Vector::negativeInfinity() const {
|
---|
| 292 | // A byte-order-independent way to return -Infinity
|
---|
| 293 | struct Dib {
|
---|
| 294 | union {
|
---|
| 295 | double d;
|
---|
| 296 | unsigned char i[8];
|
---|
| 297 | } u;
|
---|
| 298 | };
|
---|
| 299 | Dib negOne;
|
---|
| 300 | Dib posTwo;
|
---|
| 301 | negOne.u.d = -1.0;
|
---|
| 302 | posTwo.u.d = 2.0;
|
---|
| 303 | Dib value;
|
---|
| 304 | int k;
|
---|
| 305 | for (k=0; k<8; k++) {
|
---|
| 306 | value.u.i[k] = negOne.u.i[k] | posTwo.u.i[k];
|
---|
| 307 | }
|
---|
| 308 | return value.u.d;
|
---|
| 309 | }
|
---|
| 310 |
|
---|
| 311 | } // namespace CLHEP
|
---|
| 312 |
|
---|
| 313 |
|
---|