1 | // -*- C++ -*-
|
---|
2 | // ---------------------------------------------------------------------------
|
---|
3 | //
|
---|
4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
5 | //
|
---|
6 | // This is the implementation of methods of the HepRotationX class which
|
---|
7 | // were introduced when ZOOM PhysicsVectors was merged in.
|
---|
8 | //
|
---|
9 |
|
---|
10 | #ifdef GNUPRAGMA
|
---|
11 | #pragma implementation
|
---|
12 | #endif
|
---|
13 |
|
---|
14 | #include "CLHEP/Vector/defs.h"
|
---|
15 | #include "CLHEP/Vector/RotationX.h"
|
---|
16 | #include "CLHEP/Vector/AxisAngle.h"
|
---|
17 | #include "CLHEP/Vector/EulerAngles.h"
|
---|
18 | #include "CLHEP/Vector/LorentzRotation.h"
|
---|
19 | #include "CLHEP/Units/PhysicalConstants.h"
|
---|
20 |
|
---|
21 | #include <cmath>
|
---|
22 | #include <stdlib.h>
|
---|
23 | #include <iostream>
|
---|
24 |
|
---|
25 | using std::abs;
|
---|
26 |
|
---|
27 | namespace CLHEP {
|
---|
28 |
|
---|
29 | static inline double safe_acos (double x) {
|
---|
30 | if (abs(x) <= 1.0) return acos(x);
|
---|
31 | return ( (x>0) ? 0 : CLHEP::pi );
|
---|
32 | }
|
---|
33 |
|
---|
34 | HepRotationX::HepRotationX(double delta) :
|
---|
35 | d(proper(delta)), s(sin(delta)), c(cos(delta))
|
---|
36 | {}
|
---|
37 |
|
---|
38 | HepRotationX & HepRotationX::set ( double delta ) {
|
---|
39 | d = proper(delta);
|
---|
40 | s = sin(d);
|
---|
41 | c = cos(d);
|
---|
42 | return *this;
|
---|
43 | }
|
---|
44 |
|
---|
45 | double HepRotationX::phi() const {
|
---|
46 | if ( (d > 0) && (d < CLHEP::pi) ) {
|
---|
47 | return CLHEP::pi;
|
---|
48 | } else {
|
---|
49 | return 0.0;
|
---|
50 | }
|
---|
51 | } // HepRotationX::phi()
|
---|
52 |
|
---|
53 | double HepRotationX::theta() const {
|
---|
54 | return fabs( d );
|
---|
55 | } // HepRotationX::theta()
|
---|
56 |
|
---|
57 | double HepRotationX::psi() const {
|
---|
58 | if ( (d > 0) && (d < CLHEP::pi) ) {
|
---|
59 | return CLHEP::pi;
|
---|
60 | } else {
|
---|
61 | return 0.0;
|
---|
62 | }
|
---|
63 | } // HepRotationX::psi()
|
---|
64 |
|
---|
65 | HepEulerAngles HepRotationX::eulerAngles() const {
|
---|
66 | return HepEulerAngles( phi(), theta(), psi() );
|
---|
67 | } // HepRotationX::eulerAngles()
|
---|
68 |
|
---|
69 |
|
---|
70 | // From the defining code in the implementation of CLHEP (in Rotation.cc)
|
---|
71 | // it is clear that thetaX, phiX form the polar angles in the original
|
---|
72 | // coordinate system of the new X axis (and similarly for phiY and phiZ).
|
---|
73 | //
|
---|
74 | // This code is taken directly from the original CLHEP. However, there are as
|
---|
75 | // shown opportunities for significant speed improvement.
|
---|
76 |
|
---|
77 | double HepRotationX::phiX() const {
|
---|
78 | return (yx() == 0.0 && xx() == 0.0) ? 0.0 : atan2(yx(),xx());
|
---|
79 | // or ---- return 0;
|
---|
80 | }
|
---|
81 |
|
---|
82 | double HepRotationX::phiY() const {
|
---|
83 | return (yy() == 0.0 && xy() == 0.0) ? 0.0 : atan2(yy(),xy());
|
---|
84 | // or ---- return (yy() == 0.0) ? 0.0 : atan2(yy(),xy());
|
---|
85 | }
|
---|
86 |
|
---|
87 | double HepRotationX::phiZ() const {
|
---|
88 | return (yz() == 0.0 && xz() == 0.0) ? 0.0 : atan2(yz(),xz());
|
---|
89 | // or ---- return (yz() == 0.0) ? 0.0 : atan2(yz(),xz());
|
---|
90 | }
|
---|
91 |
|
---|
92 | double HepRotationX::thetaX() const {
|
---|
93 | return safe_acos(zx());
|
---|
94 | // or ---- return CLHEP::halfpi;
|
---|
95 | }
|
---|
96 |
|
---|
97 | double HepRotationX::thetaY() const {
|
---|
98 | return safe_acos(zy());
|
---|
99 | }
|
---|
100 |
|
---|
101 | double HepRotationX::thetaZ() const {
|
---|
102 | return safe_acos(zz());
|
---|
103 | // or ---- return d;
|
---|
104 | }
|
---|
105 |
|
---|
106 | void HepRotationX::setDelta ( double delta ) {
|
---|
107 | set(delta);
|
---|
108 | }
|
---|
109 |
|
---|
110 | void HepRotationX::decompose
|
---|
111 | (HepAxisAngle & rotation, Hep3Vector & boost) const {
|
---|
112 | boost.set(0,0,0);
|
---|
113 | rotation = axisAngle();
|
---|
114 | }
|
---|
115 |
|
---|
116 | void HepRotationX::decompose
|
---|
117 | (Hep3Vector & boost, HepAxisAngle & rotation) const {
|
---|
118 | boost.set(0,0,0);
|
---|
119 | rotation = axisAngle();
|
---|
120 | }
|
---|
121 |
|
---|
122 | void HepRotationX::decompose
|
---|
123 | (HepRotation & rotation, HepBoost & boost) const {
|
---|
124 | boost.set(0,0,0);
|
---|
125 | rotation = HepRotation(*this);
|
---|
126 | }
|
---|
127 |
|
---|
128 | void HepRotationX::decompose
|
---|
129 | (HepBoost & boost, HepRotation & rotation) const {
|
---|
130 | boost.set(0,0,0);
|
---|
131 | rotation = HepRotation(*this);
|
---|
132 | }
|
---|
133 |
|
---|
134 | double HepRotationX::distance2( const HepRotationX & r ) const {
|
---|
135 | double answer = 2.0 * ( 1.0 - ( s * r.s + c * r.c ) ) ;
|
---|
136 | return (answer >= 0) ? answer : 0;
|
---|
137 | }
|
---|
138 |
|
---|
139 | double HepRotationX::distance2( const HepRotation & r ) const {
|
---|
140 | double sum = r.xx() +
|
---|
141 | yy() * r.yy() + yz() * r.yz()
|
---|
142 | + zy() * r.zy() + zz() * r.zz();
|
---|
143 | double answer = 3.0 - sum;
|
---|
144 | return (answer >= 0 ) ? answer : 0;
|
---|
145 | }
|
---|
146 |
|
---|
147 | double HepRotationX::distance2( const HepLorentzRotation & lt ) const {
|
---|
148 | HepAxisAngle a;
|
---|
149 | Hep3Vector b;
|
---|
150 | lt.decompose(b, a);
|
---|
151 | double bet = b.beta();
|
---|
152 | double bet2 = bet*bet;
|
---|
153 | HepRotation r(a);
|
---|
154 | return bet2/(1-bet2) + distance2(r);
|
---|
155 | }
|
---|
156 |
|
---|
157 | double HepRotationX::distance2( const HepBoost & lt ) const {
|
---|
158 | return distance2( HepLorentzRotation(lt));
|
---|
159 | }
|
---|
160 |
|
---|
161 | double HepRotationX::howNear( const HepRotationX & r ) const {
|
---|
162 | return sqrt(distance2(r));
|
---|
163 | }
|
---|
164 | double HepRotationX::howNear( const HepRotation & r ) const {
|
---|
165 | return sqrt(distance2(r));
|
---|
166 | }
|
---|
167 | double HepRotationX::howNear( const HepBoost & b ) const {
|
---|
168 | return sqrt(distance2(b));
|
---|
169 | }
|
---|
170 | double HepRotationX::howNear( const HepLorentzRotation & lt ) const {
|
---|
171 | return sqrt(distance2(lt));
|
---|
172 | }
|
---|
173 | bool HepRotationX::isNear(const HepRotationX & r,double epsilon)const{
|
---|
174 | return (distance2(r) <= epsilon*epsilon);
|
---|
175 | }
|
---|
176 | bool HepRotationX::isNear(const HepRotation & r,double epsilon) const{
|
---|
177 | return (distance2(r) <= epsilon*epsilon);
|
---|
178 | }
|
---|
179 | bool HepRotationX::isNear( const HepBoost & lt,double epsilon) const {
|
---|
180 | return (distance2(lt) <= epsilon*epsilon);
|
---|
181 | }
|
---|
182 |
|
---|
183 | bool HepRotationX::isNear( const HepLorentzRotation & lt,
|
---|
184 | double epsilon ) const {
|
---|
185 | return (distance2(lt) <= epsilon*epsilon);
|
---|
186 | }
|
---|
187 |
|
---|
188 | double HepRotationX::norm2() const {
|
---|
189 | return 2.0 - 2.0 * c;
|
---|
190 | }
|
---|
191 |
|
---|
192 | std::ostream & HepRotationX::print( std::ostream & os ) const {
|
---|
193 | os << "\nRotation about X (" << d <<
|
---|
194 | ") [cos d = " << c << " sin d = " << s << "]\n";
|
---|
195 | return os;
|
---|
196 | }
|
---|
197 |
|
---|
198 | } // namespace CLHEP
|
---|
199 |
|
---|