[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // ---------------------------------------------------------------------------
|
---|
| 3 | //
|
---|
| 4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 5 | //
|
---|
| 6 | // This is the implementation of methods of the HepRotationX class which
|
---|
| 7 | // were introduced when ZOOM PhysicsVectors was merged in.
|
---|
| 8 | //
|
---|
| 9 |
|
---|
| 10 | #ifdef GNUPRAGMA
|
---|
| 11 | #pragma implementation
|
---|
| 12 | #endif
|
---|
| 13 |
|
---|
| 14 | #include "CLHEP/Vector/defs.h"
|
---|
| 15 | #include "CLHEP/Vector/RotationX.h"
|
---|
| 16 | #include "CLHEP/Vector/AxisAngle.h"
|
---|
| 17 | #include "CLHEP/Vector/EulerAngles.h"
|
---|
| 18 | #include "CLHEP/Vector/LorentzRotation.h"
|
---|
| 19 | #include "CLHEP/Units/PhysicalConstants.h"
|
---|
| 20 |
|
---|
| 21 | #include <cmath>
|
---|
| 22 | #include <stdlib.h>
|
---|
| 23 | #include <iostream>
|
---|
| 24 |
|
---|
| 25 | using std::abs;
|
---|
| 26 |
|
---|
| 27 | namespace CLHEP {
|
---|
| 28 |
|
---|
| 29 | static inline double safe_acos (double x) {
|
---|
| 30 | if (abs(x) <= 1.0) return acos(x);
|
---|
| 31 | return ( (x>0) ? 0 : CLHEP::pi );
|
---|
| 32 | }
|
---|
| 33 |
|
---|
| 34 | HepRotationX::HepRotationX(double delta) :
|
---|
| 35 | d(proper(delta)), s(sin(delta)), c(cos(delta))
|
---|
| 36 | {}
|
---|
| 37 |
|
---|
| 38 | HepRotationX & HepRotationX::set ( double delta ) {
|
---|
| 39 | d = proper(delta);
|
---|
| 40 | s = sin(d);
|
---|
| 41 | c = cos(d);
|
---|
| 42 | return *this;
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | double HepRotationX::phi() const {
|
---|
| 46 | if ( (d > 0) && (d < CLHEP::pi) ) {
|
---|
| 47 | return CLHEP::pi;
|
---|
| 48 | } else {
|
---|
| 49 | return 0.0;
|
---|
| 50 | }
|
---|
| 51 | } // HepRotationX::phi()
|
---|
| 52 |
|
---|
| 53 | double HepRotationX::theta() const {
|
---|
| 54 | return fabs( d );
|
---|
| 55 | } // HepRotationX::theta()
|
---|
| 56 |
|
---|
| 57 | double HepRotationX::psi() const {
|
---|
| 58 | if ( (d > 0) && (d < CLHEP::pi) ) {
|
---|
| 59 | return CLHEP::pi;
|
---|
| 60 | } else {
|
---|
| 61 | return 0.0;
|
---|
| 62 | }
|
---|
| 63 | } // HepRotationX::psi()
|
---|
| 64 |
|
---|
| 65 | HepEulerAngles HepRotationX::eulerAngles() const {
|
---|
| 66 | return HepEulerAngles( phi(), theta(), psi() );
|
---|
| 67 | } // HepRotationX::eulerAngles()
|
---|
| 68 |
|
---|
| 69 |
|
---|
| 70 | // From the defining code in the implementation of CLHEP (in Rotation.cc)
|
---|
| 71 | // it is clear that thetaX, phiX form the polar angles in the original
|
---|
| 72 | // coordinate system of the new X axis (and similarly for phiY and phiZ).
|
---|
| 73 | //
|
---|
| 74 | // This code is taken directly from the original CLHEP. However, there are as
|
---|
| 75 | // shown opportunities for significant speed improvement.
|
---|
| 76 |
|
---|
| 77 | double HepRotationX::phiX() const {
|
---|
| 78 | return (yx() == 0.0 && xx() == 0.0) ? 0.0 : atan2(yx(),xx());
|
---|
| 79 | // or ---- return 0;
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | double HepRotationX::phiY() const {
|
---|
| 83 | return (yy() == 0.0 && xy() == 0.0) ? 0.0 : atan2(yy(),xy());
|
---|
| 84 | // or ---- return (yy() == 0.0) ? 0.0 : atan2(yy(),xy());
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | double HepRotationX::phiZ() const {
|
---|
| 88 | return (yz() == 0.0 && xz() == 0.0) ? 0.0 : atan2(yz(),xz());
|
---|
| 89 | // or ---- return (yz() == 0.0) ? 0.0 : atan2(yz(),xz());
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | double HepRotationX::thetaX() const {
|
---|
| 93 | return safe_acos(zx());
|
---|
| 94 | // or ---- return CLHEP::halfpi;
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | double HepRotationX::thetaY() const {
|
---|
| 98 | return safe_acos(zy());
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | double HepRotationX::thetaZ() const {
|
---|
| 102 | return safe_acos(zz());
|
---|
| 103 | // or ---- return d;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | void HepRotationX::setDelta ( double delta ) {
|
---|
| 107 | set(delta);
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | void HepRotationX::decompose
|
---|
| 111 | (HepAxisAngle & rotation, Hep3Vector & boost) const {
|
---|
| 112 | boost.set(0,0,0);
|
---|
| 113 | rotation = axisAngle();
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | void HepRotationX::decompose
|
---|
| 117 | (Hep3Vector & boost, HepAxisAngle & rotation) const {
|
---|
| 118 | boost.set(0,0,0);
|
---|
| 119 | rotation = axisAngle();
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | void HepRotationX::decompose
|
---|
| 123 | (HepRotation & rotation, HepBoost & boost) const {
|
---|
| 124 | boost.set(0,0,0);
|
---|
| 125 | rotation = HepRotation(*this);
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | void HepRotationX::decompose
|
---|
| 129 | (HepBoost & boost, HepRotation & rotation) const {
|
---|
| 130 | boost.set(0,0,0);
|
---|
| 131 | rotation = HepRotation(*this);
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | double HepRotationX::distance2( const HepRotationX & r ) const {
|
---|
| 135 | double answer = 2.0 * ( 1.0 - ( s * r.s + c * r.c ) ) ;
|
---|
| 136 | return (answer >= 0) ? answer : 0;
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | double HepRotationX::distance2( const HepRotation & r ) const {
|
---|
| 140 | double sum = r.xx() +
|
---|
| 141 | yy() * r.yy() + yz() * r.yz()
|
---|
| 142 | + zy() * r.zy() + zz() * r.zz();
|
---|
| 143 | double answer = 3.0 - sum;
|
---|
| 144 | return (answer >= 0 ) ? answer : 0;
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | double HepRotationX::distance2( const HepLorentzRotation & lt ) const {
|
---|
| 148 | HepAxisAngle a;
|
---|
| 149 | Hep3Vector b;
|
---|
| 150 | lt.decompose(b, a);
|
---|
| 151 | double bet = b.beta();
|
---|
| 152 | double bet2 = bet*bet;
|
---|
| 153 | HepRotation r(a);
|
---|
| 154 | return bet2/(1-bet2) + distance2(r);
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | double HepRotationX::distance2( const HepBoost & lt ) const {
|
---|
| 158 | return distance2( HepLorentzRotation(lt));
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | double HepRotationX::howNear( const HepRotationX & r ) const {
|
---|
| 162 | return sqrt(distance2(r));
|
---|
| 163 | }
|
---|
| 164 | double HepRotationX::howNear( const HepRotation & r ) const {
|
---|
| 165 | return sqrt(distance2(r));
|
---|
| 166 | }
|
---|
| 167 | double HepRotationX::howNear( const HepBoost & b ) const {
|
---|
| 168 | return sqrt(distance2(b));
|
---|
| 169 | }
|
---|
| 170 | double HepRotationX::howNear( const HepLorentzRotation & lt ) const {
|
---|
| 171 | return sqrt(distance2(lt));
|
---|
| 172 | }
|
---|
| 173 | bool HepRotationX::isNear(const HepRotationX & r,double epsilon)const{
|
---|
| 174 | return (distance2(r) <= epsilon*epsilon);
|
---|
| 175 | }
|
---|
| 176 | bool HepRotationX::isNear(const HepRotation & r,double epsilon) const{
|
---|
| 177 | return (distance2(r) <= epsilon*epsilon);
|
---|
| 178 | }
|
---|
| 179 | bool HepRotationX::isNear( const HepBoost & lt,double epsilon) const {
|
---|
| 180 | return (distance2(lt) <= epsilon*epsilon);
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | bool HepRotationX::isNear( const HepLorentzRotation & lt,
|
---|
| 184 | double epsilon ) const {
|
---|
| 185 | return (distance2(lt) <= epsilon*epsilon);
|
---|
| 186 | }
|
---|
| 187 |
|
---|
| 188 | double HepRotationX::norm2() const {
|
---|
| 189 | return 2.0 - 2.0 * c;
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | std::ostream & HepRotationX::print( std::ostream & os ) const {
|
---|
| 193 | os << "\nRotation about X (" << d <<
|
---|
| 194 | ") [cos d = " << c << " sin d = " << s << "]\n";
|
---|
| 195 | return os;
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | } // namespace CLHEP
|
---|
| 199 |
|
---|