[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // $Id: Rotation.cc,v 1.1 2008-06-04 14:15:07 demin Exp $
|
---|
| 3 | // ---------------------------------------------------------------------------
|
---|
| 4 | //
|
---|
| 5 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 6 | //
|
---|
| 7 | // This is the implementation of the parts of the the HepRotation class which
|
---|
| 8 | // were present in the original CLHEP before the merge with ZOOM PhysicsVectors.
|
---|
| 9 | //
|
---|
| 10 |
|
---|
| 11 | #ifdef GNUPRAGMA
|
---|
| 12 | #pragma implementation
|
---|
| 13 | #endif
|
---|
| 14 |
|
---|
| 15 | #include "CLHEP/Vector/defs.h"
|
---|
| 16 | #include "CLHEP/Vector/Rotation.h"
|
---|
| 17 | #include "CLHEP/Units/PhysicalConstants.h"
|
---|
| 18 |
|
---|
| 19 | #include <iostream>
|
---|
| 20 | #include <cmath>
|
---|
| 21 |
|
---|
| 22 | using std::abs;
|
---|
| 23 |
|
---|
| 24 | namespace CLHEP {
|
---|
| 25 |
|
---|
| 26 | static inline double safe_acos (double x) {
|
---|
| 27 | if (abs(x) <= 1.0) return acos(x);
|
---|
| 28 | return ( (x>0) ? 0 : CLHEP::pi );
|
---|
| 29 | }
|
---|
| 30 |
|
---|
| 31 | double HepRotation::operator() (int i, int j) const {
|
---|
| 32 | if (i == 0) {
|
---|
| 33 | if (j == 0) { return xx(); }
|
---|
| 34 | if (j == 1) { return xy(); }
|
---|
| 35 | if (j == 2) { return xz(); }
|
---|
| 36 | } else if (i == 1) {
|
---|
| 37 | if (j == 0) { return yx(); }
|
---|
| 38 | if (j == 1) { return yy(); }
|
---|
| 39 | if (j == 2) { return yz(); }
|
---|
| 40 | } else if (i == 2) {
|
---|
| 41 | if (j == 0) { return zx(); }
|
---|
| 42 | if (j == 1) { return zy(); }
|
---|
| 43 | if (j == 2) { return zz(); }
|
---|
| 44 | }
|
---|
| 45 | std::cerr << "HepRotation subscripting: bad indices "
|
---|
| 46 | << "(" << i << "," << j << ")" << std::endl;
|
---|
| 47 | return 0.0;
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | HepRotation & HepRotation::rotate(double a, const Hep3Vector& axis) {
|
---|
| 51 | if (a != 0.0) {
|
---|
| 52 | double ll = axis.mag();
|
---|
| 53 | if (ll == 0.0) {
|
---|
| 54 | ZMthrowC (ZMxpvZeroVector("HepRotation: zero axis"));
|
---|
| 55 | }else{
|
---|
| 56 | double sa = sin(a), ca = cos(a);
|
---|
| 57 | double dx = axis.x()/ll, dy = axis.y()/ll, dz = axis.z()/ll;
|
---|
| 58 | HepRotation m(
|
---|
| 59 | ca+(1-ca)*dx*dx, (1-ca)*dx*dy-sa*dz, (1-ca)*dx*dz+sa*dy,
|
---|
| 60 | (1-ca)*dy*dx+sa*dz, ca+(1-ca)*dy*dy, (1-ca)*dy*dz-sa*dx,
|
---|
| 61 | (1-ca)*dz*dx-sa*dy, (1-ca)*dz*dy+sa*dx, ca+(1-ca)*dz*dz );
|
---|
| 62 | transform(m);
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 | return *this;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | HepRotation & HepRotation::rotateX(double a) {
|
---|
| 69 | double c = cos(a);
|
---|
| 70 | double s = sin(a);
|
---|
| 71 | double x = ryx, y = ryy, z = ryz;
|
---|
| 72 | ryx = c*x - s*rzx;
|
---|
| 73 | ryy = c*y - s*rzy;
|
---|
| 74 | ryz = c*z - s*rzz;
|
---|
| 75 | rzx = s*x + c*rzx;
|
---|
| 76 | rzy = s*y + c*rzy;
|
---|
| 77 | rzz = s*z + c*rzz;
|
---|
| 78 | return *this;
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | HepRotation & HepRotation::rotateY(double a){
|
---|
| 82 | double c = cos(a);
|
---|
| 83 | double s = sin(a);
|
---|
| 84 | double x = rzx, y = rzy, z = rzz;
|
---|
| 85 | rzx = c*x - s*rxx;
|
---|
| 86 | rzy = c*y - s*rxy;
|
---|
| 87 | rzz = c*z - s*rxz;
|
---|
| 88 | rxx = s*x + c*rxx;
|
---|
| 89 | rxy = s*y + c*rxy;
|
---|
| 90 | rxz = s*z + c*rxz;
|
---|
| 91 | return *this;
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | HepRotation & HepRotation::rotateZ(double a) {
|
---|
| 95 | double c = cos(a);
|
---|
| 96 | double s = sin(a);
|
---|
| 97 | double x = rxx, y = rxy, z = rxz;
|
---|
| 98 | rxx = c*x - s*ryx;
|
---|
| 99 | rxy = c*y - s*ryy;
|
---|
| 100 | rxz = c*z - s*ryz;
|
---|
| 101 | ryx = s*x + c*ryx;
|
---|
| 102 | ryy = s*y + c*ryy;
|
---|
| 103 | ryz = s*z + c*ryz;
|
---|
| 104 | return *this;
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | HepRotation & HepRotation::rotateAxes(const Hep3Vector &newX,
|
---|
| 108 | const Hep3Vector &newY,
|
---|
| 109 | const Hep3Vector &newZ) {
|
---|
| 110 | double del = 0.001;
|
---|
| 111 | Hep3Vector w = newX.cross(newY);
|
---|
| 112 |
|
---|
| 113 | if (abs(newZ.x()-w.x()) > del ||
|
---|
| 114 | abs(newZ.y()-w.y()) > del ||
|
---|
| 115 | abs(newZ.z()-w.z()) > del ||
|
---|
| 116 | abs(newX.mag2()-1.) > del ||
|
---|
| 117 | abs(newY.mag2()-1.) > del ||
|
---|
| 118 | abs(newZ.mag2()-1.) > del ||
|
---|
| 119 | abs(newX.dot(newY)) > del ||
|
---|
| 120 | abs(newY.dot(newZ)) > del ||
|
---|
| 121 | abs(newZ.dot(newX)) > del) {
|
---|
| 122 | std::cerr << "HepRotation::rotateAxes: bad axis vectors" << std::endl;
|
---|
| 123 | return *this;
|
---|
| 124 | }else{
|
---|
| 125 | return transform(HepRotation(newX.x(), newY.x(), newZ.x(),
|
---|
| 126 | newX.y(), newY.y(), newZ.y(),
|
---|
| 127 | newX.z(), newY.z(), newZ.z()));
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | double HepRotation::phiX() const {
|
---|
| 132 | return (yx() == 0.0 && xx() == 0.0) ? 0.0 : std::atan2(yx(),xx());
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | double HepRotation::phiY() const {
|
---|
| 136 | return (yy() == 0.0 && xy() == 0.0) ? 0.0 : std::atan2(yy(),xy());
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | double HepRotation::phiZ() const {
|
---|
| 140 | return (yz() == 0.0 && xz() == 0.0) ? 0.0 : std::atan2(yz(),xz());
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | double HepRotation::thetaX() const {
|
---|
| 144 | return safe_acos(zx());
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | double HepRotation::thetaY() const {
|
---|
| 148 | return safe_acos(zy());
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | double HepRotation::thetaZ() const {
|
---|
| 152 | return safe_acos(zz());
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | void HepRotation::getAngleAxis(double &angle, Hep3Vector &axis) const {
|
---|
| 156 | double cosa = 0.5*(xx()+yy()+zz()-1);
|
---|
| 157 | double cosa1 = 1-cosa;
|
---|
| 158 | if (cosa1 <= 0) {
|
---|
| 159 | angle = 0;
|
---|
| 160 | axis = Hep3Vector(0,0,1);
|
---|
| 161 | }else{
|
---|
| 162 | double x=0, y=0, z=0;
|
---|
| 163 | if (xx() > cosa) x = sqrt((xx()-cosa)/cosa1);
|
---|
| 164 | if (yy() > cosa) y = sqrt((yy()-cosa)/cosa1);
|
---|
| 165 | if (zz() > cosa) z = sqrt((zz()-cosa)/cosa1);
|
---|
| 166 | if (zy() < yz()) x = -x;
|
---|
| 167 | if (xz() < zx()) y = -y;
|
---|
| 168 | if (yx() < xy()) z = -z;
|
---|
| 169 | angle = (cosa < -1.) ? acos(-1.) : acos(cosa);
|
---|
| 170 | axis = Hep3Vector(x,y,z);
|
---|
| 171 | }
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | bool HepRotation::isIdentity() const {
|
---|
| 175 | return (rxx == 1.0 && rxy == 0.0 && rxz == 0.0 &&
|
---|
| 176 | ryx == 0.0 && ryy == 1.0 && ryz == 0.0 &&
|
---|
| 177 | rzx == 0.0 && rzy == 0.0 && rzz == 1.0) ? true : false;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | int HepRotation::compare ( const HepRotation & r ) const {
|
---|
| 181 | if (rzz<r.rzz) return -1; else if (rzz>r.rzz) return 1;
|
---|
| 182 | else if (rzy<r.rzy) return -1; else if (rzy>r.rzy) return 1;
|
---|
| 183 | else if (rzx<r.rzx) return -1; else if (rzx>r.rzx) return 1;
|
---|
| 184 | else if (ryz<r.ryz) return -1; else if (ryz>r.ryz) return 1;
|
---|
| 185 | else if (ryy<r.ryy) return -1; else if (ryy>r.ryy) return 1;
|
---|
| 186 | else if (ryx<r.ryx) return -1; else if (ryx>r.ryx) return 1;
|
---|
| 187 | else if (rxz<r.rxz) return -1; else if (rxz>r.rxz) return 1;
|
---|
| 188 | else if (rxy<r.rxy) return -1; else if (rxy>r.rxy) return 1;
|
---|
| 189 | else if (rxx<r.rxx) return -1; else if (rxx>r.rxx) return 1;
|
---|
| 190 | else return 0;
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 |
|
---|
| 194 | const HepRotation HepRotation::IDENTITY;
|
---|
| 195 |
|
---|
| 196 | } // namespace CLHEP
|
---|
| 197 |
|
---|
| 198 |
|
---|