1 | // -*- C++ -*-
|
---|
2 | // ---------------------------------------------------------------------------
|
---|
3 | //
|
---|
4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
5 | //
|
---|
6 | // This is the implementation of those parts of the HepLorentzRotation class
|
---|
7 | // which involve decomposition into Boost*Rotation.
|
---|
8 |
|
---|
9 | #ifdef GNUPRAGMA
|
---|
10 | #pragma implementation
|
---|
11 | #endif
|
---|
12 |
|
---|
13 | #include "CLHEP/Vector/defs.h"
|
---|
14 | #include "CLHEP/Vector/LorentzRotation.h"
|
---|
15 |
|
---|
16 | namespace CLHEP {
|
---|
17 |
|
---|
18 | // ---------- Decomposition:
|
---|
19 |
|
---|
20 | void HepLorentzRotation::decompose
|
---|
21 | (HepBoost & boost, HepRotation & rotation) const {
|
---|
22 |
|
---|
23 | // The boost will be the pure boost based on column 4 of the transformation
|
---|
24 | // matrix. Since the constructor takes the beta vector, and not beta*gamma,
|
---|
25 | // we first divide through by gamma = the tt element. This of course can
|
---|
26 | // never be zero since the last row has t**2 - v**2 = +1.
|
---|
27 |
|
---|
28 | Hep3Vector betaVec ( xt(), yt(), zt() );
|
---|
29 | betaVec *= 1.0 / tt();
|
---|
30 | boost.set( betaVec );
|
---|
31 |
|
---|
32 | // The rotation will be inverse of B times T.
|
---|
33 |
|
---|
34 | HepBoost B( -betaVec );
|
---|
35 | HepLorentzRotation R( B * *this );
|
---|
36 |
|
---|
37 | HepRep3x3 m3 ( R.xx(), R.xy(), R.xz(),
|
---|
38 | R.yx(), R.yy(), R.yz(),
|
---|
39 | R.zx(), R.zy(), R.zz() );
|
---|
40 | rotation.set( m3 );
|
---|
41 | rotation.rectify();
|
---|
42 |
|
---|
43 | return;
|
---|
44 |
|
---|
45 | }
|
---|
46 |
|
---|
47 | void HepLorentzRotation::decompose
|
---|
48 | (Hep3Vector & boost, HepAxisAngle & rotation) const {
|
---|
49 | HepRotation r;
|
---|
50 | HepBoost b;
|
---|
51 | decompose(b,r);
|
---|
52 | boost = b.boostVector();
|
---|
53 | rotation = r.axisAngle();
|
---|
54 | return;
|
---|
55 | }
|
---|
56 |
|
---|
57 | void HepLorentzRotation::decompose
|
---|
58 | (HepRotation & rotation, HepBoost & boost) const {
|
---|
59 |
|
---|
60 | // In this case the pure boost is based on row 4 of the matrix.
|
---|
61 |
|
---|
62 | Hep3Vector betaVec( tx(), ty(), tz() );
|
---|
63 | betaVec *= 1.0 / tt();
|
---|
64 | boost.set( betaVec );
|
---|
65 |
|
---|
66 | // The rotation will be T times the inverse of B.
|
---|
67 |
|
---|
68 | HepBoost B( -betaVec );
|
---|
69 | HepLorentzRotation R( *this * B );
|
---|
70 |
|
---|
71 | HepRep3x3 m3 ( R.xx(), R.xy(), R.xz(),
|
---|
72 | R.yx(), R.yy(), R.yz(),
|
---|
73 | R.zx(), R.zy(), R.zz() );
|
---|
74 | rotation.set( m3 );
|
---|
75 | rotation.rectify();
|
---|
76 | return;
|
---|
77 |
|
---|
78 | }
|
---|
79 |
|
---|
80 | void HepLorentzRotation::decompose
|
---|
81 | (HepAxisAngle & rotation, Hep3Vector & boost) const {
|
---|
82 | HepRotation r;
|
---|
83 | HepBoost b;
|
---|
84 | decompose(r,b);
|
---|
85 | rotation = r.axisAngle();
|
---|
86 | boost = b.boostVector();
|
---|
87 | return;
|
---|
88 | }
|
---|
89 |
|
---|
90 | double HepLorentzRotation::distance2( const HepBoost & b ) const {
|
---|
91 | HepBoost b1;
|
---|
92 | HepRotation r1;
|
---|
93 | decompose( b1, r1 );
|
---|
94 | double db2 = b1.distance2( b );
|
---|
95 | double dr2 = r1.norm2();
|
---|
96 | return ( db2 + dr2 );
|
---|
97 | }
|
---|
98 |
|
---|
99 | double HepLorentzRotation::distance2( const HepRotation & r ) const {
|
---|
100 | HepBoost b1;
|
---|
101 | HepRotation r1;
|
---|
102 | decompose( b1, r1 );
|
---|
103 | double db2 = b1.norm2( );
|
---|
104 | double dr2 = r1.distance2( r );
|
---|
105 | return ( db2 + dr2 );
|
---|
106 | }
|
---|
107 |
|
---|
108 | double HepLorentzRotation::distance2(
|
---|
109 | const HepLorentzRotation & lt ) const {
|
---|
110 | HepBoost b1;
|
---|
111 | HepRotation r1;
|
---|
112 | decompose( b1, r1 );
|
---|
113 | HepBoost b2;
|
---|
114 | HepRotation r2;
|
---|
115 | lt.decompose (b2, r2);
|
---|
116 | double db2 = b1.distance2( b2 );
|
---|
117 | double dr2 = r1.distance2( r2 );
|
---|
118 | return ( db2 + dr2 );
|
---|
119 | }
|
---|
120 |
|
---|
121 | double HepLorentzRotation::howNear( const HepBoost & b ) const {
|
---|
122 | return sqrt( distance2( b ) );
|
---|
123 | }
|
---|
124 | double HepLorentzRotation::howNear( const HepRotation & r ) const {
|
---|
125 | return sqrt( distance2( r ) );
|
---|
126 | }
|
---|
127 | double HepLorentzRotation::howNear( const HepLorentzRotation & lt )const {
|
---|
128 | return sqrt( distance2( lt ) );
|
---|
129 | }
|
---|
130 |
|
---|
131 | bool HepLorentzRotation::isNear(
|
---|
132 | const HepBoost & b, double epsilon ) const {
|
---|
133 | HepBoost b1;
|
---|
134 | HepRotation r1;
|
---|
135 | decompose( b1, r1 );
|
---|
136 | double db2 = b1.distance2(b);
|
---|
137 | if ( db2 > epsilon*epsilon ) {
|
---|
138 | return false; // Saves the time-consuming Rotation::norm2
|
---|
139 | }
|
---|
140 | double dr2 = r1.norm2();
|
---|
141 | return ( (db2 + dr2) <= epsilon*epsilon );
|
---|
142 | }
|
---|
143 |
|
---|
144 | bool HepLorentzRotation::isNear(
|
---|
145 | const HepRotation & r, double epsilon ) const {
|
---|
146 | HepBoost b1;
|
---|
147 | HepRotation r1;
|
---|
148 | decompose( b1, r1 );
|
---|
149 | double db2 = b1.norm2();
|
---|
150 | if ( db2 > epsilon*epsilon ) {
|
---|
151 | return false; // Saves the time-consuming Rotation::distance2
|
---|
152 | }
|
---|
153 | double dr2 = r1.distance2(r);
|
---|
154 | return ( (db2 + dr2) <= epsilon*epsilon );
|
---|
155 | }
|
---|
156 |
|
---|
157 | bool HepLorentzRotation::isNear(
|
---|
158 | const HepLorentzRotation & lt, double epsilon ) const {
|
---|
159 | HepBoost b1;
|
---|
160 | HepRotation r1;
|
---|
161 | decompose( b1, r1 );
|
---|
162 | HepBoost b2;
|
---|
163 | HepRotation r2;
|
---|
164 | lt.decompose (b2, r2);
|
---|
165 | double db2 = b1.distance2(b2);
|
---|
166 | if ( db2 > epsilon*epsilon ) {
|
---|
167 | return false; // Saves the time-consuming Rotation::distance2
|
---|
168 | }
|
---|
169 | double dr2 = r1.distance2(r2);
|
---|
170 | return ( (db2 + dr2) <= epsilon*epsilon );
|
---|
171 | }
|
---|
172 |
|
---|
173 | double HepLorentzRotation::norm2() const {
|
---|
174 | HepBoost b;
|
---|
175 | HepRotation r;
|
---|
176 | decompose( b, r );
|
---|
177 | return b.norm2() + r.norm2();
|
---|
178 | }
|
---|
179 |
|
---|
180 | void HepLorentzRotation::rectify() {
|
---|
181 |
|
---|
182 | // Assuming the representation of this is close to a true LT,
|
---|
183 | // but may have drifted due to round-off error from many operations,
|
---|
184 | // this forms an "exact" orthosymplectic matrix for the LT again.
|
---|
185 |
|
---|
186 | // There are several ways to do this, all equivalent to lowest order in
|
---|
187 | // the corrected error. We choose to form an LT based on the inverse boost
|
---|
188 | // extracted from row 4, and left-multiply by LT to form what would be
|
---|
189 | // a rotation if the LT were kosher. We drop the possibly non-zero t
|
---|
190 | // components of that, rectify that rotation and multiply back by the boost.
|
---|
191 |
|
---|
192 | Hep3Vector beta (tx(), ty(), tz());
|
---|
193 | double gam = tt(); // NaN-proofing
|
---|
194 | if ( gam <= 0 ) {
|
---|
195 | ZMthrowA ( ZMxpvImproperTransformation (
|
---|
196 | "rectify() on a transformation with tt() <= 0 - will not help!" ));
|
---|
197 | gam = 1;
|
---|
198 | }
|
---|
199 | beta *= 1.0/gam;
|
---|
200 | HepLorentzRotation R = (*this) * HepBoost(-beta);
|
---|
201 |
|
---|
202 | HepRep3x3 m3 ( R.xx(), R.xy(), R.xz(),
|
---|
203 | R.yx(), R.yy(), R.yz(),
|
---|
204 | R.zx(), R.zy(), R.zz() );
|
---|
205 |
|
---|
206 | HepRotation Rgood (m3);
|
---|
207 | Rgood.rectify();
|
---|
208 |
|
---|
209 | set ( Rgood, HepBoost(beta) );
|
---|
210 | }
|
---|
211 |
|
---|
212 | } // namespace CLHEP
|
---|