[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // ---------------------------------------------------------------------------
|
---|
| 3 | //
|
---|
| 4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 5 | //
|
---|
| 6 | // This is the implementation of those parts of the HepLorentzRotation class
|
---|
| 7 | // which involve decomposition into Boost*Rotation.
|
---|
| 8 |
|
---|
| 9 | #ifdef GNUPRAGMA
|
---|
| 10 | #pragma implementation
|
---|
| 11 | #endif
|
---|
| 12 |
|
---|
| 13 | #include "CLHEP/Vector/defs.h"
|
---|
| 14 | #include "CLHEP/Vector/LorentzRotation.h"
|
---|
| 15 |
|
---|
| 16 | namespace CLHEP {
|
---|
| 17 |
|
---|
| 18 | // ---------- Decomposition:
|
---|
| 19 |
|
---|
| 20 | void HepLorentzRotation::decompose
|
---|
| 21 | (HepBoost & boost, HepRotation & rotation) const {
|
---|
| 22 |
|
---|
| 23 | // The boost will be the pure boost based on column 4 of the transformation
|
---|
| 24 | // matrix. Since the constructor takes the beta vector, and not beta*gamma,
|
---|
| 25 | // we first divide through by gamma = the tt element. This of course can
|
---|
| 26 | // never be zero since the last row has t**2 - v**2 = +1.
|
---|
| 27 |
|
---|
| 28 | Hep3Vector betaVec ( xt(), yt(), zt() );
|
---|
| 29 | betaVec *= 1.0 / tt();
|
---|
| 30 | boost.set( betaVec );
|
---|
| 31 |
|
---|
| 32 | // The rotation will be inverse of B times T.
|
---|
| 33 |
|
---|
| 34 | HepBoost B( -betaVec );
|
---|
| 35 | HepLorentzRotation R( B * *this );
|
---|
| 36 |
|
---|
| 37 | HepRep3x3 m3 ( R.xx(), R.xy(), R.xz(),
|
---|
| 38 | R.yx(), R.yy(), R.yz(),
|
---|
| 39 | R.zx(), R.zy(), R.zz() );
|
---|
| 40 | rotation.set( m3 );
|
---|
| 41 | rotation.rectify();
|
---|
| 42 |
|
---|
| 43 | return;
|
---|
| 44 |
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | void HepLorentzRotation::decompose
|
---|
| 48 | (Hep3Vector & boost, HepAxisAngle & rotation) const {
|
---|
| 49 | HepRotation r;
|
---|
| 50 | HepBoost b;
|
---|
| 51 | decompose(b,r);
|
---|
| 52 | boost = b.boostVector();
|
---|
| 53 | rotation = r.axisAngle();
|
---|
| 54 | return;
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | void HepLorentzRotation::decompose
|
---|
| 58 | (HepRotation & rotation, HepBoost & boost) const {
|
---|
| 59 |
|
---|
| 60 | // In this case the pure boost is based on row 4 of the matrix.
|
---|
| 61 |
|
---|
| 62 | Hep3Vector betaVec( tx(), ty(), tz() );
|
---|
| 63 | betaVec *= 1.0 / tt();
|
---|
| 64 | boost.set( betaVec );
|
---|
| 65 |
|
---|
| 66 | // The rotation will be T times the inverse of B.
|
---|
| 67 |
|
---|
| 68 | HepBoost B( -betaVec );
|
---|
| 69 | HepLorentzRotation R( *this * B );
|
---|
| 70 |
|
---|
| 71 | HepRep3x3 m3 ( R.xx(), R.xy(), R.xz(),
|
---|
| 72 | R.yx(), R.yy(), R.yz(),
|
---|
| 73 | R.zx(), R.zy(), R.zz() );
|
---|
| 74 | rotation.set( m3 );
|
---|
| 75 | rotation.rectify();
|
---|
| 76 | return;
|
---|
| 77 |
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | void HepLorentzRotation::decompose
|
---|
| 81 | (HepAxisAngle & rotation, Hep3Vector & boost) const {
|
---|
| 82 | HepRotation r;
|
---|
| 83 | HepBoost b;
|
---|
| 84 | decompose(r,b);
|
---|
| 85 | rotation = r.axisAngle();
|
---|
| 86 | boost = b.boostVector();
|
---|
| 87 | return;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | double HepLorentzRotation::distance2( const HepBoost & b ) const {
|
---|
| 91 | HepBoost b1;
|
---|
| 92 | HepRotation r1;
|
---|
| 93 | decompose( b1, r1 );
|
---|
| 94 | double db2 = b1.distance2( b );
|
---|
| 95 | double dr2 = r1.norm2();
|
---|
| 96 | return ( db2 + dr2 );
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | double HepLorentzRotation::distance2( const HepRotation & r ) const {
|
---|
| 100 | HepBoost b1;
|
---|
| 101 | HepRotation r1;
|
---|
| 102 | decompose( b1, r1 );
|
---|
| 103 | double db2 = b1.norm2( );
|
---|
| 104 | double dr2 = r1.distance2( r );
|
---|
| 105 | return ( db2 + dr2 );
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | double HepLorentzRotation::distance2(
|
---|
| 109 | const HepLorentzRotation & lt ) const {
|
---|
| 110 | HepBoost b1;
|
---|
| 111 | HepRotation r1;
|
---|
| 112 | decompose( b1, r1 );
|
---|
| 113 | HepBoost b2;
|
---|
| 114 | HepRotation r2;
|
---|
| 115 | lt.decompose (b2, r2);
|
---|
| 116 | double db2 = b1.distance2( b2 );
|
---|
| 117 | double dr2 = r1.distance2( r2 );
|
---|
| 118 | return ( db2 + dr2 );
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | double HepLorentzRotation::howNear( const HepBoost & b ) const {
|
---|
| 122 | return sqrt( distance2( b ) );
|
---|
| 123 | }
|
---|
| 124 | double HepLorentzRotation::howNear( const HepRotation & r ) const {
|
---|
| 125 | return sqrt( distance2( r ) );
|
---|
| 126 | }
|
---|
| 127 | double HepLorentzRotation::howNear( const HepLorentzRotation & lt )const {
|
---|
| 128 | return sqrt( distance2( lt ) );
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | bool HepLorentzRotation::isNear(
|
---|
| 132 | const HepBoost & b, double epsilon ) const {
|
---|
| 133 | HepBoost b1;
|
---|
| 134 | HepRotation r1;
|
---|
| 135 | decompose( b1, r1 );
|
---|
| 136 | double db2 = b1.distance2(b);
|
---|
| 137 | if ( db2 > epsilon*epsilon ) {
|
---|
| 138 | return false; // Saves the time-consuming Rotation::norm2
|
---|
| 139 | }
|
---|
| 140 | double dr2 = r1.norm2();
|
---|
| 141 | return ( (db2 + dr2) <= epsilon*epsilon );
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | bool HepLorentzRotation::isNear(
|
---|
| 145 | const HepRotation & r, double epsilon ) const {
|
---|
| 146 | HepBoost b1;
|
---|
| 147 | HepRotation r1;
|
---|
| 148 | decompose( b1, r1 );
|
---|
| 149 | double db2 = b1.norm2();
|
---|
| 150 | if ( db2 > epsilon*epsilon ) {
|
---|
| 151 | return false; // Saves the time-consuming Rotation::distance2
|
---|
| 152 | }
|
---|
| 153 | double dr2 = r1.distance2(r);
|
---|
| 154 | return ( (db2 + dr2) <= epsilon*epsilon );
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | bool HepLorentzRotation::isNear(
|
---|
| 158 | const HepLorentzRotation & lt, double epsilon ) const {
|
---|
| 159 | HepBoost b1;
|
---|
| 160 | HepRotation r1;
|
---|
| 161 | decompose( b1, r1 );
|
---|
| 162 | HepBoost b2;
|
---|
| 163 | HepRotation r2;
|
---|
| 164 | lt.decompose (b2, r2);
|
---|
| 165 | double db2 = b1.distance2(b2);
|
---|
| 166 | if ( db2 > epsilon*epsilon ) {
|
---|
| 167 | return false; // Saves the time-consuming Rotation::distance2
|
---|
| 168 | }
|
---|
| 169 | double dr2 = r1.distance2(r2);
|
---|
| 170 | return ( (db2 + dr2) <= epsilon*epsilon );
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | double HepLorentzRotation::norm2() const {
|
---|
| 174 | HepBoost b;
|
---|
| 175 | HepRotation r;
|
---|
| 176 | decompose( b, r );
|
---|
| 177 | return b.norm2() + r.norm2();
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | void HepLorentzRotation::rectify() {
|
---|
| 181 |
|
---|
| 182 | // Assuming the representation of this is close to a true LT,
|
---|
| 183 | // but may have drifted due to round-off error from many operations,
|
---|
| 184 | // this forms an "exact" orthosymplectic matrix for the LT again.
|
---|
| 185 |
|
---|
| 186 | // There are several ways to do this, all equivalent to lowest order in
|
---|
| 187 | // the corrected error. We choose to form an LT based on the inverse boost
|
---|
| 188 | // extracted from row 4, and left-multiply by LT to form what would be
|
---|
| 189 | // a rotation if the LT were kosher. We drop the possibly non-zero t
|
---|
| 190 | // components of that, rectify that rotation and multiply back by the boost.
|
---|
| 191 |
|
---|
| 192 | Hep3Vector beta (tx(), ty(), tz());
|
---|
| 193 | double gam = tt(); // NaN-proofing
|
---|
| 194 | if ( gam <= 0 ) {
|
---|
| 195 | ZMthrowA ( ZMxpvImproperTransformation (
|
---|
| 196 | "rectify() on a transformation with tt() <= 0 - will not help!" ));
|
---|
| 197 | gam = 1;
|
---|
| 198 | }
|
---|
| 199 | beta *= 1.0/gam;
|
---|
| 200 | HepLorentzRotation R = (*this) * HepBoost(-beta);
|
---|
| 201 |
|
---|
| 202 | HepRep3x3 m3 ( R.xx(), R.xy(), R.xz(),
|
---|
| 203 | R.yx(), R.yy(), R.yz(),
|
---|
| 204 | R.zx(), R.zy(), R.zz() );
|
---|
| 205 |
|
---|
| 206 | HepRotation Rgood (m3);
|
---|
| 207 | Rgood.rectify();
|
---|
| 208 |
|
---|
| 209 | set ( Rgood, HepBoost(beta) );
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | } // namespace CLHEP
|
---|