[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // ---------------------------------------------------------------------------
|
---|
| 3 | //
|
---|
| 4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 5 | //
|
---|
| 6 | // This is the implementation of the HepBoostZ class.
|
---|
| 7 | //
|
---|
| 8 |
|
---|
| 9 | #ifdef GNUPRAGMA
|
---|
| 10 | #pragma implementation
|
---|
| 11 | #endif
|
---|
| 12 |
|
---|
| 13 | #include "CLHEP/Vector/defs.h"
|
---|
| 14 | #include "CLHEP/Vector/BoostZ.h"
|
---|
| 15 | #include "CLHEP/Vector/Boost.h"
|
---|
| 16 | #include "CLHEP/Vector/Rotation.h"
|
---|
| 17 | #include "CLHEP/Vector/LorentzRotation.h"
|
---|
| 18 | #include "CLHEP/Vector/ZMxpv.h"
|
---|
| 19 |
|
---|
| 20 | namespace CLHEP {
|
---|
| 21 |
|
---|
| 22 | // ---------- Constructors and Assignment:
|
---|
| 23 |
|
---|
| 24 | HepBoostZ & HepBoostZ::set (double beta) {
|
---|
| 25 | double b2 = beta*beta;
|
---|
| 26 | if (b2 >= 1) {
|
---|
| 27 | ZMthrowA (ZMxpvTachyonic(
|
---|
| 28 | "Beta supplied to set HepBoostZ represents speed >= c."));
|
---|
| 29 | beta_ = 1.0 - 1.0E-8; // NaN-proofing
|
---|
| 30 | gamma_ = 1.0 / sqrt(1.0 - b2);
|
---|
| 31 | return *this;
|
---|
| 32 | }
|
---|
| 33 | beta_ = beta;
|
---|
| 34 | gamma_ = 1.0 / sqrt(1.0 - b2);
|
---|
| 35 | return *this;
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | // ---------- Accessors:
|
---|
| 39 |
|
---|
| 40 | HepRep4x4 HepBoostZ::rep4x4() const {
|
---|
| 41 | double bg = beta_*gamma_;
|
---|
| 42 | return HepRep4x4( 1, 0, 0, 0,
|
---|
| 43 | 0, 1, 0, 0,
|
---|
| 44 | 0, 0, gamma_, bg,
|
---|
| 45 | 0, 0, bg, gamma_ );
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | HepRep4x4Symmetric HepBoostZ::rep4x4Symmetric() const {
|
---|
| 49 | double bg = beta_*gamma_;
|
---|
| 50 | return HepRep4x4Symmetric( 1, 0, 0, 0,
|
---|
| 51 | 1, 0, 0,
|
---|
| 52 | gamma_, bg,
|
---|
| 53 | gamma_ );
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | // ---------- Decomposition:
|
---|
| 57 |
|
---|
| 58 | void HepBoostZ::decompose (HepRotation & rotation, HepBoost & boost) const {
|
---|
| 59 | HepAxisAngle vdelta = HepAxisAngle();
|
---|
| 60 | rotation = HepRotation(vdelta);
|
---|
| 61 | Hep3Vector beta = boostVector();
|
---|
| 62 | boost = HepBoost(beta);
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | void HepBoostZ::decompose (HepAxisAngle & rotation, Hep3Vector & boost) const {
|
---|
| 66 | rotation = HepAxisAngle();
|
---|
| 67 | boost = boostVector();
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | void HepBoostZ::decompose (HepBoost & boost, HepRotation & rotation) const {
|
---|
| 71 | HepAxisAngle vdelta = HepAxisAngle();
|
---|
| 72 | rotation = HepRotation(vdelta);
|
---|
| 73 | Hep3Vector beta = boostVector();
|
---|
| 74 | boost = HepBoost(beta);
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | void HepBoostZ::decompose (Hep3Vector & boost, HepAxisAngle & rotation) const {
|
---|
| 78 | rotation = HepAxisAngle();
|
---|
| 79 | boost = boostVector();
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | // ---------- Comparisons:
|
---|
| 83 |
|
---|
| 84 | double HepBoostZ::distance2( const HepBoost & b ) const {
|
---|
| 85 | return b.distance2(*this);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | double HepBoostZ::distance2( const HepRotation & r ) const {
|
---|
| 89 | double db2 = norm2();
|
---|
| 90 | double dr2 = r.norm2();
|
---|
| 91 | return (db2 + dr2);
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | double HepBoostZ::distance2( const HepLorentzRotation & lt ) const {
|
---|
| 95 | HepBoost b1;
|
---|
| 96 | HepRotation r1;
|
---|
| 97 | lt.decompose(b1,r1);
|
---|
| 98 | double db2 = distance2(b1);
|
---|
| 99 | double dr2 = r1.norm2();
|
---|
| 100 | return (db2 + dr2);
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | bool HepBoostZ::isNear (const HepRotation & r, double epsilon) const {
|
---|
| 104 | double db2 = norm2();
|
---|
| 105 | if (db2 > epsilon*epsilon) return false;
|
---|
| 106 | double dr2 = r.norm2();
|
---|
| 107 | return (db2+dr2 <= epsilon*epsilon);
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | bool HepBoostZ::isNear ( const HepLorentzRotation & lt,
|
---|
| 111 | double epsilon ) const {
|
---|
| 112 | HepBoost b1;
|
---|
| 113 | HepRotation r1;
|
---|
| 114 | double db2 = distance2(b1);
|
---|
| 115 | lt.decompose(b1,r1);
|
---|
| 116 | if (db2 > epsilon*epsilon) return false;
|
---|
| 117 | double dr2 = r1.norm2();
|
---|
| 118 | return (db2 + dr2);
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | // ---------- Properties:
|
---|
| 122 |
|
---|
| 123 | void HepBoostZ::rectify() {
|
---|
| 124 | // Assuming the representation of this is close to a true pure boost,
|
---|
| 125 | // but may have drifted due to round-off error from many operations,
|
---|
| 126 | // this forms an "exact" pure BoostZ matrix for again.
|
---|
| 127 |
|
---|
| 128 | double b2 = beta_*beta_;
|
---|
| 129 | if (b2 >= 1) {
|
---|
| 130 | beta_ = 1.0 - 1.0e-8; // NaN-proofing
|
---|
| 131 | b2 = beta_*beta_;
|
---|
| 132 | }
|
---|
| 133 | gamma_ = 1.0 / sqrt(1.0 - b2);
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | // ---------- Application:
|
---|
| 137 |
|
---|
| 138 | // ---------- Operations in the group of 4-Rotations
|
---|
| 139 |
|
---|
| 140 | HepBoostZ HepBoostZ::operator * (const HepBoostZ & b) const {
|
---|
| 141 | return HepBoostZ ( (beta()+b.beta()) / (1+beta()*b.beta()) );
|
---|
| 142 | }
|
---|
| 143 | HepLorentzRotation HepBoostZ::operator * (const HepBoost & b) const {
|
---|
| 144 | HepLorentzRotation me (*this);
|
---|
| 145 | return me*b;
|
---|
| 146 | }
|
---|
| 147 | HepLorentzRotation HepBoostZ::operator * (const HepRotation & r) const {
|
---|
| 148 | HepLorentzRotation me (*this);
|
---|
| 149 | return me*r;
|
---|
| 150 | }
|
---|
| 151 | HepLorentzRotation HepBoostZ::operator * (const HepLorentzRotation & lt) const {
|
---|
| 152 | HepLorentzRotation me (*this);
|
---|
| 153 | return me*lt;
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | // ---------- I/O
|
---|
| 157 |
|
---|
| 158 | std::ostream & HepBoostZ::print( std::ostream & os ) const {
|
---|
| 159 | os << "Boost in Z direction (beta = " << beta_
|
---|
| 160 | << ", gamma = " << gamma_ << ") ";
|
---|
| 161 | return os;
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | } // namespace CLHEP
|
---|