[4] | 1 | // -*- C++ -*-
|
---|
| 2 | // ---------------------------------------------------------------------------
|
---|
| 3 | //
|
---|
| 4 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
| 5 | //
|
---|
| 6 | // This is the definitions of the inline member functions of the
|
---|
| 7 | // Hep2Vector class.
|
---|
| 8 | //
|
---|
| 9 |
|
---|
| 10 | #include <cmath>
|
---|
| 11 |
|
---|
| 12 | namespace CLHEP {
|
---|
| 13 |
|
---|
| 14 | inline double Hep2Vector::x() const {
|
---|
| 15 | return dx;
|
---|
| 16 | }
|
---|
| 17 |
|
---|
| 18 | inline double Hep2Vector::y() const {
|
---|
| 19 | return dy;
|
---|
| 20 | }
|
---|
| 21 |
|
---|
| 22 | inline Hep2Vector::Hep2Vector(double x, double y)
|
---|
| 23 | : dx(x), dy(y) {}
|
---|
| 24 |
|
---|
| 25 | inline Hep2Vector::Hep2Vector( const Hep3Vector & s)
|
---|
| 26 | : dx(s.x()), dy(s.y()) {}
|
---|
| 27 |
|
---|
| 28 | inline void Hep2Vector::setX(double x) {
|
---|
| 29 | dx = x;
|
---|
| 30 | }
|
---|
| 31 |
|
---|
| 32 | inline void Hep2Vector::setY(double y) {
|
---|
| 33 | dy = y;
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | inline void Hep2Vector::set(double x, double y) {
|
---|
| 37 | dx = x;
|
---|
| 38 | dy = y;
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | double & Hep2Vector::operator[] (int i) { return operator()(i); }
|
---|
| 42 | double Hep2Vector::operator[] (int i) const { return operator()(i); }
|
---|
| 43 |
|
---|
| 44 | inline Hep2Vector::Hep2Vector(const Hep2Vector & p)
|
---|
| 45 | : dx(p.x()), dy(p.y()) {}
|
---|
| 46 |
|
---|
| 47 | inline Hep2Vector::~Hep2Vector() {}
|
---|
| 48 |
|
---|
| 49 | inline Hep2Vector & Hep2Vector::operator = (const Hep2Vector & p) {
|
---|
| 50 | dx = p.x();
|
---|
| 51 | dy = p.y();
|
---|
| 52 | return *this;
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | inline bool Hep2Vector::operator == (const Hep2Vector& v) const {
|
---|
| 56 | return (v.x()==x() && v.y()==y()) ? true : false;
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | inline bool Hep2Vector::operator != (const Hep2Vector& v) const {
|
---|
| 60 | return (v.x()!=x() || v.y()!=y()) ? true : false;
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | inline Hep2Vector& Hep2Vector::operator += (const Hep2Vector & p) {
|
---|
| 64 | dx += p.x();
|
---|
| 65 | dy += p.y();
|
---|
| 66 | return *this;
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | inline Hep2Vector& Hep2Vector::operator -= (const Hep2Vector & p) {
|
---|
| 70 | dx -= p.x();
|
---|
| 71 | dy -= p.y();
|
---|
| 72 | return *this;
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | inline Hep2Vector Hep2Vector::operator - () const {
|
---|
| 76 | return Hep2Vector(-dx, -dy);
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | inline Hep2Vector& Hep2Vector::operator *= (double a) {
|
---|
| 80 | dx *= a;
|
---|
| 81 | dy *= a;
|
---|
| 82 | return *this;
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | inline double Hep2Vector::dot(const Hep2Vector & p) const {
|
---|
| 86 | return dx*p.x() + dy*p.y();
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | inline double Hep2Vector::mag2() const {
|
---|
| 90 | return dx*dx + dy*dy;
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | inline double Hep2Vector::mag() const {
|
---|
| 94 | return std::sqrt(mag2());
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | inline double Hep2Vector::r() const {
|
---|
| 98 | return std::sqrt(mag2());
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | inline Hep2Vector Hep2Vector::unit() const {
|
---|
| 102 | double tot = mag2();
|
---|
| 103 | Hep2Vector p(*this);
|
---|
| 104 | return tot > 0.0 ? p *= (1.0/std::sqrt(tot)) : Hep2Vector(1,0);
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | inline Hep2Vector Hep2Vector::orthogonal() const {
|
---|
| 108 | double x = std::fabs(dx), y = std::fabs(dy);
|
---|
| 109 | if (x < y) {
|
---|
| 110 | return Hep2Vector(dy,-dx);
|
---|
| 111 | }else{
|
---|
| 112 | return Hep2Vector(-dy,dx);
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | inline double Hep2Vector::phi() const {
|
---|
| 117 | return dx == 0.0 && dy == 0.0 ? 0.0 : std::atan2(dy,dx);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | inline double Hep2Vector::angle(const Hep2Vector & q) const {
|
---|
| 121 | double ptot2 = mag2()*q.mag2();
|
---|
| 122 | return ptot2 <= 0.0 ? 0.0 : std::acos(dot(q)/std::sqrt(ptot2));
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | inline void Hep2Vector::setMag(double r){
|
---|
| 126 | double ph = phi();
|
---|
| 127 | setX( r * std::cos(ph) );
|
---|
| 128 | setY( r * std::sin(ph) );
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | inline void Hep2Vector::setR(double r){
|
---|
| 132 | setMag(r);
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | inline void Hep2Vector::setPhi(double phi){
|
---|
| 136 | double ma = mag();
|
---|
| 137 | setX( ma * std::cos(phi) );
|
---|
| 138 | setY( ma * std::sin(phi) );
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | inline void Hep2Vector::setPolar(double r, double phi){
|
---|
| 142 | setX( r * std::cos(phi) );
|
---|
| 143 | setY( r * std::sin(phi) );
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | inline Hep2Vector operator + (const Hep2Vector & a, const Hep2Vector & b) {
|
---|
| 147 | return Hep2Vector(a.x() + b.x(), a.y() + b.y());
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | inline Hep2Vector operator - (const Hep2Vector & a, const Hep2Vector & b) {
|
---|
| 151 | return Hep2Vector(a.x() - b.x(), a.y() - b.y());
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | inline Hep2Vector operator * (const Hep2Vector & p, double a) {
|
---|
| 155 | return Hep2Vector(a*p.x(), a*p.y());
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | inline Hep2Vector operator * (double a, const Hep2Vector & p) {
|
---|
| 159 | return Hep2Vector(a*p.x(), a*p.y());
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | inline double operator * (const Hep2Vector & a, const Hep2Vector & b) {
|
---|
| 163 | return a.dot(b);
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | inline double Hep2Vector::getTolerance () {
|
---|
| 167 | return tolerance;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | } // namespace CLHEP
|
---|
| 171 |
|
---|