1 | // -*- C++ -*-
|
---|
2 | // $Id: ThreeVector.icc,v 1.1 2008-06-04 14:15:02 demin Exp $
|
---|
3 | // ---------------------------------------------------------------------------
|
---|
4 | //
|
---|
5 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
6 | //
|
---|
7 | // This is the definitions of the inline member functions of the
|
---|
8 | // Hep3Vector class.
|
---|
9 | //
|
---|
10 |
|
---|
11 | #include <cmath>
|
---|
12 |
|
---|
13 | namespace CLHEP {
|
---|
14 |
|
---|
15 | // ------------------
|
---|
16 | // Access to elements
|
---|
17 | // ------------------
|
---|
18 |
|
---|
19 | // x, y, z
|
---|
20 |
|
---|
21 | inline double & Hep3Vector::operator[] (int i) { return operator()(i); }
|
---|
22 | inline double Hep3Vector::operator[] (int i) const { return operator()(i); }
|
---|
23 |
|
---|
24 | inline double Hep3Vector::x() const { return dx; }
|
---|
25 | inline double Hep3Vector::y() const { return dy; }
|
---|
26 | inline double Hep3Vector::z() const { return dz; }
|
---|
27 |
|
---|
28 | inline double Hep3Vector::getX() const { return dx; }
|
---|
29 | inline double Hep3Vector::getY() const { return dy; }
|
---|
30 | inline double Hep3Vector::getZ() const { return dz; }
|
---|
31 |
|
---|
32 | inline void Hep3Vector::setX(double x) { dx = x; }
|
---|
33 | inline void Hep3Vector::setY(double y) { dy = y; }
|
---|
34 | inline void Hep3Vector::setZ(double z) { dz = z; }
|
---|
35 |
|
---|
36 | inline void Hep3Vector::set(double x, double y, double z) {
|
---|
37 | dx = x;
|
---|
38 | dy = y;
|
---|
39 | dz = z;
|
---|
40 | }
|
---|
41 |
|
---|
42 | // --------------
|
---|
43 | // Global methods
|
---|
44 | // --------------
|
---|
45 |
|
---|
46 | inline Hep3Vector operator + (const Hep3Vector & a, const Hep3Vector & b) {
|
---|
47 | return Hep3Vector(a.x() + b.x(), a.y() + b.y(), a.z() + b.z());
|
---|
48 | }
|
---|
49 |
|
---|
50 | inline Hep3Vector operator - (const Hep3Vector & a, const Hep3Vector & b) {
|
---|
51 | return Hep3Vector(a.x() - b.x(), a.y() - b.y(), a.z() - b.z());
|
---|
52 | }
|
---|
53 |
|
---|
54 | inline Hep3Vector operator * (const Hep3Vector & p, double a) {
|
---|
55 | return Hep3Vector(a*p.x(), a*p.y(), a*p.z());
|
---|
56 | }
|
---|
57 |
|
---|
58 | inline Hep3Vector operator * (double a, const Hep3Vector & p) {
|
---|
59 | return Hep3Vector(a*p.x(), a*p.y(), a*p.z());
|
---|
60 | }
|
---|
61 |
|
---|
62 | inline double operator * (const Hep3Vector & a, const Hep3Vector & b) {
|
---|
63 | return a.dot(b);
|
---|
64 | }
|
---|
65 |
|
---|
66 | // --------------------------
|
---|
67 | // Set in various coordinates
|
---|
68 | // --------------------------
|
---|
69 |
|
---|
70 | inline void Hep3Vector::setRThetaPhi
|
---|
71 | ( double r, double theta, double phi ) {
|
---|
72 | setSpherical (r, theta, phi);
|
---|
73 | }
|
---|
74 |
|
---|
75 | inline void Hep3Vector::setREtaPhi
|
---|
76 | ( double r, double eta, double phi ) {
|
---|
77 | setSpherical (r, 2*std::atan(std::exp(-eta)), phi);
|
---|
78 | }
|
---|
79 |
|
---|
80 | inline void Hep3Vector::setRhoPhiZ
|
---|
81 | ( double rho, double phi, double z) {
|
---|
82 | setCylindrical (rho, phi, z);
|
---|
83 | }
|
---|
84 |
|
---|
85 | // ------------
|
---|
86 | // Constructors
|
---|
87 | // ------------
|
---|
88 |
|
---|
89 | inline Hep3Vector::Hep3Vector(double x, double y, double z)
|
---|
90 | : dx(x), dy(y), dz(z) {}
|
---|
91 |
|
---|
92 | inline Hep3Vector::Hep3Vector(const Hep3Vector & p)
|
---|
93 | : dx(p.dx), dy(p.dy), dz(p.dz) {}
|
---|
94 |
|
---|
95 | inline Hep3Vector::~Hep3Vector() {}
|
---|
96 |
|
---|
97 | inline Hep3Vector & Hep3Vector::operator = (const Hep3Vector & p) {
|
---|
98 | dx = p.dx;
|
---|
99 | dy = p.dy;
|
---|
100 | dz = p.dz;
|
---|
101 | return *this;
|
---|
102 | }
|
---|
103 |
|
---|
104 | // ------------------
|
---|
105 | // Access to elements
|
---|
106 | // ------------------
|
---|
107 |
|
---|
108 | // r, theta, phi
|
---|
109 |
|
---|
110 | inline double Hep3Vector::mag2() const { return dx*dx + dy*dy + dz*dz; }
|
---|
111 | inline double Hep3Vector::mag() const { return std::sqrt(mag2()); }
|
---|
112 | inline double Hep3Vector::r() const { return mag(); }
|
---|
113 |
|
---|
114 | inline double Hep3Vector::theta() const {
|
---|
115 | return dx == 0.0 && dy == 0.0 && dz == 0.0 ? 0.0 : std::atan2(perp(),dz);
|
---|
116 | }
|
---|
117 | inline double Hep3Vector::phi() const {
|
---|
118 | return dx == 0.0 && dy == 0.0 ? 0.0 : std::atan2(dy,dx);
|
---|
119 | }
|
---|
120 |
|
---|
121 | inline double Hep3Vector::getR() const { return mag(); }
|
---|
122 | inline double Hep3Vector::getTheta() const { return theta(); }
|
---|
123 | inline double Hep3Vector::getPhi() const { return phi(); }
|
---|
124 | inline double Hep3Vector::angle() const { return theta(); }
|
---|
125 |
|
---|
126 | inline double Hep3Vector::cosTheta() const {
|
---|
127 | double ptot = mag();
|
---|
128 | return ptot == 0.0 ? 1.0 : dz/ptot;
|
---|
129 | }
|
---|
130 |
|
---|
131 | inline double Hep3Vector::cos2Theta() const {
|
---|
132 | double ptot2 = mag2();
|
---|
133 | return ptot2 == 0.0 ? 1.0 : dz*dz/ptot2;
|
---|
134 | }
|
---|
135 |
|
---|
136 | inline void Hep3Vector::setR(double r) { setMag(r); }
|
---|
137 |
|
---|
138 | inline void Hep3Vector::setTheta(double th) {
|
---|
139 | double ma = mag();
|
---|
140 | double ph = phi();
|
---|
141 | setX(ma*std::sin(th)*std::cos(ph));
|
---|
142 | setY(ma*std::sin(th)*std::sin(ph));
|
---|
143 | setZ(ma*std::cos(th));
|
---|
144 | }
|
---|
145 |
|
---|
146 | inline void Hep3Vector::setPhi(double ph) {
|
---|
147 | double xy = perp();
|
---|
148 | setX(xy*std::cos(ph));
|
---|
149 | setY(xy*std::sin(ph));
|
---|
150 | }
|
---|
151 |
|
---|
152 | // perp, eta,
|
---|
153 |
|
---|
154 | inline double Hep3Vector::perp2() const { return dx*dx + dy*dy; }
|
---|
155 | inline double Hep3Vector::perp() const { return std::sqrt(perp2()); }
|
---|
156 | inline double Hep3Vector::rho() const { return perp(); }
|
---|
157 | inline double Hep3Vector::eta() const { return pseudoRapidity();}
|
---|
158 |
|
---|
159 | inline double Hep3Vector::getRho() const { return perp(); }
|
---|
160 | inline double Hep3Vector::getEta() const { return pseudoRapidity();}
|
---|
161 |
|
---|
162 | inline void Hep3Vector::setPerp(double r) {
|
---|
163 | double p = perp();
|
---|
164 | if (p != 0.0) {
|
---|
165 | dx *= r/p;
|
---|
166 | dy *= r/p;
|
---|
167 | }
|
---|
168 | }
|
---|
169 | inline void Hep3Vector::setRho(double rho) { setPerp (rho); }
|
---|
170 |
|
---|
171 | // ----------
|
---|
172 | // Comparison
|
---|
173 | // ----------
|
---|
174 |
|
---|
175 | inline bool Hep3Vector::operator == (const Hep3Vector& v) const {
|
---|
176 | return (v.x()==x() && v.y()==y() && v.z()==z()) ? true : false;
|
---|
177 | }
|
---|
178 |
|
---|
179 | inline bool Hep3Vector::operator != (const Hep3Vector& v) const {
|
---|
180 | return (v.x()!=x() || v.y()!=y() || v.z()!=z()) ? true : false;
|
---|
181 | }
|
---|
182 |
|
---|
183 | inline double Hep3Vector::getTolerance () {
|
---|
184 | return tolerance;
|
---|
185 | }
|
---|
186 |
|
---|
187 | // ----------
|
---|
188 | // Arithmetic
|
---|
189 | // ----------
|
---|
190 |
|
---|
191 | inline Hep3Vector& Hep3Vector::operator += (const Hep3Vector & p) {
|
---|
192 | dx += p.x();
|
---|
193 | dy += p.y();
|
---|
194 | dz += p.z();
|
---|
195 | return *this;
|
---|
196 | }
|
---|
197 |
|
---|
198 | inline Hep3Vector& Hep3Vector::operator -= (const Hep3Vector & p) {
|
---|
199 | dx -= p.x();
|
---|
200 | dy -= p.y();
|
---|
201 | dz -= p.z();
|
---|
202 | return *this;
|
---|
203 | }
|
---|
204 |
|
---|
205 | inline Hep3Vector Hep3Vector::operator - () const {
|
---|
206 | return Hep3Vector(-dx, -dy, -dz);
|
---|
207 | }
|
---|
208 |
|
---|
209 | inline Hep3Vector& Hep3Vector::operator *= (double a) {
|
---|
210 | dx *= a;
|
---|
211 | dy *= a;
|
---|
212 | dz *= a;
|
---|
213 | return *this;
|
---|
214 | }
|
---|
215 |
|
---|
216 | // -------------------
|
---|
217 | // Combine two Vectors
|
---|
218 | // -------------------
|
---|
219 |
|
---|
220 | inline double Hep3Vector::diff2(const Hep3Vector & p) const {
|
---|
221 | return (*this-p).mag2();
|
---|
222 | }
|
---|
223 |
|
---|
224 | inline double Hep3Vector::dot(const Hep3Vector & p) const {
|
---|
225 | return dx*p.x() + dy*p.y() + dz*p.z();
|
---|
226 | }
|
---|
227 |
|
---|
228 | inline Hep3Vector Hep3Vector::cross(const Hep3Vector & p) const {
|
---|
229 | return Hep3Vector(dy*p.z()-p.y()*dz, dz*p.x()-p.z()*dx, dx*p.y()-p.x()*dy);
|
---|
230 | }
|
---|
231 |
|
---|
232 | inline double Hep3Vector::perp2(const Hep3Vector & p) const {
|
---|
233 | double tot = p.mag2();
|
---|
234 | double ss = dot(p);
|
---|
235 | return tot > 0.0 ? mag2()-ss*ss/tot : mag2();
|
---|
236 | }
|
---|
237 |
|
---|
238 | inline double Hep3Vector::perp(const Hep3Vector & p) const {
|
---|
239 | return std::sqrt(perp2(p));
|
---|
240 | }
|
---|
241 |
|
---|
242 | inline Hep3Vector Hep3Vector::perpPart () const {
|
---|
243 | return Hep3Vector (dx, dy, 0);
|
---|
244 | }
|
---|
245 | inline Hep3Vector Hep3Vector::project () const {
|
---|
246 | return Hep3Vector (0, 0, dz);
|
---|
247 | }
|
---|
248 |
|
---|
249 | inline Hep3Vector Hep3Vector::perpPart (const Hep3Vector & v2) const {
|
---|
250 | return ( *this - project(v2) );
|
---|
251 | }
|
---|
252 |
|
---|
253 | inline double Hep3Vector::angle(const Hep3Vector & q) const {
|
---|
254 | return std::acos(cosTheta(q));
|
---|
255 | }
|
---|
256 |
|
---|
257 | inline double Hep3Vector::theta(const Hep3Vector & q) const {
|
---|
258 | return angle(q);
|
---|
259 | }
|
---|
260 |
|
---|
261 | inline double Hep3Vector::azimAngle(const Hep3Vector & v2) const {
|
---|
262 | return deltaPhi(v2);
|
---|
263 | }
|
---|
264 |
|
---|
265 | // ----------
|
---|
266 | // Properties
|
---|
267 | // ----------
|
---|
268 |
|
---|
269 | inline Hep3Vector Hep3Vector::unit() const {
|
---|
270 | double tot = mag2();
|
---|
271 | Hep3Vector p(x(),y(),z());
|
---|
272 | return tot > 0.0 ? p *= (1.0/std::sqrt(tot)) : p;
|
---|
273 | }
|
---|
274 |
|
---|
275 | inline Hep3Vector Hep3Vector::orthogonal() const {
|
---|
276 | double x = dx < 0.0 ? -dx : dx;
|
---|
277 | double y = dy < 0.0 ? -dy : dy;
|
---|
278 | double z = dz < 0.0 ? -dz : dz;
|
---|
279 | if (x < y) {
|
---|
280 | return x < z ? Hep3Vector(0,dz,-dy) : Hep3Vector(dy,-dx,0);
|
---|
281 | }else{
|
---|
282 | return y < z ? Hep3Vector(-dz,0,dx) : Hep3Vector(dy,-dx,0);
|
---|
283 | }
|
---|
284 | }
|
---|
285 |
|
---|
286 | } // namespace CLHEP
|
---|