// -*- C++ -*- // $Id: ThreeVector.icc,v 1.1 2008-06-04 14:15:02 demin Exp $ // --------------------------------------------------------------------------- // // This file is a part of the CLHEP - a Class Library for High Energy Physics. // // This is the definitions of the inline member functions of the // Hep3Vector class. // #include namespace CLHEP { // ------------------ // Access to elements // ------------------ // x, y, z inline double & Hep3Vector::operator[] (int i) { return operator()(i); } inline double Hep3Vector::operator[] (int i) const { return operator()(i); } inline double Hep3Vector::x() const { return dx; } inline double Hep3Vector::y() const { return dy; } inline double Hep3Vector::z() const { return dz; } inline double Hep3Vector::getX() const { return dx; } inline double Hep3Vector::getY() const { return dy; } inline double Hep3Vector::getZ() const { return dz; } inline void Hep3Vector::setX(double x) { dx = x; } inline void Hep3Vector::setY(double y) { dy = y; } inline void Hep3Vector::setZ(double z) { dz = z; } inline void Hep3Vector::set(double x, double y, double z) { dx = x; dy = y; dz = z; } // -------------- // Global methods // -------------- inline Hep3Vector operator + (const Hep3Vector & a, const Hep3Vector & b) { return Hep3Vector(a.x() + b.x(), a.y() + b.y(), a.z() + b.z()); } inline Hep3Vector operator - (const Hep3Vector & a, const Hep3Vector & b) { return Hep3Vector(a.x() - b.x(), a.y() - b.y(), a.z() - b.z()); } inline Hep3Vector operator * (const Hep3Vector & p, double a) { return Hep3Vector(a*p.x(), a*p.y(), a*p.z()); } inline Hep3Vector operator * (double a, const Hep3Vector & p) { return Hep3Vector(a*p.x(), a*p.y(), a*p.z()); } inline double operator * (const Hep3Vector & a, const Hep3Vector & b) { return a.dot(b); } // -------------------------- // Set in various coordinates // -------------------------- inline void Hep3Vector::setRThetaPhi ( double r, double theta, double phi ) { setSpherical (r, theta, phi); } inline void Hep3Vector::setREtaPhi ( double r, double eta, double phi ) { setSpherical (r, 2*std::atan(std::exp(-eta)), phi); } inline void Hep3Vector::setRhoPhiZ ( double rho, double phi, double z) { setCylindrical (rho, phi, z); } // ------------ // Constructors // ------------ inline Hep3Vector::Hep3Vector(double x, double y, double z) : dx(x), dy(y), dz(z) {} inline Hep3Vector::Hep3Vector(const Hep3Vector & p) : dx(p.dx), dy(p.dy), dz(p.dz) {} inline Hep3Vector::~Hep3Vector() {} inline Hep3Vector & Hep3Vector::operator = (const Hep3Vector & p) { dx = p.dx; dy = p.dy; dz = p.dz; return *this; } // ------------------ // Access to elements // ------------------ // r, theta, phi inline double Hep3Vector::mag2() const { return dx*dx + dy*dy + dz*dz; } inline double Hep3Vector::mag() const { return std::sqrt(mag2()); } inline double Hep3Vector::r() const { return mag(); } inline double Hep3Vector::theta() const { return dx == 0.0 && dy == 0.0 && dz == 0.0 ? 0.0 : std::atan2(perp(),dz); } inline double Hep3Vector::phi() const { return dx == 0.0 && dy == 0.0 ? 0.0 : std::atan2(dy,dx); } inline double Hep3Vector::getR() const { return mag(); } inline double Hep3Vector::getTheta() const { return theta(); } inline double Hep3Vector::getPhi() const { return phi(); } inline double Hep3Vector::angle() const { return theta(); } inline double Hep3Vector::cosTheta() const { double ptot = mag(); return ptot == 0.0 ? 1.0 : dz/ptot; } inline double Hep3Vector::cos2Theta() const { double ptot2 = mag2(); return ptot2 == 0.0 ? 1.0 : dz*dz/ptot2; } inline void Hep3Vector::setR(double r) { setMag(r); } inline void Hep3Vector::setTheta(double th) { double ma = mag(); double ph = phi(); setX(ma*std::sin(th)*std::cos(ph)); setY(ma*std::sin(th)*std::sin(ph)); setZ(ma*std::cos(th)); } inline void Hep3Vector::setPhi(double ph) { double xy = perp(); setX(xy*std::cos(ph)); setY(xy*std::sin(ph)); } // perp, eta, inline double Hep3Vector::perp2() const { return dx*dx + dy*dy; } inline double Hep3Vector::perp() const { return std::sqrt(perp2()); } inline double Hep3Vector::rho() const { return perp(); } inline double Hep3Vector::eta() const { return pseudoRapidity();} inline double Hep3Vector::getRho() const { return perp(); } inline double Hep3Vector::getEta() const { return pseudoRapidity();} inline void Hep3Vector::setPerp(double r) { double p = perp(); if (p != 0.0) { dx *= r/p; dy *= r/p; } } inline void Hep3Vector::setRho(double rho) { setPerp (rho); } // ---------- // Comparison // ---------- inline bool Hep3Vector::operator == (const Hep3Vector& v) const { return (v.x()==x() && v.y()==y() && v.z()==z()) ? true : false; } inline bool Hep3Vector::operator != (const Hep3Vector& v) const { return (v.x()!=x() || v.y()!=y() || v.z()!=z()) ? true : false; } inline double Hep3Vector::getTolerance () { return tolerance; } // ---------- // Arithmetic // ---------- inline Hep3Vector& Hep3Vector::operator += (const Hep3Vector & p) { dx += p.x(); dy += p.y(); dz += p.z(); return *this; } inline Hep3Vector& Hep3Vector::operator -= (const Hep3Vector & p) { dx -= p.x(); dy -= p.y(); dz -= p.z(); return *this; } inline Hep3Vector Hep3Vector::operator - () const { return Hep3Vector(-dx, -dy, -dz); } inline Hep3Vector& Hep3Vector::operator *= (double a) { dx *= a; dy *= a; dz *= a; return *this; } // ------------------- // Combine two Vectors // ------------------- inline double Hep3Vector::diff2(const Hep3Vector & p) const { return (*this-p).mag2(); } inline double Hep3Vector::dot(const Hep3Vector & p) const { return dx*p.x() + dy*p.y() + dz*p.z(); } inline Hep3Vector Hep3Vector::cross(const Hep3Vector & p) const { return Hep3Vector(dy*p.z()-p.y()*dz, dz*p.x()-p.z()*dx, dx*p.y()-p.x()*dy); } inline double Hep3Vector::perp2(const Hep3Vector & p) const { double tot = p.mag2(); double ss = dot(p); return tot > 0.0 ? mag2()-ss*ss/tot : mag2(); } inline double Hep3Vector::perp(const Hep3Vector & p) const { return std::sqrt(perp2(p)); } inline Hep3Vector Hep3Vector::perpPart () const { return Hep3Vector (dx, dy, 0); } inline Hep3Vector Hep3Vector::project () const { return Hep3Vector (0, 0, dz); } inline Hep3Vector Hep3Vector::perpPart (const Hep3Vector & v2) const { return ( *this - project(v2) ); } inline double Hep3Vector::angle(const Hep3Vector & q) const { return std::acos(cosTheta(q)); } inline double Hep3Vector::theta(const Hep3Vector & q) const { return angle(q); } inline double Hep3Vector::azimAngle(const Hep3Vector & v2) const { return deltaPhi(v2); } // ---------- // Properties // ---------- inline Hep3Vector Hep3Vector::unit() const { double tot = mag2(); Hep3Vector p(x(),y(),z()); return tot > 0.0 ? p *= (1.0/std::sqrt(tot)) : p; } inline Hep3Vector Hep3Vector::orthogonal() const { double x = dx < 0.0 ? -dx : dx; double y = dy < 0.0 ? -dy : dy; double z = dz < 0.0 ? -dz : dz; if (x < y) { return x < z ? Hep3Vector(0,dz,-dy) : Hep3Vector(dy,-dx,0); }else{ return y < z ? Hep3Vector(-dz,0,dx) : Hep3Vector(dy,-dx,0); } } } // namespace CLHEP