1 | // -*- C++ -*-
|
---|
2 | // CLASSDOC OFF
|
---|
3 | // $Id: LorentzRotation.h,v 1.1 2008-06-04 14:14:58 demin Exp $
|
---|
4 | // ---------------------------------------------------------------------------
|
---|
5 | // CLASSDOC ON
|
---|
6 | //
|
---|
7 | // This file is a part of the CLHEP - a Class Library for High Energy Physics.
|
---|
8 | //
|
---|
9 | // This is the definition of the HepLorentzRotation class for performing
|
---|
10 | // Lorentz transformations (rotations and boosts) on objects of the
|
---|
11 | // HepLorentzVector class.
|
---|
12 | //
|
---|
13 | // HepLorentzRotation is a concrete implementation of Hep4RotationInterface.
|
---|
14 | //
|
---|
15 | // .SS See Also
|
---|
16 | // RotationInterfaces.h
|
---|
17 | // ThreeVector.h, LorentzVector.h
|
---|
18 | // Rotation.h, Boost.h
|
---|
19 | //
|
---|
20 | // .SS Author
|
---|
21 | // Leif Lonnblad, Mark Fischler
|
---|
22 |
|
---|
23 | #ifndef HEP_LORENTZROTATION_H
|
---|
24 | #define HEP_LORENTZROTATION_H
|
---|
25 |
|
---|
26 | #ifdef GNUPRAGMA
|
---|
27 | #pragma interface
|
---|
28 | #endif
|
---|
29 |
|
---|
30 | #include "CLHEP/Vector/defs.h"
|
---|
31 | #include "CLHEP/Vector/RotationInterfaces.h"
|
---|
32 | #include "CLHEP/Vector/Rotation.h"
|
---|
33 | #include "CLHEP/Vector/Boost.h"
|
---|
34 | #include "CLHEP/Vector/LorentzVector.h"
|
---|
35 |
|
---|
36 | namespace CLHEP {
|
---|
37 |
|
---|
38 | // Global methods
|
---|
39 |
|
---|
40 | inline HepLorentzRotation inverseOf ( const HepLorentzRotation & lt );
|
---|
41 | HepLorentzRotation operator * (const HepRotation & r,
|
---|
42 | const HepLorentzRotation & lt);
|
---|
43 | HepLorentzRotation operator * (const HepRotationX & r,
|
---|
44 | const HepLorentzRotation & lt);
|
---|
45 | HepLorentzRotation operator * (const HepRotationY & r,
|
---|
46 | const HepLorentzRotation & lt);
|
---|
47 | HepLorentzRotation operator * (const HepRotationZ & r,
|
---|
48 | const HepLorentzRotation & lt);
|
---|
49 |
|
---|
50 | /**
|
---|
51 | * @author
|
---|
52 | * @ingroup vector
|
---|
53 | */
|
---|
54 | class HepLorentzRotation {
|
---|
55 |
|
---|
56 | public:
|
---|
57 | // ---------- Identity HepLorentzRotation:
|
---|
58 |
|
---|
59 | static const HepLorentzRotation IDENTITY;
|
---|
60 |
|
---|
61 | // ---------- Constructors and Assignment:
|
---|
62 |
|
---|
63 | inline HepLorentzRotation();
|
---|
64 | // Default constructor. Gives a unit matrix.
|
---|
65 |
|
---|
66 | inline HepLorentzRotation (const HepLorentzRotation & r);
|
---|
67 | // Copy constructor.
|
---|
68 |
|
---|
69 | inline HepLorentzRotation (const HepRotation & r);
|
---|
70 | inline explicit HepLorentzRotation (const HepRotationX & r);
|
---|
71 | inline explicit HepLorentzRotation (const HepRotationY & r);
|
---|
72 | inline explicit HepLorentzRotation (const HepRotationZ & r);
|
---|
73 | inline HepLorentzRotation (const HepBoost & b);
|
---|
74 | inline explicit HepLorentzRotation (const HepBoostX & b);
|
---|
75 | inline explicit HepLorentzRotation (const HepBoostY & b);
|
---|
76 | inline explicit HepLorentzRotation (const HepBoostZ & b);
|
---|
77 | // Constructors from special cases.
|
---|
78 |
|
---|
79 | inline HepLorentzRotation & operator = (const HepLorentzRotation & m);
|
---|
80 | inline HepLorentzRotation & operator = (const HepRotation & m);
|
---|
81 | inline HepLorentzRotation & operator = (const HepBoost & m);
|
---|
82 | // Assignment.
|
---|
83 |
|
---|
84 | HepLorentzRotation & set (double bx, double by, double bz);
|
---|
85 | inline HepLorentzRotation & set (const Hep3Vector & p);
|
---|
86 | inline HepLorentzRotation & set (const HepRotation & r);
|
---|
87 | inline HepLorentzRotation & set (const HepRotationX & r);
|
---|
88 | inline HepLorentzRotation & set (const HepRotationY & r);
|
---|
89 | inline HepLorentzRotation & set (const HepRotationZ & r);
|
---|
90 | inline HepLorentzRotation & set (const HepBoost & boost);
|
---|
91 | inline HepLorentzRotation & set (const HepBoostX & boost);
|
---|
92 | inline HepLorentzRotation & set (const HepBoostY & boost);
|
---|
93 | inline HepLorentzRotation & set (const HepBoostZ & boost);
|
---|
94 | inline HepLorentzRotation (double bx, double by, double bz);
|
---|
95 | inline HepLorentzRotation (const Hep3Vector & p);
|
---|
96 | // Other Constructors giving a Lorentz-boost.
|
---|
97 |
|
---|
98 | HepLorentzRotation & set( const HepBoost & B, const HepRotation & R );
|
---|
99 | inline HepLorentzRotation ( const HepBoost & B, const HepRotation & R );
|
---|
100 | // supply B and R: T = B R:
|
---|
101 |
|
---|
102 | HepLorentzRotation & set( const HepRotation & R, const HepBoost & B );
|
---|
103 | inline HepLorentzRotation ( const HepRotation & R, const HepBoost & B );
|
---|
104 | // supply R and B: T = R B:
|
---|
105 |
|
---|
106 | HepLorentzRotation ( const HepLorentzVector & col1,
|
---|
107 | const HepLorentzVector & col2,
|
---|
108 | const HepLorentzVector & col3,
|
---|
109 | const HepLorentzVector & col4 );
|
---|
110 | // Construct from four *orthosymplectic* LorentzVectors for the columns:
|
---|
111 | // NOTE:
|
---|
112 | // This constructor, and the two set methods below,
|
---|
113 | // will check that the columns (or rows) form an orthosymplectic
|
---|
114 | // matrix, and will adjust values so that this relation is
|
---|
115 | // as exact as possible.
|
---|
116 | // Orthosymplectic means the dot product USING THE METRIC
|
---|
117 | // of two different coumns will be 0, and of a column with
|
---|
118 | // itself will be one.
|
---|
119 |
|
---|
120 | HepLorentzRotation & set( const HepLorentzVector & col1,
|
---|
121 | const HepLorentzVector & col2,
|
---|
122 | const HepLorentzVector & col3,
|
---|
123 | const HepLorentzVector & col4 );
|
---|
124 | // supply four *orthosymplectic* HepLorentzVectors for the columns
|
---|
125 |
|
---|
126 | HepLorentzRotation & setRows( const HepLorentzVector & row1,
|
---|
127 | const HepLorentzVector & row2,
|
---|
128 | const HepLorentzVector & row3,
|
---|
129 | const HepLorentzVector & row4 );
|
---|
130 | // supply four *orthosymplectic* HepLorentzVectors for the columns
|
---|
131 |
|
---|
132 | inline HepLorentzRotation & set( const HepRep4x4 & rep );
|
---|
133 | inline HepLorentzRotation ( const HepRep4x4 & rep );
|
---|
134 | // supply a HepRep4x4 structure (16 numbers)
|
---|
135 | // WARNING:
|
---|
136 | // This constructor and set method will assume the
|
---|
137 | // HepRep4x4 supplied is in fact an orthosymplectic matrix.
|
---|
138 | // No checking or correction is done. If you are
|
---|
139 | // not certain the matrix is orthosymplectic, break it
|
---|
140 | // into four HepLorentzVector columns and use the form
|
---|
141 | // HepLorentzRotation (col1, col2, col3, col4)
|
---|
142 |
|
---|
143 | // ---------- Accessors:
|
---|
144 |
|
---|
145 | inline double xx() const;
|
---|
146 | inline double xy() const;
|
---|
147 | inline double xz() const;
|
---|
148 | inline double xt() const;
|
---|
149 | inline double yx() const;
|
---|
150 | inline double yy() const;
|
---|
151 | inline double yz() const;
|
---|
152 | inline double yt() const;
|
---|
153 | inline double zx() const;
|
---|
154 | inline double zy() const;
|
---|
155 | inline double zz() const;
|
---|
156 | inline double zt() const;
|
---|
157 | inline double tx() const;
|
---|
158 | inline double ty() const;
|
---|
159 | inline double tz() const;
|
---|
160 | inline double tt() const;
|
---|
161 | // Elements of the matrix.
|
---|
162 |
|
---|
163 | inline HepLorentzVector col1() const;
|
---|
164 | inline HepLorentzVector col2() const;
|
---|
165 | inline HepLorentzVector col3() const;
|
---|
166 | inline HepLorentzVector col4() const;
|
---|
167 | // orthosymplectic column vectors
|
---|
168 |
|
---|
169 | inline HepLorentzVector row1() const;
|
---|
170 | inline HepLorentzVector row2() const;
|
---|
171 | inline HepLorentzVector row3() const;
|
---|
172 | inline HepLorentzVector row4() const;
|
---|
173 | // orthosymplectic row vectors
|
---|
174 |
|
---|
175 | inline HepRep4x4 rep4x4() const;
|
---|
176 | // 4x4 representation:
|
---|
177 |
|
---|
178 | // ------------ Subscripting:
|
---|
179 |
|
---|
180 | class HepLorentzRotation_row {
|
---|
181 | public:
|
---|
182 | inline HepLorentzRotation_row(const HepLorentzRotation &, int);
|
---|
183 | inline double operator [] (int) const;
|
---|
184 | private:
|
---|
185 | const HepLorentzRotation & rr;
|
---|
186 | int ii;
|
---|
187 | };
|
---|
188 | // Helper class for implemention of C-style subscripting r[i][j]
|
---|
189 |
|
---|
190 | inline const HepLorentzRotation_row operator [] (int) const;
|
---|
191 | // Returns object of the helper class for C-style subscripting r[i][j]
|
---|
192 |
|
---|
193 | double operator () (int, int) const;
|
---|
194 | // Fortran-style subscripting: returns (i,j) element of the matrix.
|
---|
195 |
|
---|
196 | // ---------- Decomposition:
|
---|
197 |
|
---|
198 | void decompose (Hep3Vector & boost, HepAxisAngle & rotation) const;
|
---|
199 | void decompose (HepBoost & boost, HepRotation & rotation) const;
|
---|
200 | // Find B and R such that L = B*R
|
---|
201 |
|
---|
202 | void decompose (HepAxisAngle & rotation, Hep3Vector & boost) const;
|
---|
203 | void decompose (HepRotation & rotation, HepBoost & boost) const;
|
---|
204 | // Find R and B such that L = R*B
|
---|
205 |
|
---|
206 | // ---------- Comparisons:
|
---|
207 |
|
---|
208 | int compare( const HepLorentzRotation & m ) const;
|
---|
209 | // Dictionary-order comparison, in order tt,tz,...zt,zz,zy,zx,yt,yz,...,xx
|
---|
210 | // Used in operator<, >, <=, >=
|
---|
211 |
|
---|
212 | inline bool operator == (const HepLorentzRotation &) const;
|
---|
213 | inline bool operator != (const HepLorentzRotation &) const;
|
---|
214 | inline bool operator <= (const HepLorentzRotation &) const;
|
---|
215 | inline bool operator >= (const HepLorentzRotation &) const;
|
---|
216 | inline bool operator < (const HepLorentzRotation &) const;
|
---|
217 | inline bool operator > (const HepLorentzRotation &) const;
|
---|
218 |
|
---|
219 | inline bool isIdentity() const;
|
---|
220 | // Returns true if the Identity matrix.
|
---|
221 |
|
---|
222 | double distance2( const HepBoost & b ) const;
|
---|
223 | double distance2( const HepRotation & r ) const;
|
---|
224 | double distance2( const HepLorentzRotation & lt ) const;
|
---|
225 | // Decomposes L = B*R, returns the sum of distance2 for B and R.
|
---|
226 |
|
---|
227 | double howNear( const HepBoost & b ) const;
|
---|
228 | double howNear( const HepRotation & r) const;
|
---|
229 | double howNear( const HepLorentzRotation & lt ) const;
|
---|
230 |
|
---|
231 | bool isNear(const HepBoost & b,
|
---|
232 | double epsilon=Hep4RotationInterface::tolerance) const;
|
---|
233 | bool isNear(const HepRotation & r,
|
---|
234 | double epsilon=Hep4RotationInterface::tolerance) const;
|
---|
235 | bool isNear(const HepLorentzRotation & lt,
|
---|
236 | double epsilon=Hep4RotationInterface::tolerance) const;
|
---|
237 |
|
---|
238 | // ---------- Properties:
|
---|
239 |
|
---|
240 | double norm2() const;
|
---|
241 | // distance2 (IDENTITY), which involves decomposing into B and R and summing
|
---|
242 | // norm2 for the individual B and R parts.
|
---|
243 |
|
---|
244 | void rectify();
|
---|
245 | // non-const but logically moot correction for accumulated roundoff errors
|
---|
246 | // rectify averages the matrix with the orthotranspose of its actual
|
---|
247 | // inverse (absent accumulated roundoff errors, the orthotranspose IS
|
---|
248 | // the inverse)); this removes to first order those errors.
|
---|
249 | // Then it formally decomposes that, extracts axis and delta for its
|
---|
250 | // Rotation part, forms a LorentzRotation from a true HepRotation
|
---|
251 | // with those values of axis and delta, times the true Boost
|
---|
252 | // with that boost vector.
|
---|
253 |
|
---|
254 | // ---------- Application:
|
---|
255 |
|
---|
256 | inline HepLorentzVector vectorMultiplication(const HepLorentzVector&) const;
|
---|
257 | inline HepLorentzVector operator()( const HepLorentzVector & w ) const;
|
---|
258 | inline HepLorentzVector operator* ( const HepLorentzVector & p ) const;
|
---|
259 | // Multiplication with a Lorentz Vector.
|
---|
260 |
|
---|
261 | // ---------- Operations in the group of 4-Rotations
|
---|
262 |
|
---|
263 | HepLorentzRotation matrixMultiplication(const HepRep4x4 & m) const;
|
---|
264 |
|
---|
265 | inline HepLorentzRotation operator * (const HepBoost & b) const;
|
---|
266 | inline HepLorentzRotation operator * (const HepRotation & r) const;
|
---|
267 | inline HepLorentzRotation operator * (const HepLorentzRotation & lt) const;
|
---|
268 | // Product of two Lorentz Rotations (this) * lt - matrix multiplication
|
---|
269 |
|
---|
270 | inline HepLorentzRotation & operator *= (const HepBoost & b);
|
---|
271 | inline HepLorentzRotation & operator *= (const HepRotation & r);
|
---|
272 | inline HepLorentzRotation & operator *= (const HepLorentzRotation & lt);
|
---|
273 | inline HepLorentzRotation & transform (const HepBoost & b);
|
---|
274 | inline HepLorentzRotation & transform (const HepRotation & r);
|
---|
275 | inline HepLorentzRotation & transform (const HepLorentzRotation & lt);
|
---|
276 | // Matrix multiplication.
|
---|
277 | // Note a *= b; <=> a = a * b; while a.transform(b); <=> a = b * a;
|
---|
278 |
|
---|
279 | // Here there is an opportunity for speedup by providing specialized forms
|
---|
280 | // of lt * r and lt * b where r is a RotationX Y or Z or b is a BoostX Y or Z
|
---|
281 | // These are, in fact, provided below for the transform() methods.
|
---|
282 |
|
---|
283 | HepLorentzRotation & rotateX(double delta);
|
---|
284 | // Rotation around the x-axis; equivalent to LT = RotationX(delta) * LT
|
---|
285 |
|
---|
286 | HepLorentzRotation & rotateY(double delta);
|
---|
287 | // Rotation around the y-axis; equivalent to LT = RotationY(delta) * LT
|
---|
288 |
|
---|
289 | HepLorentzRotation & rotateZ(double delta);
|
---|
290 | // Rotation around the z-axis; equivalent to LT = RotationZ(delta) * LT
|
---|
291 |
|
---|
292 | inline HepLorentzRotation & rotate(double delta, const Hep3Vector& axis);
|
---|
293 | inline HepLorentzRotation & rotate(double delta, const Hep3Vector *axis);
|
---|
294 | // Rotation around specified vector - LT = Rotation(delta,axis)*LT
|
---|
295 |
|
---|
296 | HepLorentzRotation & boostX(double beta);
|
---|
297 | // Pure boost along the x-axis; equivalent to LT = BoostX(beta) * LT
|
---|
298 |
|
---|
299 | HepLorentzRotation & boostY(double beta);
|
---|
300 | // Pure boost along the y-axis; equivalent to LT = BoostX(beta) * LT
|
---|
301 |
|
---|
302 | HepLorentzRotation & boostZ(double beta);
|
---|
303 | // Pure boost along the z-axis; equivalent to LT = BoostX(beta) * LT
|
---|
304 |
|
---|
305 | inline HepLorentzRotation & boost(double, double, double);
|
---|
306 | inline HepLorentzRotation & boost(const Hep3Vector &);
|
---|
307 | // Lorenz boost.
|
---|
308 |
|
---|
309 | inline HepLorentzRotation inverse() const;
|
---|
310 | // Return the inverse.
|
---|
311 |
|
---|
312 | inline HepLorentzRotation & invert();
|
---|
313 | // Inverts the LorentzRotation matrix.
|
---|
314 |
|
---|
315 | // ---------- I/O:
|
---|
316 |
|
---|
317 | std::ostream & print( std::ostream & os ) const;
|
---|
318 | // Aligned six-digit-accurate output of the transformation matrix.
|
---|
319 |
|
---|
320 | // ---------- Tolerance
|
---|
321 |
|
---|
322 | static inline double getTolerance();
|
---|
323 | static inline double setTolerance(double tol);
|
---|
324 |
|
---|
325 | friend HepLorentzRotation inverseOf ( const HepLorentzRotation & lt );
|
---|
326 |
|
---|
327 | protected:
|
---|
328 |
|
---|
329 | inline HepLorentzRotation
|
---|
330 | (double mxx, double mxy, double mxz, double mxt,
|
---|
331 | double myx, double myy, double myz, double myt,
|
---|
332 | double mzx, double mzy, double mzz, double mzt,
|
---|
333 | double mtx, double mty, double mtz, double mtt);
|
---|
334 | // Protected constructor.
|
---|
335 | // DOES NOT CHECK FOR VALIDITY AS A LORENTZ TRANSFORMATION.
|
---|
336 |
|
---|
337 | inline void setBoost(double, double, double);
|
---|
338 | // Set elements according to a boost vector.
|
---|
339 |
|
---|
340 | double mxx, mxy, mxz, mxt,
|
---|
341 | myx, myy, myz, myt,
|
---|
342 | mzx, mzy, mzz, mzt,
|
---|
343 | mtx, mty, mtz, mtt;
|
---|
344 | // The matrix elements.
|
---|
345 |
|
---|
346 | }; // HepLorentzRotation
|
---|
347 |
|
---|
348 | inline std::ostream & operator<<
|
---|
349 | ( std::ostream & os, const HepLorentzRotation& lt )
|
---|
350 | {return lt.print(os);}
|
---|
351 |
|
---|
352 | inline bool operator==(const HepRotation &r, const HepLorentzRotation & lt)
|
---|
353 | { return lt==r; }
|
---|
354 | inline bool operator!=(const HepRotation &r, const HepLorentzRotation & lt)
|
---|
355 | { return lt!=r; }
|
---|
356 | inline bool operator<=(const HepRotation &r, const HepLorentzRotation & lt)
|
---|
357 | { return lt<=r; }
|
---|
358 | inline bool operator>=(const HepRotation &r, const HepLorentzRotation & lt)
|
---|
359 | { return lt>=r; }
|
---|
360 | inline bool operator<(const HepRotation &r, const HepLorentzRotation & lt)
|
---|
361 | { return lt<r; }
|
---|
362 | inline bool operator>(const HepRotation &r, const HepLorentzRotation & lt)
|
---|
363 | { return lt>r; }
|
---|
364 |
|
---|
365 | inline bool operator==(const HepBoost &b, const HepLorentzRotation & lt)
|
---|
366 | { return lt==b; }
|
---|
367 | inline bool operator!=(const HepBoost &b, const HepLorentzRotation & lt)
|
---|
368 | { return lt!=b; }
|
---|
369 | inline bool operator<=(const HepBoost &b, const HepLorentzRotation & lt)
|
---|
370 | { return lt<=b; }
|
---|
371 | inline bool operator>=(const HepBoost &b, const HepLorentzRotation & lt)
|
---|
372 | { return lt>=b; }
|
---|
373 | inline bool operator<(const HepBoost &b, const HepLorentzRotation & lt)
|
---|
374 | { return lt<b; }
|
---|
375 | inline bool operator>(const HepBoost &b, const HepLorentzRotation & lt)
|
---|
376 | { return lt>b; }
|
---|
377 |
|
---|
378 | } // namespace CLHEP
|
---|
379 |
|
---|
380 | #include "CLHEP/Vector/LorentzRotation.icc"
|
---|
381 |
|
---|
382 | #ifdef ENABLE_BACKWARDS_COMPATIBILITY
|
---|
383 | // backwards compatibility will be enabled ONLY in CLHEP 1.9
|
---|
384 | using namespace CLHEP;
|
---|
385 | #endif
|
---|
386 |
|
---|
387 | #endif /* HEP_LORENTZROTATION_H */
|
---|
388 |
|
---|