source: trunk/CLHEP/Vector/LorentzRotation.h@ 20

Last change on this file since 20 was 4, checked in by Pavel Demin, 16 years ago

first commit

File size: 14.6 KB
Line 
1// -*- C++ -*-
2// CLASSDOC OFF
3// $Id: LorentzRotation.h,v 1.1 2008-06-04 14:14:58 demin Exp $
4// ---------------------------------------------------------------------------
5// CLASSDOC ON
6//
7// This file is a part of the CLHEP - a Class Library for High Energy Physics.
8//
9// This is the definition of the HepLorentzRotation class for performing
10// Lorentz transformations (rotations and boosts) on objects of the
11// HepLorentzVector class.
12//
13// HepLorentzRotation is a concrete implementation of Hep4RotationInterface.
14//
15// .SS See Also
16// RotationInterfaces.h
17// ThreeVector.h, LorentzVector.h
18// Rotation.h, Boost.h
19//
20// .SS Author
21// Leif Lonnblad, Mark Fischler
22
23#ifndef HEP_LORENTZROTATION_H
24#define HEP_LORENTZROTATION_H
25
26#ifdef GNUPRAGMA
27#pragma interface
28#endif
29
30#include "CLHEP/Vector/defs.h"
31#include "CLHEP/Vector/RotationInterfaces.h"
32#include "CLHEP/Vector/Rotation.h"
33#include "CLHEP/Vector/Boost.h"
34#include "CLHEP/Vector/LorentzVector.h"
35
36namespace CLHEP {
37
38// Global methods
39
40inline HepLorentzRotation inverseOf ( const HepLorentzRotation & lt );
41HepLorentzRotation operator * (const HepRotation & r,
42 const HepLorentzRotation & lt);
43HepLorentzRotation operator * (const HepRotationX & r,
44 const HepLorentzRotation & lt);
45HepLorentzRotation operator * (const HepRotationY & r,
46 const HepLorentzRotation & lt);
47HepLorentzRotation operator * (const HepRotationZ & r,
48 const HepLorentzRotation & lt);
49
50/**
51 * @author
52 * @ingroup vector
53 */
54class HepLorentzRotation {
55
56public:
57 // ---------- Identity HepLorentzRotation:
58
59 static const HepLorentzRotation IDENTITY;
60
61 // ---------- Constructors and Assignment:
62
63 inline HepLorentzRotation();
64 // Default constructor. Gives a unit matrix.
65
66 inline HepLorentzRotation (const HepLorentzRotation & r);
67 // Copy constructor.
68
69 inline HepLorentzRotation (const HepRotation & r);
70 inline explicit HepLorentzRotation (const HepRotationX & r);
71 inline explicit HepLorentzRotation (const HepRotationY & r);
72 inline explicit HepLorentzRotation (const HepRotationZ & r);
73 inline HepLorentzRotation (const HepBoost & b);
74 inline explicit HepLorentzRotation (const HepBoostX & b);
75 inline explicit HepLorentzRotation (const HepBoostY & b);
76 inline explicit HepLorentzRotation (const HepBoostZ & b);
77 // Constructors from special cases.
78
79 inline HepLorentzRotation & operator = (const HepLorentzRotation & m);
80 inline HepLorentzRotation & operator = (const HepRotation & m);
81 inline HepLorentzRotation & operator = (const HepBoost & m);
82 // Assignment.
83
84 HepLorentzRotation & set (double bx, double by, double bz);
85 inline HepLorentzRotation & set (const Hep3Vector & p);
86 inline HepLorentzRotation & set (const HepRotation & r);
87 inline HepLorentzRotation & set (const HepRotationX & r);
88 inline HepLorentzRotation & set (const HepRotationY & r);
89 inline HepLorentzRotation & set (const HepRotationZ & r);
90 inline HepLorentzRotation & set (const HepBoost & boost);
91 inline HepLorentzRotation & set (const HepBoostX & boost);
92 inline HepLorentzRotation & set (const HepBoostY & boost);
93 inline HepLorentzRotation & set (const HepBoostZ & boost);
94 inline HepLorentzRotation (double bx, double by, double bz);
95 inline HepLorentzRotation (const Hep3Vector & p);
96 // Other Constructors giving a Lorentz-boost.
97
98 HepLorentzRotation & set( const HepBoost & B, const HepRotation & R );
99 inline HepLorentzRotation ( const HepBoost & B, const HepRotation & R );
100 // supply B and R: T = B R:
101
102 HepLorentzRotation & set( const HepRotation & R, const HepBoost & B );
103 inline HepLorentzRotation ( const HepRotation & R, const HepBoost & B );
104 // supply R and B: T = R B:
105
106 HepLorentzRotation ( const HepLorentzVector & col1,
107 const HepLorentzVector & col2,
108 const HepLorentzVector & col3,
109 const HepLorentzVector & col4 );
110 // Construct from four *orthosymplectic* LorentzVectors for the columns:
111 // NOTE:
112 // This constructor, and the two set methods below,
113 // will check that the columns (or rows) form an orthosymplectic
114 // matrix, and will adjust values so that this relation is
115 // as exact as possible.
116 // Orthosymplectic means the dot product USING THE METRIC
117 // of two different coumns will be 0, and of a column with
118 // itself will be one.
119
120 HepLorentzRotation & set( const HepLorentzVector & col1,
121 const HepLorentzVector & col2,
122 const HepLorentzVector & col3,
123 const HepLorentzVector & col4 );
124 // supply four *orthosymplectic* HepLorentzVectors for the columns
125
126 HepLorentzRotation & setRows( const HepLorentzVector & row1,
127 const HepLorentzVector & row2,
128 const HepLorentzVector & row3,
129 const HepLorentzVector & row4 );
130 // supply four *orthosymplectic* HepLorentzVectors for the columns
131
132 inline HepLorentzRotation & set( const HepRep4x4 & rep );
133 inline HepLorentzRotation ( const HepRep4x4 & rep );
134 // supply a HepRep4x4 structure (16 numbers)
135 // WARNING:
136 // This constructor and set method will assume the
137 // HepRep4x4 supplied is in fact an orthosymplectic matrix.
138 // No checking or correction is done. If you are
139 // not certain the matrix is orthosymplectic, break it
140 // into four HepLorentzVector columns and use the form
141 // HepLorentzRotation (col1, col2, col3, col4)
142
143 // ---------- Accessors:
144
145 inline double xx() const;
146 inline double xy() const;
147 inline double xz() const;
148 inline double xt() const;
149 inline double yx() const;
150 inline double yy() const;
151 inline double yz() const;
152 inline double yt() const;
153 inline double zx() const;
154 inline double zy() const;
155 inline double zz() const;
156 inline double zt() const;
157 inline double tx() const;
158 inline double ty() const;
159 inline double tz() const;
160 inline double tt() const;
161 // Elements of the matrix.
162
163 inline HepLorentzVector col1() const;
164 inline HepLorentzVector col2() const;
165 inline HepLorentzVector col3() const;
166 inline HepLorentzVector col4() const;
167 // orthosymplectic column vectors
168
169 inline HepLorentzVector row1() const;
170 inline HepLorentzVector row2() const;
171 inline HepLorentzVector row3() const;
172 inline HepLorentzVector row4() const;
173 // orthosymplectic row vectors
174
175 inline HepRep4x4 rep4x4() const;
176 // 4x4 representation:
177
178 // ------------ Subscripting:
179
180 class HepLorentzRotation_row {
181 public:
182 inline HepLorentzRotation_row(const HepLorentzRotation &, int);
183 inline double operator [] (int) const;
184 private:
185 const HepLorentzRotation & rr;
186 int ii;
187 };
188 // Helper class for implemention of C-style subscripting r[i][j]
189
190 inline const HepLorentzRotation_row operator [] (int) const;
191 // Returns object of the helper class for C-style subscripting r[i][j]
192
193 double operator () (int, int) const;
194 // Fortran-style subscripting: returns (i,j) element of the matrix.
195
196 // ---------- Decomposition:
197
198 void decompose (Hep3Vector & boost, HepAxisAngle & rotation) const;
199 void decompose (HepBoost & boost, HepRotation & rotation) const;
200 // Find B and R such that L = B*R
201
202 void decompose (HepAxisAngle & rotation, Hep3Vector & boost) const;
203 void decompose (HepRotation & rotation, HepBoost & boost) const;
204 // Find R and B such that L = R*B
205
206 // ---------- Comparisons:
207
208 int compare( const HepLorentzRotation & m ) const;
209 // Dictionary-order comparison, in order tt,tz,...zt,zz,zy,zx,yt,yz,...,xx
210 // Used in operator<, >, <=, >=
211
212 inline bool operator == (const HepLorentzRotation &) const;
213 inline bool operator != (const HepLorentzRotation &) const;
214 inline bool operator <= (const HepLorentzRotation &) const;
215 inline bool operator >= (const HepLorentzRotation &) const;
216 inline bool operator < (const HepLorentzRotation &) const;
217 inline bool operator > (const HepLorentzRotation &) const;
218
219 inline bool isIdentity() const;
220 // Returns true if the Identity matrix.
221
222 double distance2( const HepBoost & b ) const;
223 double distance2( const HepRotation & r ) const;
224 double distance2( const HepLorentzRotation & lt ) const;
225 // Decomposes L = B*R, returns the sum of distance2 for B and R.
226
227 double howNear( const HepBoost & b ) const;
228 double howNear( const HepRotation & r) const;
229 double howNear( const HepLorentzRotation & lt ) const;
230
231 bool isNear(const HepBoost & b,
232 double epsilon=Hep4RotationInterface::tolerance) const;
233 bool isNear(const HepRotation & r,
234 double epsilon=Hep4RotationInterface::tolerance) const;
235 bool isNear(const HepLorentzRotation & lt,
236 double epsilon=Hep4RotationInterface::tolerance) const;
237
238 // ---------- Properties:
239
240 double norm2() const;
241 // distance2 (IDENTITY), which involves decomposing into B and R and summing
242 // norm2 for the individual B and R parts.
243
244 void rectify();
245 // non-const but logically moot correction for accumulated roundoff errors
246 // rectify averages the matrix with the orthotranspose of its actual
247 // inverse (absent accumulated roundoff errors, the orthotranspose IS
248 // the inverse)); this removes to first order those errors.
249 // Then it formally decomposes that, extracts axis and delta for its
250 // Rotation part, forms a LorentzRotation from a true HepRotation
251 // with those values of axis and delta, times the true Boost
252 // with that boost vector.
253
254 // ---------- Application:
255
256 inline HepLorentzVector vectorMultiplication(const HepLorentzVector&) const;
257 inline HepLorentzVector operator()( const HepLorentzVector & w ) const;
258 inline HepLorentzVector operator* ( const HepLorentzVector & p ) const;
259 // Multiplication with a Lorentz Vector.
260
261 // ---------- Operations in the group of 4-Rotations
262
263 HepLorentzRotation matrixMultiplication(const HepRep4x4 & m) const;
264
265 inline HepLorentzRotation operator * (const HepBoost & b) const;
266 inline HepLorentzRotation operator * (const HepRotation & r) const;
267 inline HepLorentzRotation operator * (const HepLorentzRotation & lt) const;
268 // Product of two Lorentz Rotations (this) * lt - matrix multiplication
269
270 inline HepLorentzRotation & operator *= (const HepBoost & b);
271 inline HepLorentzRotation & operator *= (const HepRotation & r);
272 inline HepLorentzRotation & operator *= (const HepLorentzRotation & lt);
273 inline HepLorentzRotation & transform (const HepBoost & b);
274 inline HepLorentzRotation & transform (const HepRotation & r);
275 inline HepLorentzRotation & transform (const HepLorentzRotation & lt);
276 // Matrix multiplication.
277 // Note a *= b; <=> a = a * b; while a.transform(b); <=> a = b * a;
278
279 // Here there is an opportunity for speedup by providing specialized forms
280 // of lt * r and lt * b where r is a RotationX Y or Z or b is a BoostX Y or Z
281 // These are, in fact, provided below for the transform() methods.
282
283 HepLorentzRotation & rotateX(double delta);
284 // Rotation around the x-axis; equivalent to LT = RotationX(delta) * LT
285
286 HepLorentzRotation & rotateY(double delta);
287 // Rotation around the y-axis; equivalent to LT = RotationY(delta) * LT
288
289 HepLorentzRotation & rotateZ(double delta);
290 // Rotation around the z-axis; equivalent to LT = RotationZ(delta) * LT
291
292 inline HepLorentzRotation & rotate(double delta, const Hep3Vector& axis);
293 inline HepLorentzRotation & rotate(double delta, const Hep3Vector *axis);
294 // Rotation around specified vector - LT = Rotation(delta,axis)*LT
295
296 HepLorentzRotation & boostX(double beta);
297 // Pure boost along the x-axis; equivalent to LT = BoostX(beta) * LT
298
299 HepLorentzRotation & boostY(double beta);
300 // Pure boost along the y-axis; equivalent to LT = BoostX(beta) * LT
301
302 HepLorentzRotation & boostZ(double beta);
303 // Pure boost along the z-axis; equivalent to LT = BoostX(beta) * LT
304
305 inline HepLorentzRotation & boost(double, double, double);
306 inline HepLorentzRotation & boost(const Hep3Vector &);
307 // Lorenz boost.
308
309 inline HepLorentzRotation inverse() const;
310 // Return the inverse.
311
312 inline HepLorentzRotation & invert();
313 // Inverts the LorentzRotation matrix.
314
315 // ---------- I/O:
316
317 std::ostream & print( std::ostream & os ) const;
318 // Aligned six-digit-accurate output of the transformation matrix.
319
320 // ---------- Tolerance
321
322 static inline double getTolerance();
323 static inline double setTolerance(double tol);
324
325 friend HepLorentzRotation inverseOf ( const HepLorentzRotation & lt );
326
327protected:
328
329 inline HepLorentzRotation
330 (double mxx, double mxy, double mxz, double mxt,
331 double myx, double myy, double myz, double myt,
332 double mzx, double mzy, double mzz, double mzt,
333 double mtx, double mty, double mtz, double mtt);
334 // Protected constructor.
335 // DOES NOT CHECK FOR VALIDITY AS A LORENTZ TRANSFORMATION.
336
337 inline void setBoost(double, double, double);
338 // Set elements according to a boost vector.
339
340 double mxx, mxy, mxz, mxt,
341 myx, myy, myz, myt,
342 mzx, mzy, mzz, mzt,
343 mtx, mty, mtz, mtt;
344 // The matrix elements.
345
346}; // HepLorentzRotation
347
348inline std::ostream & operator<<
349 ( std::ostream & os, const HepLorentzRotation& lt )
350 {return lt.print(os);}
351
352inline bool operator==(const HepRotation &r, const HepLorentzRotation & lt)
353 { return lt==r; }
354inline bool operator!=(const HepRotation &r, const HepLorentzRotation & lt)
355 { return lt!=r; }
356inline bool operator<=(const HepRotation &r, const HepLorentzRotation & lt)
357 { return lt<=r; }
358inline bool operator>=(const HepRotation &r, const HepLorentzRotation & lt)
359 { return lt>=r; }
360inline bool operator<(const HepRotation &r, const HepLorentzRotation & lt)
361 { return lt<r; }
362inline bool operator>(const HepRotation &r, const HepLorentzRotation & lt)
363 { return lt>r; }
364
365inline bool operator==(const HepBoost &b, const HepLorentzRotation & lt)
366 { return lt==b; }
367inline bool operator!=(const HepBoost &b, const HepLorentzRotation & lt)
368 { return lt!=b; }
369inline bool operator<=(const HepBoost &b, const HepLorentzRotation & lt)
370 { return lt<=b; }
371inline bool operator>=(const HepBoost &b, const HepLorentzRotation & lt)
372 { return lt>=b; }
373inline bool operator<(const HepBoost &b, const HepLorentzRotation & lt)
374 { return lt<b; }
375inline bool operator>(const HepBoost &b, const HepLorentzRotation & lt)
376 { return lt>b; }
377
378} // namespace CLHEP
379
380#include "CLHEP/Vector/LorentzRotation.icc"
381
382#ifdef ENABLE_BACKWARDS_COMPATIBILITY
383// backwards compatibility will be enabled ONLY in CLHEP 1.9
384using namespace CLHEP;
385#endif
386
387#endif /* HEP_LORENTZROTATION_H */
388
Note: See TracBrowser for help on using the repository browser.