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Abstract

The scattering equations, a system of algebraic equations connecting the space
of kinematic invariants and the moduli space of punctured Riemann spheres,
provide a new way to construct scattering amplitudes. In this novel framework,
the tree-level S-matrix in many quantum field theories can be reformulated as a
multiple integral that is entirely localized on the zeroes of the scattering equa-
tions. The aim of this thesis is to deepen our understanding of the physical and
mathematical structures underlying the scattering equations and to broaden the
scope for their applications. In particular, we analyze and extend the scatter-
ing equations to on-shell amplitudes in several effective field theories and form
factors that carry off-shell momenta in gauge theory. We also study the asymp-
totic behavior of the scattering equations in various Regge kinematic regimes
and derive the corresponding factorizations of amplitudes in gauge theory and
gravity. Finally, we propose the physical homotopy continuation of the scat-
tering equations and develop an efficient method to solve these equations.
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1 Introduction

“Like the silicon chips of more recent years, the Feynman
diagram was bringing computation to the masses.”

Julian Schwinger (1918 – 1994)

Scattering amplitudes (S-matrix elements), which are sometimes referred to
as “the most perfect microscopic structures in the universe” [1], are the most
fundamental quantities in quantum field theory (QFT). They allow us to make
predictions for physical observables for particle scattering and decays that can
be measured in high-energy experiments such as the Large Hadron Collider
(LHC) at CERN. In particular, calculating scattering amplitudes efficiently has
become crucially important in order to understand the properties of the Brout-
Englert-Higgs boson more precisely and to search for new physics beyond the
Standard Model (SM) since the start of the LHC. From a more theoretical
perspective, scattering amplitudes have a remarkably rich structure. A good
understanding of the mathematical structures of amplitudes often leads to a
deeper understanding of quantum field theory, as well as new ideas enhancing
our ability to compute amplitudes.

Traditionally, scattering amplitudes are calculated using Feynman diagrams in
the framework of perturbative quantum field theory. Feynman diagrams pro-
vide a systematic procedure to generate amplitudes order by order (see stan-
dard textbooks, e.g. [2–4]). However, the Feynman diagram technique is not
always efficient, because the number of diagrams increases rapidly with the
number of external particles involved in a scattering process or the number of
closed loops at higher orders. As a result, a large number of Feynman diagrams
makes the calculation particularly difficult. However, the final results are usu-
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2 1. Introduction

ally simple. This implies that substantial simplifications and hidden structures
for scattering amplitudes are invisible in Feynman diagrams.

A famous example is the Parke-Taylor formula of maximal helicity-violating
(MHV) amplitudes1 [5–7],

An
(
g−g−g+ · · · g+

)
=

〈1 2〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉
, (1.1)

which describes the tree-level interaction between two negative-helicity glu-
ons and an arbitrary number of positive-helicity ones in non-Abelian gauge
theory. A sum of a huge number of Feynman diagrams can be simplified into
an astonishingly simple expression, as shown in (1.1). This surprising sim-
plicity has been profoundly influential in an attempt to reformulate quantum
field theory. More precisely, it has motivated theorists to look for alternative
methods to calculate amplitudes without Feynman diagrams, and revolution-
ary advances have been made in this regard, during the past three decades.
Significant among these developments is Witten’s twistor string theory that
provides a world-sheet description for tree-level scattering amplitudes in max-
imally supersymmetric Yang-Mills (SYM) [8]. In particular, by performing a
half-Fourier transform from momentum space to twistor space, the MHV am-
plitude is supported on a curve of genus zero and degree one. This explains
from a certain point of view why the MHV amplitudes take an exceptionally
simple form.

Witten’s prominent work has inspired the discovery of many alternative formu-
lations and novel techniques of calculating scattering amplitudes, especially at
tree level (see e.g. [9–12] for thorough reviews). These include Feynman-like
MHV rules [13] and on-shell recursion relations [14, 15], which not only lead
to new compact results but have changed the way we construct amplitudes
from first principles instead of Feynman diagrams. Most relevantly, Roiban,
Spradlin and Volovich (RSW) obtained in 2004 the compact formula that ex-
presses any N = 4 SYM amplitude as a localized integral over the moduli
space of punctured Riemann spheres [16] via transforming Witten’s formula
back to momentum space. Similarly, two different formulas for tree-level am-

1In the case where at most one gluon has a negative helicity, the tree-level amplitude van-
ishes. The first non-zero amplitudes are then those where exactly two gluons carry negative
helicity, and they are referred to as maximal helicity-violating (MHV) amplitudes.
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plitudes in N = 8 supergravity (SUGRA) were proposed in [17, 18], and later
derived from a new twistor string theory [19, 20] in 2012.

More recently, Cachazo, He and Yuan (CHY) in 2013 introduced a generali-
sation of the Witten-RSV formalism [8, 16] and analogs [17–21]. In the CHY
formalism, the tree-level amplitude of n massless particles is reformulated as
a multiple integral over the moduli space of Riemann spheres with n marked
points for a variety of theories in generic spacetime dimensions [22–25]. The
integral is completely localized on the zeroes of a set of theory-independent
algebraic equations as follows:

fa =
∑
b 6=a

ka · kb
σa−σb

= 0, a ∈ {1, 2, . . . , n}. (1.2)

They are named as the scattering equations. This system of equations has a
SL(2,C) redundancy. More details on them will be clarified later.

Various world-sheet models for the CHY formulalism have also been con-
structed based on so-called ambitwistor strings [26–30]. It is also particularly
noteworthy that Geyer, Lipstein and Mason (GLM) obtained the new alterna-
tive formulation for amplitudes in N =4 SYM and N =8 SUGRA from four-
dimensional ambitwistor string models [28], like the Witten-RSV formula of
N = 4 SYM amplitudes. The ambitwistor string theory has also provided a
systematic approach to generalize the CHY formalism to loop level [31–37].
We suggest interested readers to [38] for a thorough review entitled “Twistor
theory at fifty: from contour integrals to twistor strings”.

The CHY formalism, twistor-string- and ambitwistor-string-inspired formu-
lations share the same structure: a n-point on-shell amplitude can be calcu-
lated through a multiple contour integral over the moduli space of n-punctured
spheres, where the contour is entirely determined by the zeros of some alge-
braic equations. Here we do not show the precise form for the equations that
appear in the twistor-/ambitwistor-string formula of amplitudes, and we refer
to them as the four-dimensional scattering equations. We also thus collectively
refer to these formulations as the scattering equation formalism.

The discovery of the scattering equation formalism represents a major step to-
wards reformulating scattering amplitudes and even QFT, “quantum field the-
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ory without the quantum fields” [39]. A notable feature is that for a multipar-
ticle process summing thousands, or even hundreds of thousands, of Feynman
diagrams, is equal to a one-line contour integral. The advantages of this feature
are obvious. First, having a compact formula may allow one to discover and
study properties of amplitudes that are not visible in Feynman diagrams. Sec-
ond, on a more practical level, the contour integral representation may allow
one to find new and more efficient ways to evaluate amplitudes numerically. It
was also noteworthy that the scattering equations have also established a link
between quantum field theory, string theory and algebraic geometry.

This work aims at advancing our knowledge on the aspects of the scattering
equations with a focus on both theoretical explorations and potential phe-
nomenological applications.

We summarize the content of the remaining chapters as follows. Chapter 2
provides a minimal introduction to the scattering amplitudes in various theo-
ries under consideration in this work. After first presenting a brief review on
the basic aspects of the scattering equations and Cachazo-He-Yuan formalism
of scattering amplitudes in arbitrary-dimensional spacetime in Chapter 3, our
discussion moves to four-dimensional spacetime in Chapter 4. We clarify that
in the spinor-helicity formalism the scattering equations in four dimensions can
be decomposed into “helicity sectors” and are equivalent to four-dimensional
scattering equations appearing in the Witten-RSV or GLM formula. We also
show how the two four-dimensional formulations are related to each other.

Chapter 5 focuses on some effective field theories with spontaneously bro-
ken symmetries in four dimensions, including the maximally supersymmet-
ric Dirac-Born-Infeld-Volkov-Akulov (DBI-VA) theory, the U(N) non-linear
sigma model (NLSM) and a special Galileon theory. We propose new com-
pact formulas for all tree-level amplitudes in these theories in four-dimensional
spacetime. Moreover, we apply the formulas to derive various universal double-
soft limits of amplitudes in these theories as well as in maximally gauge and
gravity theories.

While new representations of tree-level amplitudes have been constructed in
a large number of massless theories, it is expected that this success story can
be repeated beyond on-shell amplitudes of massless particles. We extend the
scattering equation formalism to form factors in Chapter 6. Unlike on-shell
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amplitudes, a n-point form factor is given by the overlap of a composite opera-
tor with off-shell momentum and n on-shell states with on-shell momenta. We
develop new compact formulas for super form factors with chiral stress-tensor
multiplet operator and bosonic form factors with scalar operators Tr(φm) for
arbitrary m in N =4 SYM.

The representation of a tree-level scattering amplitude as a contour integral
also makes manifest the properties of the amplitude in certain singular limits
of kinematics. Indeed, the scattering equation formalism has been success-
fully applied to derive the factorized form of scattering amplitudes beyond
leading order in single [40–43] and double [44–46] soft limits, as well as in
the collinear limit [47]. One of the main aims of this work is to show that the
scattering equations formalism also presents a very natural framework to study
other kinematical limits of tree-level amplitudes, namely the so-called Regge
limits of a 2-to-(n−2) scattering where the final state particles are ordered in
rapidity while having comparable transverse momenta. Of particular interest
in this context is multi-Regge kinematics (MRK) where all produced gluons
are strongly ordered in rapidity. By relaxing the strong ordering among the
rapidities of the produced particles, one can define a tower of new kinematical
limits, known as quasi-multi-Regge kinematics (QMRK).

In Chapter 7, we study the asymptotic behavior of the scattering equations
in the QMRK. Through a numerical study of the solutions to the scattering
equations in various quasi-multi-Regge regimes, we observe that in all cases
the solutions present the same hierarchy as the rapidity ordering that defines
the limit (if the SL(2,C) redundancy is fixed in a certain way). We conjecture
that this feature holds in general, independently of the helicity configuration
and the number of external legs.

While we do currently not have a rigorous mathematical proof of our con-
jecture, we show that the conjecture implies the correct factorization of ampli-
tudes in gauge theory and gravity in certain quasi-multi-Regge limits. In Chap-
ter 8, we show that in MRK our conjecture implies that the four-dimensional
scattering equations have a unique solution in each “helicity configuration”,
and we determine this solution explicitly for arbitrary multiplicities. By lo-
calizing the contour integral to the unique solution in MRK, we derive the
correct fully-factorized form of tree-level amplitudes for both Yang-Mills and
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Einstein gravity. In Chapter 9, we show that when combined our conjecture
with the CHY-type representation of gluon amplitudes, it reproduces the ex-
pected factorization in certain quasi-multi-Regge limits. While consistent with
all known results for tree-level amplitudes, so far, the factorization of tree-
level amplitudes in gauge theory and gravity in (quasi-)MRK remains partly
conjectural and has only been proven to hold for arbitrary multiplicities for the
simplest non-zero helicity amplitudes of gluons [48]. These give very strong
support to the validity of our conjecture.

Due to the importance, it is crucial to solving the scattering equations. Notwith-
standing efforts have been made to solve the scattering equations or evaluate
the CHY formulas [23, 49–66], a good method is still missing. In Chapter 10,
we develop an efficient technique to solve the scattering equations based on the
numerical algebraic geometry. The cornerstone of our method is the concept
of the physical homotopy continuation between different points in the space of
kinematic invariants, which naturally induces a homotopy continuation of the
scattering equations. As a result, the solutions of the scattering equations with
different points in the kinematic space can be tracked from each other. Finally,
with the help of soft limits, all solutions can be bootstrapped from the known
solution for the four-particle scattering.

This thesis is based on the following publications:

• S. He, Z. Liu and J.-B. Wu, Scattering equations, twistor-string formulas
and double-soft limits in four dimensions, JHEP 1607 (2016) 060;

• S. He and Z. Liu, A note on connected formula for form factors, JHEP
1612 (2016) 006;

• C. Duhr and Z. Liu, Multi-Regge kinematics and the scattering equa-
tions, JHEP 1901 (2019) 146;

• Z. Liu, Gravitational scattering in the high-energy limit, JHEP 1902
(2019) 112;

• Z. Liu and X. Zhao, Bootstrapping solutions of scattering equations,
JHEP 1902 (2019) 071.



2 Preliminaries

This chapter provides a short introduction to scattering amplitudes in various
theories under consideration in this work.

2.1 Yang-Mills theory

Yang-Mills theory is a gauge theory based on a non-Abelian Lie groupG. Here
we consider G = SU(N) and follow ref. [67]. We start with a multiplet of
fermionic (or scalar) fields

ψ(x) =

ψ1(x)
...

ψN (x)

 , (2.1)

which transforms into one another under a local gauge transformation

ψ(x) −→ U(x)ψ(x), U(x) = U
(
α(x)

)
≡ eiαa(x)ta , (2.2)

where ta are the fundamental representations of generators of SU(N), and
satisfy the following commutation relation[

ta, tb
]

= ifabctc. (2.3)

It is easy to see that the derivative of the fermion field ∂µψ(x) transforms
differently from ψ(x) itself under the local gauge transformation (2.2). Let us
introduce a gauge covariant derivative Dµ

Dµ ≡ ∂µ − igAaµ ta = ∂µ − igAµ, Aµ ≡ Aaµ ta, (2.4)

7
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such that Dµψ(x) has the same transformation behavior with ψ(x), i.e.,

Dµψ(x) −→ U(x)
(
Dµψ(x)

)
. (2.5)

This leads to the transformation behavior of the gauge field Aµ,

Aµ −→ AUµ = UAµU−1 − i

g
(∂µU)U−1, (2.6)

under the local gauge transformation. Using the covariant derivative Dµ, we
can define the gauge field strength as follows:

Fµν ≡
i

g

[
Dµ, Dν

]
= ∂µAν − ∂νAµ − ig

[
Aµ, Aν

]
= F aµνt

a, (2.7)

where

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.8)

From (2.6) it is easy to verify the gauge field strength behaviors as

Fµν −→ FUµν = U(x)FµνU(x)−1 (2.9)

under the local gauge transformation. Now it is very clear to construct an local
gauge invariant Lagrangian [68]

LYang-Mills = −1

2
Tr
(
FµνFµν

)
= −1

4
F aµνF

aµν , (2.10)

where one takes the normalization convention Tr(tatb) = 1
2δ
ab.

In addition to pure gauge field, the complete Lagrangian can also include the
matter (e.g. fermionic) fields ψ,

L = LYang-Mills + Lmatter = −1

4
F aµνF

aµν + ψ̄(iγµDµ −m)ψ. (2.11)

When the gauge group takes SU(3), this is the theory of strong interactions
between quarks and gluons, i.e. quantum chromodynamics (QCD). When G =

U(1), it is reduced to the Lagrangian of quantum electrodynamics.
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When the coupling constant is small enough, the scattering amplitudes may
be calculated perturbatively. For example, an amplitude with n gluons in pure
Yang-Mills or QCD can be expanded as a perturbative series with respect to
the coupling constants g,

An = gn−2A (0)
n + gnA (1)

n + gn+2A (2)
n + · · · . (2.12)

In this expansion, each A
(`)
n can be given by a sum of Feynman diagrams

with n external legs and ` loops in accordance with specific rules, so-called
Feynman rules. It is straightforward to derive Feynman rules from a given La-
grangian, for example, Yang-Mills Lagrangian in eq. (2.10), using the standard
textbook method, such as the path integral technique (c.f. any standard QFT
textbook, e.g. [2–4]). This work is mostly focused on the leading order of the
perturbation expansion, A

(0)
n , which has no loops and is called the tree-level

amplitude. For simplicity, we will omit the superscript (`= 0) of A
(0)
n in the

following.

In Yang-Mills theory, amplitudes depend not only on external kinematics but
also on color information. From the Lagrangian (2.10), it is easy to see that
there are two types of group theory objects that enter the amplitude, i.e. the
structure constants fabc and generator matrices ta in the fundamental repre-
sentation of SU(N). It has been known that one can decompose a tree-level
gluon amplitude into purely-kinematic part and color part which can be writ-
ten in terms of either ta or fabc. More priviously, any tree-level amplitude of n
gluons carrying colors a1, a2, . . . , an, (ai = 1, . . . , N2−1), can be represented
as [69, 70]

An =
∑

ρ∈Sn−1

Tr
(
T a1T aρ2 · · ·T aρn

)
An(1, ρ2, . . . , ρn), (2.13)

or [71, 72]

An =
∑

ρ∈Sn−2

(
F aρ2F aρ3 · · ·F aρn−1

)
a1an
An(1, ρ2, . . . , ρn−1, n), (2.14)

where T a =
√

2ta by QCD-literature convention and (F a)bc = ifabc, ρ =

(ρ2, . . . , ρn) or ρ = (ρ2, . . . , ρn−1) denotes the permutation of {2, . . . , n} or
{2, . . . , n−1}. In both representations (2.13) and (2.14), An are same and
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called color-ordered amplitudes, or partial amplitudes, which depend only on
kinematic information, but not colors. Color-ordered amplitudes are gauge
invariant. There also exist linear relations among partial amplitudes, such
as cyclicity, Kleiss-Kuijf relations [72, 73] and fundamental Bern-Carrasco-
Johansson relations [74] (see also e.g. [9, 11] for review).

The partial amplitudes have simpler analytic structures than the full amplitude
[75]. They have only multi-particle poles where a sum of cyclically adjacent
momenta goes on-shell. More precisely, in the limit p2

1,m = (k1+· · ·+km)2 →
0, the amplitude An(1, . . . , n) behaves as

An(1, . . . , n) (2.15)

−→
∑
h=±1

Am+1

(
1, . . . ,m,−ph

) 1

p2
1,m

An−m+1

(
p−h,m+1, . . . , n

)
,

where p1,m and h are the momentum and the helicity of the intermediate state
respectively. This analytic property of amplitudes are very important, and they
are often used to do consistency checks of the correctness of new results. It
also plays a crucial role in deriving on-shell BCFW recursion relations [14,15].
It is worth underlining that the similar property also appears in amplitudes in
other theories, which is directly related to locality in perturbation field theory.

In the casem = 2, (k1+k2)2 → 0 implies that two momenta k1 and k2 become
parallel, or collinear. Let z describe the longitudinal momentum sharing of the
two collinear momenta, and then one can parametrize the limit as

k1‖k2 ⇐⇒ k1 → z p, k2 → (1−z) p, (2.16)

and the partial amplitude of gluons factorizes as

An(1, 2, 3, . . . , n)

k1‖k2−−−−→
∑
h=±1

Splith(1, 2)An−1

(
p−h, 3, . . . , n

)
, (2.17)

where p = k1 + k2 and h are momentum and helicity of the intermediate state
respectively, Split is the tree-level splitting amplitude (or splitting function)
that describes the splitting g → gg of a gluon into two collinear gluons [5, 6,
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76–78]:

Split−(1+, 2+) =
1

〈1 2〉
√
z(1−z)

,

Split+(1+, 2+) = 0,

Split+(1+, 2−) = − (1−z)2

〈1 2〉
√
z(1−z)

,

Split−(1+, 2−) =
z2

[1 2]
√
z(1−z)

.

(2.18)

Besides the multi-particle factorization (including collinear limit), the partial
amplitude of gluons also displays a universal behavior when one or more glu-
ons become soft. Here we consider the case of the emission of a single soft
gluon with momentum ks. In the limit ks → 0, the partial amplitude takes the
following factorziaed form [79]

An
(
. . . , a, s, b, . . .)

= SYM(a, s, b)An−1

(
. . . , a, b, . . .

)
+O(k0

s), (2.19)

with
SYM(a, s, b) = − ka · εs

ka · ks
+
kb · εs
kb · ks

, (2.20)

where εs denotes the the polarization vector of the soft gluon. In the spinor-
helicity variables (c.f. Appendix A), they can written in a more familiar form

SYM(a, s+, b) =
〈a b〉

〈a s〉 〈s b〉
, SYM(a, s−, b) =

[a b]

[a s][s b]
. (2.21)

They are called eikonal factors and independent of the helicities of the two
adjacent gluons a and b, reflecting the classical origin of soft radiation. The
subleading term has also been derived in [80, 81]. The universal factorized
hebavior of the scattering amplitude in the soft limit is also often called the
soft theorem in the literature.
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2.2 Einstein gravity theory

In this section, we turn to introduce the Einstein gravity theory. Einstein’s the-
ory provides an elegant geometric description of the fundamental interaction
of gravitation. Here we discuss gravity from a purely field theoretical point
of view: Einstein gravity is equivalent to the quantum theory of a massless,
self-interacting, spin-2 field [82]. Here we mainly follow ref. [83] (we also
suggest interested readers to [84–89] for recent or classical review papers and
lecture notes).

Our starting point is the Einstein-Hilbert action

SEinstein-Hilbert =

∫
dDx
√
−g
(

1

2κ2
(R− 2Λ) + Lmatter

)
, (2.22)

where Lmatter describes the matter part appearing in the theory, Λ is the cosmo-
logical constant, g = det(gµν) is the determinant of the metric tensor, R is the
Ricci scalar, and κ2 = 8πGN with GN Newton’s gravitational constant. One
can derive the famous Einstein field equation from the Einstein-Hilbert action.

In the weak field limit, we may expand the metric field gµν(x) around flat
spacetime, i.e.,

gµν(x) = ηµν + κhµν(x), (2.23)

where hµν(x) is the symmetric rank-2 tensor which spans a representation of
the Lorentz group. We regard this fluctuating field as the graviton field. Plug-
ging (2.23) into

√
−g and R, one can get an infinite series in κ. In particular,

the expansion of
√
−g does not contain derivatives of the graviton field hµν .

This explains why the cosmological constant term does not affect the dynamics
of the theory [90]. In the following, we consider only the pure graviton field
by setting Lmatter and Λ to zero.

We see the diffeomorphism invariance of the theory, which is sometimes con-
sidered as gauge symmetry from a QFT viewpoint. Let us consider an infinites-
imal coordinate transformation:

xµ −→ x̃µ(x) = xµ + εµ(x), ε� 1, (2.24)
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under which the metric transforms as a covariant rank-2 tensor

gµν(x) −→ g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x). (2.25)

Using eq. (2.23) and eq. (2.24), one find that the metric transformation (2.25)
is equivalent to the gauge transformation of the graviton field:

hµν −→ h̃µν = hµν − ∂µεν − ∂νεµ +O(ε2). (2.26)

Given the Lagrangian and its symmetries, using the standard textbook method,
one can derive Feynman rules to compute amplitudes. Gravity has an infinite
number of higher-point interaction vertices, and even the simplest cubic vertex
has a much more complicated structure than Yang-Mills. Here we do not list
Feynman rules since we never calculate any graviton amplitude from Feynman
diagrams in this work. Instead, we understand graviton amplitudes from a
modern perspective – gravity as a double copy of Yang-Mills [74, 91, 92].

More than three decades ago, Kawai, Lewellen and Tye (KLT) derived that a
closed string amplitude can be written in terms of a sum of the square of open
string amplitudes at tree level [91]. In field theory limit, it is reduced to a sim-
ilar relation between graviton amplitudes and color-ordered gluon amplitudes.
To be clear, let us see some lower-point examples

M3 = A3(123)A3(123),

M4 = −s12A4(1234)A4(1243), (2.27)

M5 = s12s34A5(12345)A5(14352) + s13s24A5(13245)A5(14253).

Here from eachMn a overall factor κn−2 has been stripped off. More gener-
ally, for arbitrary multiplicity, one has [93]

Mn = (−1)n+1
∑

α,β∈Sn−3

An(n−1, n, α, 1)S[α|β]k1An(1, β, n−1, n), (2.28)
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where S[α|β] is called the momentum kernel defined as [94]

S
[
i1, . . . , ik|j1, . . . , jk

]
k1

=
k∏
t=1

(
sit1 +

k∑
q>t

θ(it, iq)sitiq

)
, (2.29)

where θ(it, iq) is zero when the pair (it, iq) has same ordering at both sets
{i1, . . . , ik} and {i1, . . . , ik}, but otherwise it is unity.

As a simple application, a combination of the soft (collinear) limit of color-
ordered gluon amplitudes and the KLT relations may lead to the soft (collinear)
factorization of graviton amplitudes [83, 92, 95, 96]. In the collinear limit
(2.16), any n-graviton amplitude takes the following factorized form [83, 92]

Mn(k1, k2)
k1‖k2−−−−→

∑
h=±2

Mn−1

(
p−h

)
Split

gravity
h (1, 2), (2.30)

where the gravity splitting amplitude is simply just a product of two gluon
splitting amplitudes, i.e.,

Split
gravity
h (1, 2) = −s12 Splith(1, 2)× Splith(2, 1). (2.31)

In [92], it was argued that the gravity splitting amplitude doesn’t receive higher
loop corrections. Similarly, in the soft limit kn → 0, for graviton amplitudes
one has [97]

Mn(kn) = SgravityMn−1 +O(kn), (2.32)

where the soft factor also can be obtained as the double copy of eikonal factors

Sgravity(n±) =
n−1∑
a=1

san SYM(x, n±, i)SYM(y, n±, i), (2.33)

where x and y are arbitrary reference spinors. The leading soft factorization of
graviton amplitudes is uncorrected to all loop orders, and is called “Weinberg
theorem” [97, 98]. Very interestingly, the subleading [99–102] and subsub-
leading [102] terms also exhibit universal structure in the soft limit.

In 2008, Bern, Carrasco and Johansson (BCJ) discovered a new realization of
the double copy relation between gauge and gravity theories, known as “color-



2.3. Effective field theories 15

kinematics duality” [74, 103]. We illustrate this remarkable duality using tree-
level amplitudes. Like the color decomposition (2.14) of gluon amplitudes,
one can reorganize gluon amplitudes in terms of cubic graphs

An = gn−2
∑
i

cini
Di

, (2.34)

where the sum is over all possible cubic graphs, Di denote inverse propaga-
tors that can be straightforwardly read off from the graph, ci and ni denote
corresponding color factors and kinematic numerators respectively. In such a
decomposition, one needs that kinematic numerators ni obey the same Jacobi
relations and symmetry properties as the color factors ci. Then the gravity
amplitudes can be obtained by simply replacing the color factors of gluon am-
plitude with the numerator factors, i.e.,

Mn = κn−2
∑
i

niñi
Di

. (2.35)

This work focuses mostly on the scattering equations. We will show in the next
chapters that the scattering equations also provide a new elegant description of
the double copy relation between gauge and gravity amplitudes.

2.3 Effective field theories

As just shown in previous sections, the amplitude in gauge theory and gravity
displays a universal factorized behavior in the single soft limit. In this sec-
tion, we discuss some effective field theories (EFT), in which the scattering
amplitudes vanish when emitting a single soft particle.

Dirac-Born-Infeld Let us begin with the Born-Infeld (BI) theory whose La-
grangian in four dimensions reads

LBI = `−2

(
1−

√
−det (ηµν − `Fµν)

)
, (2.36)

where ` is the coupling constant. The BI model is a non-linear generalization
of Maxwell theory. The Dirac-Born-Infeld (DBI) theory is a generalization of
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the BI theory to include scalars, i.e.,

LDBI = `−2

(
1−

√
−det (ηµν − `2∂µφI∂νφI − `Fµν)

)
, (2.37)

where I are flavor indices. Expanding the Lagrangian in ` yields an infinite
series of local operators. For example, in four dimensions, the pure BI La-
grangian (2.36) can be expanded as [104]

LBI = I2 + `2I4

[
1 + `2I2 + `4

(
I2

2 −
1

2
I4

)
+O(`6)

]
, (2.38)

where I2 = −1
4FµνF

µν is the Maxwell Lagrangian, and all higher order terms
are proportional to I4 defined as follows:

I4 :=−1

8

(
FµνF

ναFαβF
βµ− 1

4

(
FµνF

µν
)2)

= −1

8

(
F (+)

)2(
F (−)

)2
, (2.39)

with

F± ≡ F ± ∗F, ∗Fµν ≡ 1

2
εµνρσFρσ. (2.40)

Similarly, for the pure scalar sector of DBI, in the case of one flavor one has

LDBI scalar =
1

2
(∂φ)2 +

`2

2!

(
(∂φ)2

2

)2

+
3 `4

3!

(
(∂φ)2

2

)3

+O(`6). (2.41)

NLSM Next, we consider the low-energy effective theory of the Goldstone
bosons corresponding to the spontaneous symmetry breakingU(N)×U(N)→
U(N). It is referred to as U(N) non-linear sigma model (NLSM) and gov-
erned by [105, 106]

LNLSM =
F 2

4
Tr
(
∂µU∂

µU †
)
, (2.42)

where F is a constant with mass dimension 1 in four dimensions, and φ =

2φata with ta the fundamental representations of generators of U(N). In the
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so-called Cayley parameterization, U can be written as an infinite series

U = 1 + 2
∞∑
m=1

(
i

2F
φ

)m
. (2.43)

Plugging U into the Lagrangian (2.42), one can extract Feynman rules order by
order and find that only terms with the even number of fields are non-vanishing.
Like Yang-Mills, the amplitude of scalars in the NLSM has a similar color
decomposition, as shown in eq. (2.13).

sGal Let us also see a special Galileon theory (sGal). Galileon theories
are effective field theories of scalars in the decoupling limit of massive grav-
ity [107, 108] and Dvali-Gabadadze-Porrati model [109]. The Lagrangian of
the general Galileon theory reads

LGalileon =
1

2
(∂φ)2 +

∞∑
m=3

cm L(m), (2.44)

with

L(m) :=
∑
α∈Sm

(−1)αgµ1να1gµ2να2 · · · gµmναmΦµ1ν1Φµ2ν2 · · ·Φµmνm , (2.45)

where α = (α1, . . . , αm) denotes the permutation of {1, . . . ,m} and (−1)α

is its sign, and Φµν = ∂µ∂νφ. The special Galileon theory is a special case
of Galileon theory that has an enhanced soft limit compared to the generic
Galileon [110, 111]. Such enhanced soft limit fixes the coefficients cm in the
Lagrangian (2.44). Here we do not give the explicit form of cm (c.f. [110–112]
for detail), but just to emphasize that cm vanishes for odd m in the sGal.

Volkov-Akulov Lastly, we consider a fermionic theory – Volkov-Akulov (VA)
model [113, 114]

LVA = −1

2
ρ−2 det

(
1 + iρ2ψσµ

←→
∂ µψ̄

)
, (2.46)

where ψ is the Weyl fermion which describes the Goldstino, and ρ is a constant
with mass dimension −2. The VA model is the low-energy effective theory of
Goldstinos associated with the spontaneous breaking of supersymmetry.
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In summary, a notable feature is that all these effective theories have only non-
zero amplitudes with even number of external legs. This is consistent with they
have Adler’s zeros [115, 116]. More precisely, in the single soft limit ks → 0,

A2n = O
(
kms
)
, (2.47)

where m is a non-negative integer characterizing the soft behavior of theory,
which has been used to classify scalar effective field theories in [111, 117].

Unlike Yang-Mills and gravity, it is currently not very clear how to apply stan-
dard techniques such as on-shell recursions [14,15] to efficiently calculate am-
plitudes in these effective field theories. In Chapter 5, we develop new rep-
resentations for tree-level amplitudes in these theories based on the scattering
equations and show that these new formulas can be nicely used to produce
various double soft theorems.



3 The scattering equations
in arbitrary-dimensional spacetime

This chapter provides a short review on the basics of the scattering equations
and the Cachazo-He-Yuan (CHY) representation of tree-level scattering am-
plitudes in arbitrary spacetime dimensions.

3.1 The scattering equations from a rational map

Let us start with a rational map from the moduli space1of Riemann spheres
with n marked points M0,n to the space of momenta for n massless particle
scattering [22, 23]

kµa =
1

2πi

∮
|z−σa|=ε

dz ωµ(z) (3.1)

with

ωµ(z) =

n∑
a=1

kµa
z − σa

=
Pµ(z)∏n

a=1(z − σa)
, (3.2)

where σa ∈ CP1 denote the marked points in the M0,n. It is clear that Pµ(z)

is a polynomial of degree n−2 for each Lorentz index µ = 0, . . . , D−1.

In order to determine the positions of the marked points, one has to impose
additional conditions on the map. One can show that P (σa)

2 = 0 for all

1The moduli space of Riemann spheres with n marked points, denoted by M0,n, is defined
as the quotient of the configuration space of n distinct points (σ1, . . . , σn) ∈ (CP1)n modulo
Möbius transformations.

19
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σ2

σ1

σ3σ5

σ4

ωµ(z)

Figure 3.1: The rational map from the Riemann sphere to the null cone.

marked points because of the fact that all particles are massless and on-shell. It
is natural to impose a requirement that the Pµ(z) remains null for any z ∈ CP1

in the sphere, as shown in Figure 3.1. Indeed, we show that this leads to a
set of constraints that fix all marked points consistently below. Consider the
following meromorphic function

w(z)2 ≡ wµ(z)wµ(z) =
∑
a

1

z − σa

∑
b 6=a

2ka · kb
σa − σb

, (3.3)

which has only simple pole at each z = σa and no pole at z = ∞ due to
momentum conservation. Then by using the residue theorem, one can imme-
diately get the constraints to determine the marked points σa, i.e.,

0 =
1

4πi

∮
|z−σa|=ε

dz w(z)2 =
∑
b6=a

ka · kb
σa − σb

, a ∈ {1, . . . , n}, (3.4)

which are named the scattering equations [22], and are the core object of this
work. We refer to them as the D-dimensional scattering equations since they
are valid for arbitrary spacetime dimension D.

Before discussing the properties of these equations in subsequent sections, here
we would like to give some historical remarks on the scattering equations.
These equations have made an appearance in previous literature in different
contexts [118–124]. Cachazo, He and Yuan rediscovered them in order to de-
velop new representations for S-matrices in arbitrary-dimensional spacetime,
as will be shown in the last section of this chapter. Very recently, the scattering
equations have also been generalized to different contexts, e.g. [125–128].
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3.2 The properties of the scattering equations

In this section we discuss the properties of the scattering equations defined in
(3.4) or (1.2). For convenience, let us rewrite them here

fa(σ) =
∑
b6=a

ka · kb
σab

= 0, a = {1, 2, . . . , n}, (3.5)

with σab ≡ σa − σb. As will be detailed below, this system of algebraic
equations owns a global SL(2,C) symmetry, and thus only n−3 out of the n
equations are independent.

Let us define the Möbius transformation as

σa −→ σ̃a =
ασa + β

γσa + δ
, a = {1, 2, . . . , n}, (3.6)

where α, β, γ, δ ∈ C sastifying αδ − βγ = 1. The system of the scattering
equations in (3.5) is invariant under Möbius transformations. Namely, if σ =

(σ1, . . . , σn) is a solution of the system of the scattering equations, then σ̃ =

(σ̃1, . . . , σ̃n) is also its solution. More precisely, this can be seen from a simple
calculation

fa(σ̃) ≡
∑
b 6=a

ka · kb
σ̃a − σ̃b

=
(γσa + δ)2

αδ − βγ
∑
b6=a

ka · kb
σa − σb

− γ(γσa + δ)

αδ − βγ
∑
b6=a

ka · kb

= (γσa + δ)2 fa(σ), (3.7)

where one has used momentum conservation in the second line. This exactly
shows that the a-th equation, fa = 0, just picks up a factor (γσa+δ)2 under the
SL(2,C) transformation (3.6). In fact, there exist three extra relations among
the scattering equations, i.e.,

n∑
a=1

fa =

n∑
a=1

σa fa =

n∑
a=1

σ2
a fa = 0. (3.8)

Consequently, only n−3 of the n equations in (3.5) are independent linearly.
Moreover, we can fix three of the variables σa using SL(2,C) redundancy.
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For instance, we can fix three variables as (σ1, σ2, σ3) → (0,∞, 1) via the
following Möbius transformation

σi −→
(σi − σ1)(σ3 − σ2)

(σi − σ2)(σ3 − σ1)
. (3.9)

In the following, we show the Möbius invariance of the scattering equations
from the viewpoint of Lie algebras. In [51], Dolan and Goddard show that the
scattering equations (3.5) are equivalent to a system of homogeneous polyno-
mial equations defining as:

h̃m(z) = 0, 2 ≤ m ≤ n−2, (3.10)

with

h̃m(z) :=
∑

I⊂{1,...,n},|I|=m

sIσI , sI ≡
∑
i<j∈I

sij , σI ≡
∏
i∈I

σi. (3.11)

Let us define the generators of the sl(2,C) algebra that act on a polynomial
ring C[σ] [129]

L0 = −
n∑
a=1

σa
∂

∂σa
+
n

2
,

L1 =
n∑
a=1

σa − σ2
a

∂

∂σa
,

L−1 = −
n∑
a=1

∂

∂σa
.

(3.12)

It is easy to verify that they satisfy the following commutation relations:

[L1, L−1] = 2L0, [L0, L±1] = ∓L±1. (3.13)
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In the following we show that the polynomial system of the scattering equa-
tions in (3.11) forms a representation of the sl(2,C).

L1h̃m = (m− 1) h̃m+1, L1h̃n−2 = 0,

L−1h̃m = −(n−m− 1) h̃m−1, L−1h̃2 = 0,

L0h̃m =
1

2
(n− 2m) h̃m.

(3.14)

The Casimir invariant is

C = (L0)2 − 1

2

(
L1L−1 + L−1L1

)
, (3.15)

C h̃m =

(
1

2
n−1

)(
1

2
n−2

)
h̃m. (3.16)

These explicitly show that the system of polynomials h̃m with 2 ≤ m ≤ n−2

spans an irreducible (n−3)-dimensional representation of the sl(2,C) [129].

3.3 The solutions of the scattering equations

We discuss the solutions of the scattering equations in this section. Let us start
by asking how many independent solutions do the scattering equations have.
In order to answer this question, we first consider the polynomial equations
(3.10). We fix two of n variables, e.g. (σ1, σn) → (0,∞), using the SL(2,C)

redundancy according to [51]

hm ≡ lim
σn→∞

h̃m+1

σn
=

∑
I⊂{2,...,n−1},|I|=m

s{n}∪I σI , (3.17)

where 1 ≤ m ≤ n−3. After fixing the two variables, the system still leaves a
rescaling redundancy, i.e.,

σa → λσa =⇒ hm → λmhm, λ ∈ C∗. (3.18)

The equations in (3.17) are equivalent to the scattering equations (3.5) and
(3.10) up to fixing the two variables according to (σ1, σn) → (0,∞). A re-
markable property is that each hm is a homogeneous polynomial of degree m
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and linear in the variables σ2, ..., σn−1. Therefore one can conclude that the
upper bound of the number of independent solutions to the scattering equations
is (n−3)! by Bézout’s theorem. In fact, this number is exactly the number of
independent solutions, as proven in [23]. Here we follow ref. [23] and give a
brief review.

The idea is to consider the single soft limit. For example, we take kn → εkn
with ε→ 0. In this limit, the scattering equations (3.5) become

fa =
n−1∑
b=1
b 6=a

ka · kb
σa−σb

+ ε
ka · kn
σa−σn

= 0, a ∈ {1, . . . , n−1}, (3.19)

fn = εf̃n = 0, f̃n ≡
n−1∑
b=1

kn · kb
σn−σb

. (3.20)

We can easily observe that the first n−1 equations in (3.19) naturally get re-
duced to the scattering equations for n−1 particle scattering without soft mo-
menta. We assume they have ](n−1) independent solutions. In addition, we
find that the last equation, fn in eq. (3.20), is invariant in the soft limit up
to the soft parameter ε, namely fn = εf̃n. We can find the value of σn
from equation f̃n = 0. After fixing the SL(2,C) redundancy according to
e.g. (σ1, σ2, σ3) → (0,∞, 1), f̃n = 0 is equivalent to a polynomial equation
of degree n−3 in σn, and thus has (n−3) solutions. Therefore, the number of
independent solutions to the complete n-point scattering equations is

](n) = (n− 3) ](n− 1) = (n− 3)!, (3.21)

where we have used also the fact that the three-point scattering equations have
a unique solution that is fully fixed by the Möbius symmetry.

This shows that the number of independent solutions of the scattering equa-
tions grows factorially with the number of external legs. In general, it is very
challenging to exactly obtain all (n−3)! solutions to be valid for generic kine-
matical data for arbitrary multiplicities. It is only possible to solve the scat-
tering equations for special kinematics or to obtain some special solutions for
arbitrary kinematics. In four dimensions, a special solution for any multiplicity
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is [118, 119, 122] (c.f. also refs. [50, 51])

σa =
k0
a + k3

a

k1
a + ik2

a

, a = 1, . . . , n (3.22)

It is easy to check that the valves of σa given in (3.22) satisfy the scattering
equations (3.5), and the complex conjugate of this solution also solves the
equations. In the literature, this particular solution is commonly referred to as
the MHV solution since it is responsible for MHV amplitudes shown in (1.1).

In Chapters 7, 8 and 9, we show the scattering equations simplifies vastly in
Regge kinematics, where the final state particles are ordered in rapidity. In par-
ticular, in the multi-Regge kinematics, we can determine exactly all solutions
to the scattering equations for any multiplicity. For generic kinematics, we also
develop an efficient technique to solve the scattering equations numerically in
Chapter 10.

3.4 From the scattering equations to scattering amplitudes

There are numerous different ways to compute tree-level amplitudes. In this
work we are mostly interested in the scattering equation formalism, where
an on-shell tree-level amplitude with n massless particles is expressed as a
multiple integral over the moduli space M0,n [24, 25],

An =

∫ ∏n
a=1 dσa

vol SL(2,C)

∏′

a
δ (fa) In . (3.23)

Since tree-level amplitudes are rational functions, the integrand is completely
localized by the δ-functions whose arguments are the scattering equations. As
shown in the previous section, three of the n equations are redundant because
of the SL(2,C) invariance of the scattering equations. We define∏′

a
δ (fa) ≡ (σr−σp)(σp−σq)(σq−σr)

∏
a6=r,p,q

δ (fa) , (3.24)

which is independent of the choice of {r, p, q} [24, 25]. As shown exactly in
eq. (3.7), each scattering equation fa just picks up an overall factor (γσa + δ)2

under the Möbius transformation (3.6). Thus it is easy to show that under the
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Möbius transformation (3.6) the delta-functions defined in (3.24) behave as

∏′

a
δ
(
fa
)
−→

(
n∏
b=1

(γσb + δ)

)−2 ∏′

a
δ
(
fa
)
. (3.25)

In this case, we say the delta-functions have weight −2 under the SL(2,C)

transformation.

Note that the invariant measure on the Möbius group can be defined as

dσidσjdσl
σijσjlσli

, (3.26)

where it is free to choose {i, j, l}. So we can verify that the measure in the
CHY formula (3.23) transforms as under the Möbius transformation (3.6),

∏n
a=1 dσa

vol SL(2,C)
−→

(
n∏
b=1

(γσb + δ)

)−2 ∏n
a=1 dσa

vol SL(2,C)
. (3.27)

Therefore the measure has weight “−2” under SL(2,C) transformation (3.6).

The last ingredient of the CHY formula (3.23) is the integrand function In(σ)

which encodes the information on the dynamics of the theory. In order that the
integral formula (3.23) remains invariant under the SL(2,C) transformation,
the function In(σ) must have weight 4, namely

In(σ) −→

(
n∏
a=1

(γσa + δ)

)4

In(σ). (3.28)

CHY integrands for gauge theory and gravity

To be more precise, we take an example of the CHY integrands for gauge and
gravity amplitudes.

Let us first define some building blocks. We introduce 2n×2n Skew-symmetric
matrix as:

Ψ =

(
A −CT

C B

)
, (3.29)
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where A, B and C are n× n antisymmetric matrices:

Aab =


ka · kb
σab

, a 6= b,

0, a = b,

Bab =


εa · εb
σab

, a 6= b,

0, a = b,

Cab =


εa · kb
σab

, a 6= b,

−
∑
c 6=a

εa · kc
σac

, a = b.
(3.30)

Here εµi (ki) denotes the polarization vector with momentum ki. Then we can
define2

Pf ′Ψ ≡ 2
(−1)i+j

σij
Pf
(
Ψij
ij

)
, (3.32)

where Ψij
ij means two columns and two rows 1 ≤ i, j ≤ n have been deleted

from the matrix Ψ. The reduced pfaffian Pf ′Ψ defined above is permutation
invariant and independent of the choice of labels {i, j} [24]. Let us make
some comments about the properties of this ingredient. First, it has weight
2 under the SL(2,C) transformation (3.6). Second, it is manifestly linear in
each polarization vector εa. More physically, it is gauge invariant. This can be
seen from the fact that a-th and (a+n)-th columns of Ψ become identical if
we replace any εa by momentum ka.

Another ingredient related to gauge and gravity amplitudes is the so-called
Parke-Taylor factor

C(µ) ≡ 1

σµ1µ2σµ2µ3 · · ·σµnµ1
, (3.33)

2The pfaffian of a skew-symmetric 2n× 2n matrix N can be defined recursively as

Pf(N) :=

2n∑
j=1
j 6=i

(−1)i+j+1+θ(i−j)Nij Pf(N
ij
ij ), Pf(N0×0) := 1, (3.31)

where index i can be selected arbitrarily, θ(i−j) is the Heaviside step function, N ij
ij denotes

the matrix N with both the i-th and j-th rows and columns removed. The square of the Pfaffian
of a matrix gives the determinant of the matrix, i.e. det(N) = Pf(N)2. Moreover, pfaffians
share many similar properties with determinants.
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where the ordering µ = (µ1, . . . , µn) is a permutation of {1, . . . , n}. It is easy
to check that the Parke-Taylor factor has weight 2 under the Möbius transfor-
mation.

Given two ingredients defined in eqs. (3.32) and (3.33), the integrand for tree-
level color-ordered amplitudes of gluons is [24]

I (YM)
n (1, . . . , n) = C(1, . . . , n) Pf ′Ψ(σ, k, ε). (3.34)

The integrand for graviton amplitudes takes [24]

I (GR)
n = det′Ψ ≡ Pf ′Ψ(σ, k, ε) Pf ′Ψ(σ, k, ε). (3.35)

It is easy to see that the two integrands defined in (3.34) and (3.35) have the
correct weight under SL(2,C) transformation. Furthermore, they satisfy the
primary physical constraints, such as mass dimensionality, Lorentz invariance,
gauge invariance and multilinearity in polarization vectors or tensors.

In addition, using these two ingredients we can define another function that
has weight 4 under the SL(2,C) transformations,

I (φ3)
n (µ|ρ) = C(µ) C(ρ). (3.36)

Here the use of superscript “φ3” indicates that this function really describes φ3

interactions [25]. More precisely, the CHY formula with the integrand (3.36)
computes the double color-ordered amplitude of a massless cubic scalar theory
in the adjoint of the color group U(N)× U(Ñ).

An interesting observation is one has an elegant description for the double
copy relation between amplitudes in Yang-Mills and gravity (denote as “GR =

YM ⊗ YM”) [24, 25]. The scattering equations are universal for all theories,
and we can obtain the CHY integrand for gravity by taking two copies of the
CHY integrand for Yang-Mills, and divided by that of bi-adjoint φ3 theory.
More precisely,

I (GR)
n =

I (YM)
n (µ)× I (YM)

n (ρ)

I (φ3)
n (µ|ρ)

. (3.37)
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More interestingly, the CHY representations for some other theories may also
be derived from the double copy relation in a similar way [130] (see also Chap-
ter 5).

Let us conclude this section with some remarks on the CHY representation of
amplitudes. More generally, for the theory that admits a CHY representation,
the integrand function takes a factorized form In = I(L)

n I(R)
n . We refer to I(L)

n

or I(R)
n as the “half integrand” that transforms with weight 2 under the Möbius

transformation. This makes it possible to construct CHY representations for
more theories with fewer ingredients. So far, the CHY integrands for a variety
of theories have been obtained, such as Yang-Mills, Einstein gravity, bi-adjoint
scalar, Yang-Mills-scalar, Einstein-Maxwell-scalar, Born-Infeld, Dirac-Born-
Infeld, Non-linear sigma model and a special Galileon theory [23–25,125,130–
137].





4 The scattering equations
in four-dimensional spacetime

In this chapter, we show that in four dimensions in the spinor-helicity for-
malism, the scattering equations can be decomposed into different “helicity
sectors”. We also review two types of four-dimensional formulations of am-
plitudes that were derived from Witten’s twistor string and ambitwistor string
models respectively and clarify the equivalence between them.

4.1 The helicity scattering equations

Let us recall the map from the n-punctured spheres to the space of momenta

Pµ(z) =

(
n∑
a=1

kµa
z − σa

)(
n∏
b=1

(z − σb)

)
. (4.1)

Pµ(z) is a null vector. In four dimensions, it can be expressed in spinor vari-
ables (c.f. Appendix A) as follows:

Pαα̇(z) = λα(z)λ̃α̇(z), (4.2)

where λα(z) and λ̃α̇(z) are spinor-valued polynomials in z of degree d and d̃
respectively, d, d̃ ∈ {1, . . . , n−3} and d + d̃ = n−2. As will be explained
later, the polynomials λ(z) and λ̃(z) may be constructed as follows:

λα(z) =

(∏
a∈N

(z − σa)
)∑
I∈N

tIλ
α
I

z − σI
,

λ̃α̇(z) =

(∏
a∈P

(z − σa)
)∑
i∈P

tiλ̃
α̇
i

z − σi
,

(4.3)

31
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where N is any subset of {1, . . . , n} with length 2 ≤ k ≤ n−2 and P is
the corresponding complement. Therefore, λ(z) has degree d = k−1, while
λ̃(z) has degree d̃ = n−k−1. In (4.3), we have also introduced n additional
variables ta ∈ CP1 with a ∈ {1, . . . , n}. As will be immediately seen below,
these variables can be fixed by additional equations consistently.

Plugging (4.3) into (4.2), one finds [132, 138]

Pαα̇(z) = λα(z)λ̃α̇(z) (4.4)

=

n∏
a=1

(z − σa)

(∑
I∈N

tIλ
α
I

z − σI

)∑
i∈P

tiλ̃
α̇
i

z − σi


=

n∏
a=1

(z − σa)
∑
I∈N

∑
i∈P

tItiλ
α
I λ̃

α̇
i

(
1

z − σI
− 1

z − σi

)
1

σI − σi

=

n∏
a=1

(z − σa)

∑
I∈N

λαI
z − σI

∑
i∈P

λ̃α̇i
(I i)

+
∑
i∈P

λ̃α̇i
z − σi

∑
I∈N

λαI
(i I)

 ,

where (a b) := (σa − σb)/(tatb) and we used partial fraction decomposition
in the third line. A simple comparison with the original definition of the map
P (z) in (4.1) gives

λ̃α̇I −
∑
i∈P

λ̃α̇i
(I i)

= 0, I ∈ N; λαi −
∑
I∈N

λαI
(i I)

= 0, i ∈ P. (4.5)

We see that in four dimensions the scattering equations fall into different sec-
tors characterized by k = |N| ∈ {2, . . . , n−2}. As expected, we obtain 2n

equations that can be used to determine σ’s as well as n extra ta variables.

The two spinor-valued maps in (4.3) have introduced an overall rescaling re-
dundancy, i.e.{

λ(z), λ̃(z)
}
−→

{
cλ(z), c−1λ̃(z)

}
with c ∈ C∗ (4.6)

leaves P (z) = λ(z)λ̃(z) invariant. Thus the system of spinor-valued equations
in (4.5) has a global GL(2,C) = SL(2,C) × GL(1,C) redundancy. To be
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clear, let us perform a GL(2,C) transform as follows [139]:

σa −→ σ̃a =
ασa + β

γσa + δ
, a ∈ {1, . . . , n}

ti −→ t̃i =
(αδ − βγ) ti
γσi + δ

, i ∈ P

tI −→ t̃I =
tI

γσI + δ
, I ∈ N

(4.7)

where α, β, γ, δ ∈ C sastifying αδ − βγ 6= 0. It is then apparent that any
ciI = 1/(i I) with i ∈ P and I ∈ N is variant under the transformation
defined in (4.7). As a consequence, we can fix 4 of 2n variables using the
GL(2,C) redundancy. For example, in the case of {1, 2} ⊆ N, by performing
the transformation (4.7) with

α = − 1

t1
, β =

σ1

t1
, γ = − 1

t2
, δ =

σ2

t2
, (4.8)

we can fix four variables (σ1, σ2, t1, t2) as

σ1 = 0, t1 = −1, t2 = σ2 →∞. (4.9)

Accordingly, only 2n−4 of the 2n equations in (4.5) are independent. In fact,
these equations imply momentum conservation [139, 140]. In other words,
we can identify four redundant equations with the momentum conservation
constraint. More precisely, for any {I, J} ⊆ N, one has

δ2

(
λ̃α̇I −

∑
i∈P

λ̃α̇i
(I i)

)
δ2

(
λ̃α̇J −

∑
i∈P

λ̃α̇i
(J i)

)
= 〈I J〉2 δ4

(
n∑
a=1

λαa λ̃
α̇
a

)
. (4.10)

Similarly, for for any {i, j} ⊆ P, one has

δ2

(
λαi −

∑
I∈N

λαI
(i I)

)
δ2

(
λαj −

∑
I∈N

λαI
(j I)

)
= [i j]2 δ4

(
n∑
a=1

λαa λ̃
α̇
a

)
. (4.11)

We put the detailed derivation in Appendix B.
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The equations in (4.5) were originally derived from the four-dimensional am-
bitwistor string model by Geyer, Lipstein and Masin (GLM) in [28]. They
have also appeared much earlier in the context of open twistor string the-
ory [139]. As mentioned in the introduction chapter, there was another contour
integral representation for supersymmetric gauge theory amplitudes in four-
dimensional spacetime, which was derived from Witten’s twistor string [8] by
Roiban, Spradlin and Volovich (RSV) [16]. A crucial ingredient of the Witten-
RSV formalism is a set of equations as follows

n∑
a=1

taσ
m
a λ̃

α̇
a = 0, m = 0, 1, . . . , d,

λαa − ta
d∑

m=0

ραmσ
m
a = 0, a = 1, . . . , n.

(4.12)

Compared to the system of equations (4.5), there are more equations and more
variables, ραm (m = 0, . . . , d), are involved besides σa and ta. Like the equa-
tions (4.5), the system of equations in (4.12) is characterised by an integer
d = k−1. Unlike (4.5), the equations in (4.12) are manifestly permutation
invariant on particle labels {1, 2, . . . , n}.

The number of independent solutions for the scattering equations in both (4.5)
and (4.12) in sector k is given by the Eulerian number

〈
n−3
k−2

〉
[22, 141]. It is

well-known that [142]

n−2∑
k=2

〈
n− 3

k − 2

〉
= (n−3)! (4.13)

in agreement with the fact that the D-dimensional scattering equations in (3.5)
have (n−3)! independent solutions. As we will show in the following, for
both gauge and gravity theories exactly the sector-k (or d = k−1) equations
are needed for the amplitudes in helicity sector k (e.g. those with k negative-
helicity gluons or gravitons). Because of this reason, we refer to them as also
(four-dimensional) helicity scattering equations. Moreover, we call each divi-
sion of particle labels into N and P the “helicity configuration” of the helicity
scattering equations in (4.5).
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Equivalence between (4.5) and (4.12)

A natural and important question is about the equivalence between the two
forms of helicity scattering equations, (4.5) and (4.12). We discuss the relation
between them in the following. This part is based on the paper [132].

It was first pointed out in [143] that the equations in (4.12) can be viewed
as the constraints on σ’s through those on the so-called Veronese form of the
Grassmannian (i.e. k × n matrix up to GL(k) transformation). From (4.12),
we see that the form of the matrix (the “C-matrix”) reads [143]

Cm+1,a = taσ
m
a , for m = 0, . . . , d, a = 1, . . . , n. (4.14)

Viewing λαa , λ̃
α̇
a both as n × 2 matrices, and ραm as 2 × k matrix, the Witten-

RSV scattering equations (4.12) become

C · λ̃ = 0, λT − ρ · C = 0. (4.15)

Here the dot “·” and symbol “T” denote matrix multiplication and transpose
respectively. Geometrically speaking, this means that the k-plane C is or-
thogonal to 2-plane λ̃, and it contains the 2-plane λ. For our purpose it is
actually more convenient to rewrite the latter constraints as the statement that
the orthogonal complement of C, denoted by C⊥ (which is a (n−k)-plane or
a (n−k)× n matrix), is orthogonal to the λ-plane. Thus (4.12) becomes

C · λ̃ = 0 , C⊥ · λ = 0 . (4.16)

To relate this form to the equations in (4.5) simply requires a GL(k) transfor-
mation such that a k×k submatrix ofC becomes the identity. For convenience,
without loss generality, we try to transform the first k columns and rows of the
C into the identity, i.e.,

C = L · C =
(
1k×k | Ck×(n−k)

)
. (4.17)

The k × k matrix L has been exactly worked out [132]

LIJ =

(
tI
∏
K 6=I

σIK

)−1

ΣIJ , (4.18)



36 4. The scattering equations in four-dimensional spacetime

where ΣIJ is the degree k−J terms of the following polynomial:

ΣI =
∏
K 6=I

(1− σK). (4.19)

Substituting eq. (4.18) with (4.19) into eq. (4.17) gives

CI a =

k∑
J=1

LIJCJ a =

(
tI
∏
L6=I

σIL

)−1(
ta
∏
J 6=I

σaJ

)
(4.20)

A simple algebra shows that CIJ = δIJ , as expected. The remaining part
has been previously spelled out as the so-called link-representation form [140,
144]:

CI i =
ti
∏
J 6=I σiJ

tI
∏
K 6=I σIK

, k < i ≤ n. (4.21)

Note that after the fixing it is trivial to write C⊥ (see below). By performing
the transformation

t̃i = tiβi, t̃I =
1

tIβI
, with βi =

∏
J

σiJ , βI =
∏
K 6=I

σIK , (4.22)

we can absorb an overall factor in (4.21), and the variables CIi become

CIi =
t̃I t̃i
σI i

. (4.23)

Let us spell out the constraints C · λ̃ = C⊥ · λ = 0 in this gauge-fixed form:(
1k×k | Ck×(n−k)

)
· λ̃ = 0k×2,((

− CT
)

(n−k)×k
∣∣1(n−k)×(n−k)

)
· λ = 0(n−k)×2 ,

(4.24)

which are exactly the GLM helicity scattering equations (4.5) up to rename ta
as t̃a. Therefore, we have shown precisely that the GLM scattering equations
(4.5) are nothing but the gauge-fixed or link-representation form of the Witten-
RSV scattering equations (4.12).
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4.2 From helicity scattering equations to helicity amplitudes

In the previous section, we have shown that in four-dimensional spacetime
in the spinor-helicity formalism the scattering equations are reduced to two
forms of helicity scattering equations, given in (4.5) and (4.12) respectively.
We turn to the formulas for the scattering amplitudes based these equations in
this section. As a warm-up, we focus on the maximally supersymmetric Yang-
Mill and Einstein gravity theories in this section. We systematically discuss the
effective field theories, including DBI, NLSM and a special Galileon theory,
in the next chapter.

On-shell superspace

In order to proceed, let us first provide a very brief introduction to the on-
shell superspace. N = 4 super Yang-Mills has 24 = 16 on-shell degrees
of freedom: two gluons, 4 gluinos and 8 scalars, which transform into each
other according to supersymmetric generators. By introducing Grassmann odd
variables ηA (A = 1, 2, 3, 4) which transform in a fundamental representation
of the SU(4)R-symmetry, we can assemble the 16 states into a single on-shell
sperfield [145, 146]

Φ(SYM)(η) = g+ + ηAΓA +
1

2!
ηAηBφAB

+
1

3!
ηAηBηCεABCDΓ̄D + η1η2η3η4 g−.

(4.25)

It turns out that it is convenient to assign the helicity h = 1/2 to each ηA such
that the on-shell superfield Φ has a uniform helicity h = 1. We define the
space parameterized by (λαi , λ̃

α̇
i , η

A
i ) as the on-shell super(-momentum) space

where the on-shell superfield Φi lives in. In the on-shell superspace, one can
define the supersymmetry generators as

qαAi ≡ λαi η
A
i , q̄α̇i,A ≡ λ̃α̇i

∂

∂ηAi
, (4.26)

which satisfy the SUSY algebra:{
qαAi , qα̇i,B

}
= δAB λ

α
i λ̃

α̇
i . (4.27)
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In the on-shell superspace, we define the superamplitude as

An({λi, λ̃i, ηi}) ≡
〈

Φ1(λ1, λ̃1, η1) · · ·Φn(λn, λ̃n, ηn)
〉
, (4.28)

which is invariant under the supersymmetry generators in (4.26). Its external
legs are on-shell superfields and, thus it packages all component amplitudes
into a single object. According to the on-shell superfield (4.25), a superampli-
tude can be expanded as a sum of polynomials in ηA

An(ηi) =
n−2∑
k=2

An,k(ηi), (4.29)

where An,k has Grassmann degree 4k and is referred to as the superamplitude
of sector k since it incorporates all n-point Nk−2MHV amplitudes. Component
helicity amplitudes with gluons, fermions or scalars can be read off from the
η-expansion of the superamplitude.

Similarly, the 256 on-shell states of the supermultiplet in N = 8 supergravity
can be organized into a single on-shell field:

Φ(SG)(η) = h+ + ηAλA +
1

2!
ηAηBvAB +

1

3!
ηAηBηCχABC

+
1

4!
ηAηBηCηDSABCD + · · · ,

(4.30)

where A = 1, . . . , 8 are fundamental indices of the SU(8) R-symmetry.

Superamplitudes

Given the superspace, supersymmetry dictates that we include fermionic delta
functions for η’s in the same form as those for λ̃’s. Now we can write down
the formulas of superamplitudes in N = 4 SYM or N = 8 SUGRA and see
how the measures and integrands of these two forms transform between each
other. Let us start with the GLM form

An,k =

∫
dµ

(N )
n,k I

(GLM)
n,k (t̃i, t̃I) , (4.31)
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where for convenience, without loss generality, we take N = {1, . . . , k}

dµ
(N )
n,k :=

∏n
a=1 d

2σ̃a
vol GL(2,C)

k∏
I=1

δ2|N

(
(λ̃I |ηI)−

n∑
i=k+1

t̃I t̃i
σIi

(λ̃i|ηi)

)

×
n∏

i=k+1

δ2

(
λi −

k∑
I=1

t̃it̃I
σiI

λI

)
, (4.32)

with d2σ̃a ≡ dσadt̃a/t̃
3
a. In (4.31), An,k is considered to be n-point super-

amplitude of k-sector in N = 4 SYM or N = 8 SUGRA. As we will see why
shortly, we have indicated the explicit dependence of the rational-form inte-
grand on t̃i, t̃I . Performing the transformation in (4.22) and keeping track of
the Jacobians, we get

An,k =

∫
dΩ

(N )
n,k (Vk)

4−N

(
n∏

i=k+1

βi
−2

)(
k∏
I=1

β2
I t

4
I

)
I (GLM)
n,k

(
βiti,

1
βI tI

)
, (4.33)

where the GL(k) transformation is performed and we have defined the Jaco-
bian

Vk =

(∏
I

tI
)(∏

J 6=K
σJK

)
, (4.34)

as well as the Witten-RSV-form measure with N supersymmetries

dΩ
(N )
n,k :=

∏n
a=1 d

2σa
vol GL(2,C)

d∏
m=0

δ2|N

(
n∑
a=1

taσ
m
a (λ̃a|ηa)

)

×
∫
d2kρ

n∏
a=1

δ2

(
ta

d∑
m=0

ρmσ
m
a − λa

)
, (4.35)

where d = k − 1 and d2σa ≡ dσadta/t
3
a. From (4.33), we find that the

integrand with Witten-RSV scattering equations (4.12) is related to the one
with the GLM scattering equations (4.5) in a simple way:

I (RSV)
n,k (ta) = (Vk)

4−N

(
n∏

i=k+1

βi
−2

)(
k∏
I=1

β2
I t

4
I

)
I (GLM)
n,k

(
βiti,

1
βI tI

)
. (4.36)
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To summarize, we have exactly shown how the two types of formulas for am-
plitudes that are based on two kinds of four-dimensional helicity scattering
equations are related to each other. These are part of the main results of this
work, which have been published in [132].

Superamplitudes in N =4 SYM and N =8 supergravity

Now we show the precise formulas for N = 4 SYM and N = 8 SUGRA
amplitudes by writing out explicit integrand In,k.

From (4.36), a remarkable property is the formulas with two forms of the he-
licity scattering equations have identical integrands for N = 4 SYM. This
integrand is just the Parke-Taylor factor [28]

PT(µ) ≡ 1

(µ1µ2)(µ2µ3) · · · (µnµ1)
. (4.37)

Thus for color-ordered superamplitudes in N =4 SYM, we have

A SYM
n,k (1, . . . , n) =

∫
dµ

(N=4)
n,k

1

(12)(23) · · · (n1)
(4.38)

=

∫
dΩ

(N=4)
n,k

1

(12)(23) · · · (n1)
. (4.39)

ForN =8 SUGRA amplitudes, the formula with the GLM scattering equations
reads [28]:

M SUGRA
n,k =

∫
dµ

(N=8)
n,k det′Hk det′Hn−k , (4.40)

where det′ denotes the minor with any one column and one row removed (since
the rows and columns add up to zero), and H and H are k × k and (n − k) ×
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(n− k) matrices of the form:

Hab =
〈a b〉
(a b)

for a 6= b, Haa = −
∑
b∈N
b 6=a

Hab, a, b ∈ N;

Hab =
[a b]

(a b)
for a 6= b, Haa = −

n∑
b∈P
b 6=a

Hab, a, b ∈ P.

(4.41)

Note that the integrand det′Hk det′Hn−k is not permutation invariant, but
when we rewrite the formula with the Witten-RSV form of scattering equa-
tions, the integrand obtained from (4.36) becomes those in [17, 18], which are
permutation invariant. Henceforth for simplicity, we will only write the for-
mula with the scattering equations (4.5) explicitly, the formula using Witten-
RSV form can get from (4.36).

Interestingly, the formula for double-partial amplitudes in the bi-adjoint φ3

theory has been obtained with the help of the Witten-RSV scattering equations
in [147]. By (4.36) we can translate it into a formula with the GLM scattering
equations (4.5):

A (φ3)
n (µ|ν) =

n−2∑
k=2

∫
dµ

(0)
n,k

PT(µ) PT(ν)

det′Hk det′Hn−k
, (4.42)

where we have Parke-Taylor factors with orderings µ, ν and the determinants
appeared in the gravity formula (4.40). It is interesting to see that the formula
for the bi-adjoint φ3 theory in (4.42) is more complicated than N = 4 SYM
as well as N = 8 SUGRA, especially in that one has to sum over all sectors.
Each k sector gives contributions (“scalar blocks” [147]) with unphysical poles
which only cancel each other in the sum over sectors.

As we have shown for general-dimensional case in Chapter 3, the formula for
gravity can also be derived from the double-copy of Yang-Mills, divided by φ3.
From the observation of [147], a nice feature of the four-dimensional formulas
is that this double-copy procedure works for each k-sector individually: one
can easily derive (4.40) from (4.38) and (4.42) for each k [147].

We end this chapter by evaluating amplitudes by the scattering equations in
the simplest sector. At the MHV sector,

〈
n−3

0

〉
= 1, thus the helicity scattering
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equations have only one independent solutions. By using GL(2,C) redun-
dancy to fix four variables according to (4.9), then we can explicitly write
down this unique solution

(i 1) =
〈1 2〉
〈i 2〉

, (i 2) =
〈1 2〉
〈1 i〉

, (i j) =
〈1 2〉3 〈i j〉

〈1 i〉 〈2 i〉 〈1 j〉 〈2 j〉
. (4.43)

Plugging this solution into the formula (4.38) gives the MHV superamplitude
of N =4 SYM:

An,2(1, 2, . . . , n) =
δ4(p) δ8(q)

〈1 2〉 〈2 3〉 · · · 〈n1〉
, (4.44)

where p and q denote total momenta and super-momenta respectively,

pαα̇ ≡
n∑
i=1

λαi λ̃
α̇
i , qαA ≡

n∑
i=1

λαi η
A
i . (4.45)

The η1
1η

2
1η

3
1η

4
1η

1
2η

2
2η

3
2η

4
2 component of (4.44) gievs the MHV gluon amplitude,

as shown in (1.1). Similarly, by evaluating the gravity formula (4.40) in the
MHV sector in a same way, we can obtain the MHV superamplitude in N =8

SUGRA [148, 149].



5 EFT S-matrices
from the scattering equations

Being parallel to N = 4 SYM and N = 8 SUGRA discussed in the previous
chapter, we develop new representations for the four-dimensional scattering
amplitudes in some effective field theories, including maximally supersymmet-
ric Dirac-Born-Infeld-Volkov-Akulov theory (DBI-VA), the U(N) non-linear
sigma model (NLSM) and a special Galileon (sGal) theory in this chapter.

While the formulas for amplitudes in the DBI, NLSM and sGal have been pro-
posed based on the D-dimensional scattering equations in [130], we develop
new representations for these theories using the four-dimensional helicity scat-
tering equations in this chapter. Our motivation is multifold. First, a signifi-
cant simplification appears in the helicity amplitudes in these theories in four
dimensions since only the middle sector k = n/2 is needed for amplitudes in
these theories, as pointed out in [130]. Second, we find that the formula for
DBI amplitudes begs to be put in the supersymmetric form in four dimensions.
This is parallel to the cases of gauge and gravity formulas in four dimensions,
which take nice forms as we include the supermultiplet and write them in a
manifestly supersymmetric manner [16–18], as have been shown in the previ-
ous chapter. The formula naturally leads us to find the maximally supersym-
metric completion of the usual DBI theory. Third, the new four-dimensional
formulas allow us to nicely derive the universal factorized form of amplitudes
in the case of the emission of two soft particles (known as “double soft theo-
rem”), in particular in the supersymmetric extension of the DBI theory. Soft
theorems play particularly important roles in these EFTs. For example, the
famous Adler’s zero means that the emission of a single soft Goldstone bo-
son gives vanishing amplitude [115,150], and double-soft emission probes the

43
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coset algebra structure of the vacuum (c.f. [151] for double-soft-scalar emis-
sion in N =8 SUGRA).

This chapter follows the paper [132]. In Section 2.3, we have provided a brief
introduction to the theories under consideration in this chapter. The rest of the
chapter is organized as follows. We present new formulas for all tree ampli-
tudes in the maximally supersymmetric extension of the DBI theory based on
the four-dimensional scattering equations; then we use the double copy rela-
tions to derive the formulas for amplitudes in the NLSM and the sGal in the
next section. We use the four-dimensional formulas to derive various double
soft emissions of amplitudes in various theories in Section 5.2.

5.1 New formulas for EFT amplitudes

Let us begin with the on-shell superfield of the N = 4 supersymmetric com-
pletion of the DBI theory

Φ(DBI-VA)(η) = γ+ + ηAψA +
1

2!
ηAηBSAB

+
1

3!
ηAηBηCεABCDψ̄

D + η1η2η3η4 γ−,

(5.1)

which shares the same structure with N = 4 SYM but has very different
particle contents. Gauge vectors, called “BI photon” or “photon” for short,
singlets in the SU(4) R-symmetry, are from the DBI theory (2.37). Scalars
SBA = −SAB are described by the DBI Lagrangian (2.37). The fermionic
sector is known to coincide with the Volkov-Akulov (VA) theory (2.46). In
the on-shell superfield (5.1), fermions ψA and scalars SAB carry fundamental
indices of SU(4) R-symmetry.

It is well known that for photon scattering in BI theory, only helicity-conserved
amplitudes with even multiplicity are non-vanishing. By supersymmetry this
generalizes to the superamplitude, thus we will only have the middle sector
k = n/2 for even n. Let us write out the measure with the helicity scattering
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equations in eq. (4.5)

dµ
(N )
n,n

2
=

d2nσ

vol GL(2,C)

n∏
i=n/2+1

δ2

(
λi −

n/2∑
I=1

1

(i I)
λI

)

×
n/2∏
I=1

δ2|N
(

(λ̃I |ηI)−
n∑

i=n
2

+1

1

(I i)
(λ̃i|ηi)

)
. (5.2)

We will omit the subscript k = n/2 of the measure in this chapter.

It turns out that we only need one more ingredient for writing down the formu-
las for amplitudes in all the three theories. We define an n× n antisymmetric
matrix Xn with entries

Xaa = 0, Xab =
2ka · kb

(a b)
for a 6= b. (5.3)

It has two null vectors and we define the reduced pfaffian and determinant as

Pf ′Xn :=
(−)i+j

(i j)
Pf Xij

ij , det′Xn :=
(
Pf ′Xn

)2
. (5.4)

One can show that the rank of the matrix Xn is less than n−2 when we plug
in the solutions of four-dimensional scattering equations in any sector except
the middle sector k = n/2 [130]. Thus det′Xn is only non-vanishing for the
sector k = n/2, which already suggests strongly that it should appear in the
formula for N = 4 super-DBI-VA. The formula for the complete tree-level
S-matrix in this theory reads:

Msuper-DBI-VA
n =

∫
dµ(4)

n det′Xn. (5.5)

As shown in [130], one has double-copy relations for the special Galileon the-
ory and super-DBI-VA:

BI = YM⊗NLSM, super-DBI-VA = SYM⊗NLSM, (5.6)

sGal = NLSM⊗NLSM, (5.7)
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where in the first line the second relation follow from the first one by supersym-
metry. From these relations, it has become clear that the formula for NLSM
and sGal must take the form

MNLSM
n (1, 2, . . . , n) =

∫
dµ(0)

n

1

(12)(23) · · · (n1)

det′Xn

Hn
, (5.8)

MsGal
n =

∫
dµ(0)

n

(
det′Xn

)2
Hn

, (5.9)

where we have defined Hn := det′Hn/2 det′Hn/2. It should be noted that the
formula in (5.8) computes the color-ordered scalar amplitude in the BLSM.
Unlike the bi-adjoint φ3 theory, these scalar amplitudes are only non-vanishing
for the k = n/2 sector of the solutions to four-dimensional scattering equa-
tions. This can be explained from the appearance of det′Xn, as already noticed
in [130]. The double-copy relations (5.6) also specify to the middle sector in
four dimensions, where only the term k = n/2 in (4.42) is needed [147].

We have very strong evidence for the new formulas, (5.5), (5.8), (5.9), by com-
paring with their general-dimension CHY formulas, or by studying their fac-
torization properties directly. More explicitly, we have computed numerically
up to six points and verify that they give correct amplitudes. For example, by
directly evaluating (5.5) for n = 4 we find

Msuper-DBI-VA
4 = δ4(p) δ0|8(q)

[3 4]2

〈1 2〉2
, (5.10)

where

pαα̇ :=

4∑
a=1

λαa λ̃
α̇
a , qα̇A :=

4∑
a=1

λ̃α̇aη
A
a . (5.11)

Similarly we have checked six-scalar amplitudes in all three theories, as well as
six-photon amplitudes [152], two-fermions-four-photon and two-scalar-four-
photon amplitudes [153], as well as six-fermion amplitudes1 in N = 4 super
DBI-VA.

1The six-fermion amplitude in Volkov-Akulov theory was obtained in [154], and very re-
cently reproduced in [135] using a formula similar to our (5.5).
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5.2 Double soft theorems

In this section, as both consistency checks and important applications of our
new formulas proposed in the previous section, we derive the double soft the-
orems in N = 4 super-DBI-VA, NLSM, sGal. We also discuss some double
limits in N =4 SYM and N =8 SUGRA [28].

As shown in [44], in the simultaneous double soft limit, there are two types
of solutions to the scattering equations – those non-degenerate ones, i.e. all σ’s
are distinct from each other, and a unique degenerate solution with the two
σ’s of the soft legs coincide. We find the same conclusion for the solutions of
four-dimensional scattering equations (4.5).

The key observation [44] is that, when the contribution of the degenerate solu-
tion dominates over that of non-degenerate ones in the double soft limit, one
can derive double soft theorems by evaluating the formula for the degenerate
solution only. Here we will see that it is indeed the case for all superampli-
tudes inN =4 super-DBI-VA involving the emission of a pair of soft photons,
fermions or scalars.

Let us start with a (n+2)-point amplitude with even n inN =4 super-DBI-VA
theory,

Mn+2 =

∫
dµ

(4)
n+2 det′Xn+2, (5.12)

and here we write the measure dµ(4)
n+2 as,

d2(n+2)σ

vol GL(2,C)

n/2∏
I=1

δ2|4
(

(λ̃I |ηI)−
n∑

i=n/2+1

(λ̃i|ηi)
(I i)

− (λ̃p|ηp)
(I p)

)

× δ2|4
(

(λ̃q|ηq)−
n∑

i=n/2+1

(λ̃i|ηi)
(q i)

− (λ̃p|ηp)
(q p)

)
(5.13)

×
n∏

i=n/2+1

δ2

(
λi −

n/2∑
I=1

λI
(i I)

− λq
(i q)

)
δ2

(
λp −

n/2∑
I=1

λI
(p I)

− λq
(p q)

)
,
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where I = n+2, 1, ..., n/2 and i = n/2+1, ..., n, n+1. For the sake of brevity,
here and in the rest of this section we denote the indices n+1 and n+2 as p
and q respectively.

To be concrete, we perform anti-holomorphic and holomorphic soft limits for
the external legs p and q respectively, and introduce a small real parameter ε to
control this simultaneous double soft limit:

λ̃p → ελ̃p, λq → ελq, (5.14)

while λp, ηp and λ̃q, ηq stay finite [151]. In this limit, we have (a b) ∼ O(1)

for non-degenerate solutions, while for the degenerate solution, (p q) ∼ O(ε).

Now we can study the scaling behavior of the formula in ε for both degener-
ate and non-degenerate solutions. In the double soft limit (5.14), the bosonic
part of measure (5.13) behaves as dµ(0)

n+2 ∼ O(ε) for the degenerate solution

and dµ(0)
n+2 ∼ O(ε0) for non-degenerate solutions while det′Xn+2 ∼ O(ε4)

and det′Xn+2 ∼ O(ε2) for the degenerate solution and non-degenerate ones
respectively.

We also need to consider the scaling behavior from fermionic delta functions
in the measure (5.13), which strongly depends on the SU(4) flavors of the
soft particles. Let first recall the on-shell superfield (5.1) and the following
fermionic δ-function in the measure (5.13)

δ0|4

(
ηq −

n∑
i=n

2
+1

ηi
(q i)

− ηp
(q p)

)
n/2∏
I=1

δ0|4

(
ηI −

n∑
i=n

2
+1

ηi
(I i)

− ηp
(I p)

)
. (5.15)

While it is obvious that for any pair of soft particles, it is O(1) for non-
degenerate solutions in the limit (5.14), the case for the degenerate solution
is more subtle. One needs to distinguish between two cases: (i) when the two
soft particles form a SU(4) flavor-singlet, i.e. (γ+, γ−) photon pair, (ψA, ψ̄

A)

fermion pair, or (SAB, S
AB) scalar pair2, and (ii) when they do not form a sin-

glet, e.g. (ψA, ψ̄
B) or (SAD, S

BD).

2In the on-shell superfield with N supersymmetries, fundamental indices of the SU(N )
R-symmetry are raised and lowered using the Levi-Civita symbol. For example in N = 4
super-DBI-VA, SAB = 1

2
εABCDSCD .
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• For the first case, the leading-order contribution comes from picking out
all ηp, ηq from the last fermionic delta function of (5.15), and the remain-
der becomes exactly fermionic delta functions for n-point formula. The
last fermionic delta function evaluates to 1/(p q)2−2s which behaves as
O(ε2s−2), where “s” denotes the spin of the soft pair.

• For the second case, we also have one ηp from other fermionic delta
functions, and the factor becomes 1/(p q)1−2s.

When combining with the bosonic measure and integrand, for both cases, the
contribution from degenerate solution always dominates. The second case is
sub-leading compared to the first case, so we refer to the latter as the “leading-
order” double-soft theorems and the former as the “sub-leading” ones. We first
discuss the leading-order case and postpone the very interesting discussion of
the subleading case to the end of this subsection.

It is convenient to introduce the change of variable for the degenerate solu-
tion [44]

σp = ρ− ε ξ
2
, σq = ρ+ ε

ξ

2
, (5.16)

with σqp = ε ξ ∼ O(ε), and we have dσpdσq = ε dρ dξ. In these variables,
the integrand, det ′X , can be written as

det′Xn+2 = ε2
s2
pqt

2
pt

2
q

ξ2
det′Xn +O(ε4), (5.17)

and we can write the complete measure involving a pair of soft particles of
spin s in a unified form:

dµ
(4)
n+2 = ε

(
− εξ

tptq

)−2(1−s) dtpdtq
t3pt

3
q

dρdξ δ2
(
Ē α̇q
)
δ2
(
Eαp
)
dµ(4)

n +O(ε2s)
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with

Ē α̇q ≡ λ̃q −
n∑

i=n/2+1

1

(q i)
λ̃α̇i −

tptq
ξ

λ̃α̇p , (5.18)

Eαp ≡ λαp −
n/2∑
I=1

1

(p I)
λαI +

tptq
ξ

λαq . (5.19)

Our task is to perform the integral over tp, tq, ξ and ρ by using the four addi-
tional delta functions above. For this purpose it is convenient to rewrite these
delta functions as

δ2
(
Ē α̇q
)

=
1

tptq[pq]
δ

(
1−

n∑
i=n

2
+1

[p i]

[pq]

tqti
σqi

)
δ

(
n∑

i=n
2

+1

[qi]

[qp]

ti
tpσqi

+
1

ξ

)
,

δ2
(
Eαp
)

=
−1

tptq 〈pq〉
δ

(
1−

n/2∑
I=1

〈qI〉
〈qp〉

tptI
σpI

)
δ

(
n/2∑
I=1

〈pI〉
〈pq〉

tI
tqσpI

− 1

ξ

)
.

(5.20)

It is clear now that from the RHS of (5.20), we can use the two delta functions
without ξ to fix tp, tq:

t−1
p =

n/2∑
I=1

〈qI〉
〈qp〉

tI
σpI

, t−1
q =

n∑
i=n/2+1

[pi]

[pq]

ti
σqi

. (5.21)

After integrating out tp, tq, the formula in the double soft limit (5.14) becomes

M(s)
n+2 = (−1)1−2sε1+2s

∫
dµ(4)

n det′Xn

×
∫
dρdξ

spq
(tptq)2s ξ4−2s

δ(f1)δ(f2) +O(ε2+2s), (5.22)
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where we used the superscript (s) for the spin of the soft pair. Here we also
denote

f1 =
n∑

i=n
2

+1

[qi]

[qp]

ti
tp

1

σqi
+

1

ξ
= − 1

spq

n∑
i=n

2
+1

n/2∑
I=1

[i|q|I〉 tIti
σpIσqi

+
1

ξ
,

f2 =

n/2∑
I=1

〈pI〉
〈pq〉

tI
tq

1

σpI
− 1

ξ
= − 1

spq

n∑
i=n

2
+1

n/2∑
I=1

[i|p|I〉 tIti
σpIσqi

− 1

ξ
,

(5.23)

and in the second equality we have plugged in the solution for tp, tq given in
(5.21).

Now the problem of integrating over ρ and ξ resembles that in deriving double
soft theorems in arbitrary dimensions in [44], and we recall the transformation
of the delta functions,

δ(f1)δ(f2) = −2δ(f1 + f2)δ(f1 − f2) . (5.24)

The key point here is to note that f1 ± f2 can be simplified to particularly nice
form as a sum over {1, . . . , n}. Let us make a partial fraction decomposition
for 1/(σpIσqi), then f2 + f2 can be written as

f1 + f2 = − 1

spq

n∑
i=n/2+1

n/2∑
I=1

(
1

ρ− σi
− 1

ρ− σI

)
[i|(p+ q) |I〉

(i I)

= − 1

spq

{
n∑

i=n/2+1

1

ρ− σi

n/2∑
I=1

[i|(p+ q) |I〉
(i I)

+

n/2∑
I=1

1

ρ− σI

n∑
i=n/2+1

[i|(p+ q) |I〉
(I i)

}
. (5.25)

By the scattering equations (4.5), the two inner sums simply give [i|p + q|i〉
and [I|p+ q|I〉 respectively, and then we obtain

f1 + f2 =
1

spq

n∑
a=1

2ka · (p+ q)

ρ− σa
. (5.26)
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The same technique works for f1 − f2, and one obtains immediately the solu-
tion for ξ from f1 − f2 = 0 as follows

ξ−1 =
1

2spq

n∑
i=n/2+1

n/2∑
I=1

(
1

ρ− σi
− 1

ρ− σI

)
[i|(p− q) |I〉

(I i)

=
1

spq

n∑
a=1

ka · (p− q)
ρ− σa

. (5.27)

Similarly, from eq. (5.21) and eq. (5.16) one can get a similar result for tptq:

t−1
p t−1

q =
1

spq

n∑
i=n/2+1

n/2∑
I=1

(
1

ρ− σi
− 1

ρ− σI

)
[pi] 〈Iq〉

(i I)

=
1

spq

n∑
a=1

[pa] 〈aq〉
ρ− σa

. (5.28)

Now we can package everything together. First we localize the ξ-integral by
δ(f1 − f2), and regard the ρ-integral as a contour integral with contour C en-
circling the zeroes of f1 + f2 = 0,

M(s)
n+2 = (−1)1−2sε1+2s

∫
dµ(4)

n det′Xn

×
∮
C

dρ

2πi

spq (tptq)
−2s ξ−2(1−s)

f1 + f2
+O(ε2+2s) . (5.29)

Plugging eqs. (5.26), (5.27), (5.28) into eq. (5.29) immediately gives

M(s)
n+2 = (−ε)1+2s

∫
dµ(4)

n det′Xn (5.30)

×
∮
C

dρ

2πi

(∑n
a=1

[p|a|q〉
ρ−σa

)2s (∑n
b=1

kb·(p−q)
ρ−σb

)2(1−s)

∑n
c=1

kc·(p+q)
ρ−σc

+O(ε2+2s).

This integral do not receive the contribution from a simple pole at ρ =∞ due
to momentum conservation in the numerator. Thus we only need to consider
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simple poles at ρ = σa with a = 1, 2, . . . , n and obtain by the residue theorem

M(s)
n+2 = ε1+2s

n∑
a=1

(
ka · (q − p)

)2−2s
[p|a|q〉2s

2ka · (p+ q)
M(s)

n +O(ε2+2s). (5.31)

It is highly non-trivial that the combinations appeared, f1+f2, f1−f2 and tptq,
all become a sum over a = 1, . . . , n, which is what we need to derive the nice
soft theorems (5.31). The key for this to happen is the use of scattering equa-
tions (4.5). Note that these theorems now directly hold for superamplitudes in
four dimensions, i.e. hard particles can be any particles in supermultiplet (5.1).

The double soft photon limit (s = 1) and double soft scalar limit (s = 0) in the
DBI theory are obtained using CHY representations in [44], while the double
fermion limit for s = 1

2 without flavors is conjectured by studying six-fermion
amplitudes in Volkov-Akulov theory [155]. Here we have shown that these
seemingly different double soft theorems can be unified for superamplitudes
in N =4 super DBI-VA and this unified form (5.31) certainly deserves further
study.

Sub-leading theorems in N = 4 super-DBI-VA

Now we turn to the case that the two soft particles are not in a flavor sin-
glet of SU(4), and for simplicity, we consider (ψA, ψ̄

B) fermion-pair, and
(SAD, S

BD) scalar-pair.

For convenience, let us first rewrite the fermionic δ-function (5.15) here

δ0|4

(
ηq −

n∑
i=n

2
+1

ηi
(q i)

− ηp
(q p)

)
n/2∏
I=1

δ0|4

(
ηI −

n∑
i=n

2
+1

ηi
(I i)

− ηp
(I p)

)
,

and take a closer look. Unlike the single-flavor case, here we pick ηAp from
one of those δ-functions with ηI , and the remaining three η’s, (η3

q )B for s = 1
2

or ηDp (η2
q )BD for s = 0, from the first δ-function. The operation of extracting

ηAp from those δ-functions amounts to taking derivative ∂/∂ηI with a factor
1/(I p) and a sum over I . Furthermore, an additional η from the last δ-function
must come from the sum

∑
i ηi/(q i). To be more precise, by projecting upon

the relevant terms in the ηp and ηq, one finds the fermionic part of the measure
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contributing to the leading soft limits,

−
(
− εξ

tptq

)2s−1 n∑
i=n

2
+1

n/2∑
I=1

1

(q i)(I p)
ηBi

∂

∂ηAI
δ(2n)

(
Fn
)

+O(ε2s), (5.32)

where we denote the product of fermionic δ-functions, and the SU(4) genera-
tor on the leg a as:

δ(2n)
(
Fn
)
≡

n/2∏
I=1

δ0|4
(
ηI −

n∑
i=n/2+1

ηi
(I i)

)
, (Ra)

B
A ≡ ηBa

∂

∂ηAa
. (5.33)

Performing a partial fraction decomposition for 1/(q i)(I p), then (5.32) can be
written as

−(−ε)2s−1 (tptq)
2(1−s)

ξ1−2s

{
n/2∑
I=1

1

ρ− σI

n∑
i=n/2+1

ηBi ∂ηAI
(i I)

+
n∑

i=n/2+1

1

ρ− σi

n/2∑
I=1

ηBi ∂ηAI
(I i)

}
δ(2n)

(
Fn
)

+O(ε2s) (5.34)

Like the bosonic case, further simplification can be done for the two terms in
the curly brackets by using the following relations of Grassmann variables:

n∑
i=n/2+1

1

(I i)
ηAi = ηAI ,

n/2∑
I=1

1

(i I)

∂

∂ηAI
=

∂

∂ηAi
. (5.35)

The first set of equations are sometimes referred to “fermionic scattering equa-
tions”. In the second set of equations, derivatives w.r.t. Grassmann variables
act on the fermionic δ-functions δ(2n)(Fn) defined in (5.33), and these equa-
tions can be derived from the first set of equations. Finally, eq. (5.32) becomes

−(−ε)2s−1 (tptq)
2(1−s)

ξ1−2s

n∑
a=1

(Ra)
B
A

ρ− σa
δ(2n)

(
Fn
)

+O(ε2s). (5.36)

Note eq. (5.36) ∼ O(ε2s−1) as we claimed, which means that the double-
soft behavior is sub-leading for non-singlet soft pair, compared to the singlet
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pair. However, recall behavior of dµ(0) and det ′X , it is still the case that the
degenerate solution is dominant at this order, see also table 5.2 at the end of the
section. By eq. (5.36) and repeating the exact same derivation gives forM(s)

n+2

− (−ε)2+2sspq

∫
dµ(0)

n det′Xn

×
∮
C

dρ

2πi

(
n∑
a=1

[p|a|q〉
ρ−σa

)2s( n∑
b=1

kb·(p−q)
ρ−σb

)1−2s n∑
c=1

(Rc)BA
ρ−σc δ

(2n)
(
Fn
)

n∑
d=1

kd·(p+q)
ρ−σd

+O(ε3+2s).

Similarly, performing the ρ-integral by encountering simple poles at ρ = σa
yields

M(s)
n+2 = −ε2+2sspq

n∑
a=1

(ka · (q−p))1−2s [p|a|q〉2s

2ka · (p+q)
ηBa

∂

∂ηAa
M(s)

n +O(ε3+2s)

(5.37)

for two soft fermions (ψA, ψ̄
B) emission (s = 1

2 ) and two soft scalars (SAD,
SBD) emission (s = 0) respectively. The result bears striking similarity with
the double soft scalar theorem in N = 8 SUGRA [151] (see [156–158] for
recent works on double soft behavior inN =4 SYM). In that case, the theorem
directly probes the coset structure (E7(7)/SU(8)) of the vacua, and we hope
that our results here, which has a similar structure, can be useful for studying
the coset structure of N =4 super-DBI-VA theory.

More double-soft theorems

Having established all double-soft theorems in super-DBI-VA, we now briefly
discuss double soft theorems for NLSM, sGal, as well as those in N =4 SYM
and N = 8 SUGRA. For color-ordered amplitudes in SYM and NLSM, we
will focus on the case that the soft particles are adjacent.

All we need are the behavior of the Parke-Taylor factor and that for det′Hdet′H,
in the double soft limit. In the double soft limit (5.14), for non-degenerate so-
lutions, the Parke-Taylor factor has leading order behavior of O(1), while for
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the degenerate solution, it is straightforward to get

1

(12) · · · (np)(pq)(q1)

=
1

(12) · · · (n1)
×
t2pt

2
q

ε ξ

(
1

ρ− σn
− 1

ρ− σ1

)
+O(ε0). (5.38)

Similarly, in the double limit, det′Hdet′H ∼ O(ε2) for non-degenerate solu-
tions, while for degenerate solution we have

det′Hk+1det′Hn−k+1

= ε2

(
−

k∑
I=1

HqI

)
det′Hk

(
−

n∑
i=k+1

Hpi

)
det′Hn−k +O(ε3)

= −ε2 tptq
n∑
a=1

[p|a |q〉
ρ− σa

det′Hk det′Hn−k +O(ε3)

= −ε2 spq det′Hk det′Hn−k +O(ε3), (5.39)

where the same trick as the case for f1 ± f2 and tptq is nicely used again. Of
course, it also holds for k = n/2 with n even, namely Hn+2 = −ε2spqHn +

O(ε3) in the same limit.

We summarize the soft scaling behavior in ε for all the (bosonic) building
blocks in table 5.1.

Building Block O(d) O(nd)

dµ(0) 1 0

det′X 2 4

Parke-Taylor factor -1 0

det′Hdet′H 2 2

Table 5.1: Leading scaling behavior in soft parameter ε of the building blocks
in the double soft limit (5.14). Here “d” and “nd” stand for the degenerate and
non-degenerate solutions respectively.
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For U(N) NLSM and the special Galileon theory, let us recall the formula for
their amplitudes:

MNLSM
n+2 (1, . . . , n, p, q) =

∫
dµ

(0)
n+2

1

(12) · · · (np)(pq)(q1)

det′Xn+2

Hn+2
, (5.40)

MsGal
n+2 =

∫
dµ

(0)
n+2

(
det′Xn+2

)2
Hn+2

. (5.41)

By power counting of the soft parameter ε for building blocks, again we find
the soft scalar limits at leading order only receive the contribution from the de-
generate solution. The same derivation as for super-DBI-VA gives the leading
double soft scalar theorems:

Mn+2(1, . . . , n, p, q) = εmSMn(1, . . . , n) +O(εm+1), (5.42)

where m = 0 for NLSM and m = 3 for sGal, and soft factors are given
respectively by

S (NLSM) =
kn · (p− q)
2kn · (p+ q)

+
k1 · (q − p)
2k1 · (q + p)

, (5.43)

S (sGal) = spq

n∑
a=1

(
ka · (p− q)

)2
2ka · (p+ q)

, (5.44)

which coincide with the leading-order results of [44]. Note that single and
double scalar emissions in NLSM were also investigated in [106, 159, 160].

Finally, we make a classification of double soft theorems for N =4 SYM and
N = 8 SUGRA. Unlike the case for the other three theories, the degenerate
solution does not always dominate for leading double soft limit inN =4 SYM
and N = 8 SUGRA, as listed in table 5.2. For N = 4 SYM, the degener-
ate solution still dominates for the following three cases, giving double-soft
theorems:

An+2

(
. . . ,ΓA(p), Γ̄A(q)

)
(5.45)

=
1

ε

1

spq

(
[p|kn|q〉

2kn · (p+ q)
− [p|k1|q〉

2k1 · (p+ q)

)
An +O(ε0),
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An+2

(
. . . , φAB(p), φAB(q)

)
(5.46)

=
1

ε2
1

spq

(
kn · (p− q)
2kn · (p+ q)

− k1 · (p− q)
2k1 · (p+ q)

)
An +O(ε−1),

An+2

(
. . . , φAD(p), φBD(q)

)
(5.47)

=
1

ε

(
(Rn)BA

2kn · (p+ q)
−

(R1)BA
2k1 · (p+ q)

)
An +O(ε0).

Similarly for N = 8 SUGRA, we find that for the following cases of double-
soft particles in the supermultiplet (4.30), the degenerate solution dominates
and we have the corresponding double-soft theorems

Mn+2

(
. . . , vAB(p), v̄AB(q)

)
(5.48)

=
ε

p · q

n∑
a=1

[p|a|q〉2

2ka · (p+ q)
Mn +O(ε2),

Mn+2

(
. . . , χABC(p), χ̄ABC(q)

)
(5.49)

= − 1

spq

n∑
a=1

ka · (p− q) [p|a|q〉
2ka · (p+ q)

Mn +O(ε),

Mn+2

(
. . . , χADE(p), χ̄BDE(q)

)
(5.50)

= ε
n∑
a=1

[p|a|q〉
2ka · (p+ q)

(Ra)
B
AMn +O(ε2),

Mn+2

(
. . . , φABCD(p), φABCD(q)

)
(5.51)

=
1

ε

1

spq

n∑
a=1

(
ka · (p− q)

)2
2ka · (p+ q)

Mn +O(ε0),

Mn+2

(
. . . , φADEF (p), φBDEF (q)

)
(5.52)

= −
n∑
a=1

ka · (p− q)
2ka · (p+ q)

(Ra)
B
AMn +O(ε).



5.3. Discussions 59

Now we have obtained, from formulas with the four-dimensional scattering
equations, all these universal double-soft theorems, among which some are
new, and others are known previously. The most famous one is the double
soft-scalar theorem (5.52) in N = 8 SUGRA [151], and more recently, dou-
ble soft graviphotino (spin-1/2) theorems in supergravity were studied in four
dimensions as well as three dimensions in [155, 161]. The double soft gravi-
ton emission was also studied in arbitrary dimensions using the CHY formula
in [162]. In N = 4 SYM, double scalar theorems (5.47) were obtained us-
ing BCFW recursions in [156, 158], and from string theory in [157]; double
gluino/scalar theorems, (5.45) and (5.46), were given in [163] from MHV dia-
grams.

5.3 Discussions

Let us conclude this chapter with some discussions. While there has been
considerable progress for loop-level CHY formulas in general dimensions [31–
34, 37, 164, 165], it would be very interesting to do so for supersymmetric
theories in four dimensions (see [166] for a conjecture for N = 8 SUGRA). It
would be interesting to see what is special about these effective field theories
in four dimensions.

Just as double-scalar theorems in N = 8 SUGRA probing the coset struc-
ture of E7(7) symmetries, the double-fermion theorems in super-DBI-VA may
reveal the structures of non-linearly realized supersymmetries of the theory.
Indeed, significant progress has been made in the effect of non-linear (su-
per)symmetries on the S-matrix [167, 168] based on our results. It would
also be very fascinating to study sub-leading theorems similar to those in [44],
which involve bosonic derivatives (rather than fermionic ones in this work).
Perhaps by combining these two types of sub-leading theorems, one can asso-
ciate them to possible hidden symmetries and structures.
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theory soft particle pair O(d) O(nd) “d” dominant

N =4 DBI-VA

(
γ+, γ−

)
3 4 X(

ψA, ψ̄
A
)

2 4 X(
ψA, ψ̄

B
)

3 4 X(
φAB, φ

AB
)

1 4 X(
φAD, φ

BD
)

2 4 X

NLSM (φ, φ) 0 2 X

sGal (φ, φ) 3 6 X

N =4 SYM

(
g+, g−

)
0 0(

ψA, ψ̄
A
)

-1 0 X(
ψA, ψ̄

B
)

0 0(
φAB, φ

AB
)

-2 0 X(
φAD, φ

BD
)

-1 0 X

N =8 SUGRA

(
h+, h−

)
3 2(

ψA, ψ̄
A
)

2 2(
ψA, ψ̄

B
)

3 2(
vAB, v̄

AB
)

1 2 X(
vAD, v̄

BD
)

2 2(
χABC , χ̄

ABC
)

0 2 X(
χADE , χ̄

BDE
)

1 2 X(
φABCD, φ

ABCD
)

-1 2 X(
φADEF , φ

BDEF
)

0 2 X

Table 5.2: Leading scaling in ε of the formulas of scattering amplitudes in the
double limit (5.14). For soft particle pairs with flavors indices, one demands
A 6= B which corresponds to two soft particles do not form a SU(N ) flavor
singlet. Here the tick X denotes that the degenerate solution is dominant at
leading order, and in these cases, we give the double-soft theorems.



6 From the scattering equations
to form factors

The study of the scattering equation formalism for on-shell scattering ampli-
tudes has received considerable attention during the past decade. Based on the
scattering equations, new representations of tree-level amplitudes have been
proposed for a large number of theories in arbitrary, four, and six dimensions,
as shown in previous chapters.

It is interesting and important to extend the modern methods for on-shell am-
plitudes to off-shell quantities. Form factors provide a bridge between on-shell
amplitudes and purely off-shell correlation functions. Thus they are perfect for
testing the applicability of on-shell techniques to off-shell generalizations. Re-
cent years have witnessed considerable advances in the study of form factors
in N = 4 SYM using on-shell methods and integrability, both at weak cou-
pling [169–202] and strong coupling [203, 204] (see [205, 206] for a review).
In particular, already at tree-level, form factors inherited remarkable structures
from amplitudes, such as recursion relations, Grassmannian and polytope pic-
tures (see [207] for a review); all these ideas are intimately related to twistor-
inspired prescription for amplitudes. Given the success of twistor-string and
scattering-equation-based construction for amplitudes, it is natural to study
their applications to form factors especially in N = 4 SYM, which is the sub-
ject of this chapter.

This chapter is based on the paper [208] and is outlined as follows. Section 6.1
provides a short introduction to form factors under consideration in this work,
including super form factors of the chiral part of the stress-tensor multiplet
operator and bosonic form factor with scalar operators Om ≡ Tr [(φ12)m]

in N = 4 SYM. We then present new representations for these form factors

61
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with the help of the four-dimensional scattering equations in Section 6.2. We
validate our results by evaluating the new formulas for some special examples
in Section 6.3.

6.1 Introduction

A n-point form factor is given by the overlap of a composite operator with off-
shell momentum q, and n on-shell states with on-shell momenta k1, k2, . . . , kn,
as illustrated below.

FO
q

k1

k2

k3

kn

To be exact, a form factor with operator O is defined as

FO(1, . . . , n) =

∫
d4x

(2π)4
e−iq·x 〈1, . . . , n|O(x)|0〉

= δ4
(
P
)
〈1, . . . , n|O(0)|0〉 , (6.1)

where P =
∑n

i=1 ki − q and the number of fields in O cannot exceed the
number of external legs, n.

We consider bosonic form factors with scalar operators of Om ≡ Tr [(φ12)m],
where φ12 is scalar in (4.25). For m = 2, O2 = Tr

[
(φ12)2

]
is the bottom

component of the chiral part of the stress-tensor multiplet operator T2. For
generalm,Om is the bottom component of half-BPS operators dual to Kaluza-
Klein modes in supergravity [180]. Since the Om is composed of m scalar
fields, thus there must be m external states to be m external states of scalars to
contract withOm. For simplicity, we consider the form factor with the operator
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Om and m scalars and n−m gluons with arbitrary helicities:

FOm,n ≡ δ4(P ) 〈g(k1) · · ·φ12(ki1) · · ·φ12(kim) · · · g(kn) | Om(0) | 0〉 .
(6.2)

In on-shell superspace, the super form factor for the operator T2 is defined as

FT2,n := 〈Φ1 · · ·Φn | T (0) | 0〉 , (6.3)

where external legs Φi = Φi(pi, ηi) are N = 4 on-shell superfields (4.25).
T2 = T (x, θ+, u) is the chiral part of the stress-tensor multiplet operator which
has the form in harmonic superspace1

T
(
x, θ+, θ̄− = 0, u

)
(6.4)

= Tr
(
φ++φ++

)
+ i 2

√
2 θ+a

α Tr
(
ψ+α
a φ++

)
+ θ+a

α εabθ
+b
β Tr

(
ψ+c(αψ+β)

c − i
√

2Fαβφ++
)

− θ+a
α εαβθ+b

β Tr
(
ψ+γ

(a ψ
+
b)γ − g

√
2
[
φ+C

(a , φ̄C +b)

]
φ++

)
− 4

3
(θ+)3 a

α Tr
(
Fαβ ψ

+β
a + ig

[
φ+B
a , φ̄BC

]
ψCα

)
+

1

3
(θ+)4L(x).

Its (θ+)0 component is just the scalar operator, while the (θ+)4 component is
the chiral form of the N =4 on-shell Lagrangian:

L = Tr

(
− 1

2
FαβF

αβ +
√

2 g ψαA
[
φAB, ψ

B
α

]
− 1

8
g2
[
φAB, φCD

][
φAB, φCD

])
.

(6.5)

Note that only the chiral half of the N =4 multiplet, i.e. Fαβ , ψAα and φAB , is
needed for T2.

1In harmonic superspace: θ+aα = θAαu
+a
A , θ−a

′
α = θAαu

−a′
A with a, a′ = 1, 2, where

(u+a
A , u−a

′

A ) is the normalized harmonic matrix of SU(4). It is useful to work with harmonic
variables for the super form factor of chiral operator. For more details about N =4 harmonic
superspace, c.f. [209, 210]. (see also e.g. [171, 180, 205]).
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6.2 New representations for form factors

Evidently, the scattering equations shown in Chapter 3 and Chapter 4 are not
applicable for form factors since off-shell momenta are involved. Therefore, as
a first step towards introducing contour integral representation for form factors,
we have to find new scattering equations that contain off-shell momenta.

The scattering equations for chiral form factors

A natural idea is to modify the existing scattering equations to incorporate the
off-shell momentum. We first decompose q into two null vectors kx and ky,
i.e.,

q = −(kx + ky), q2 = 2kx · ky. (6.6)

There is a minus sign on the right-hand side of the first equality because we
take a convention of considering all momenta outgoing. A physical interpre-
tation may be that the operator with q is effectively described as two auxiliary
on-shell legs with momenta kx, ky. It is thus natural to assign two additional
punctures σαx and σαy for them. For general chiral form factors, a modification
of the scattering equations in (4.5) was given in [133]

Ēx = λ̃x −
∑
i∈P

λ̃i
(x i)

= 0, Ēy = λ̃y −
∑
i∈P

λ̃i
(y i)

= 0,

ĒI = λ̃I −
∑
i∈P

λ̃i
(I i)

= 0, Ei = λi −
∑
I∈N

λI
(i I)

− λx
(i x)

− λy
(i y)

= 0,

(6.7)

where i ∈ P, I ∈ N and |N| = k ∈ {0, . . . , n−2}. We refer to these equations
as the chiral off-shell scattering equations of sector k. The anti-chiral case is
obtained by parity. The equations in (6.7) have been used to construct the
amplitude with one massive Higgs boson and any number of gluons, which is
equivalent to the form factor with operator H Tr(F 2). In the following, we
show they also work for Om and T2.
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Form factor with O2

Let us begin with the form factor with the scalar operator O2 = Tr
[
(φ12)2

]
:

FOm,n ≡ δ4(P ) 〈g(k1) · · ·φ12(ki) · · ·φ12(kj) · · · g(kn) | Om(0) | 0〉 . (6.8)

Our proposal for this form factor takes a very similar form with gluon ampli-
tudes:

F (NkMHV)
O2,n

= δ4 (P )

∫
dµ

(0)
n,k

I2(i, j;x, y)

(1 2) · · · (n 1)
, (6.9)

where the measure in k sector (note |N| = k and |P| = n− k) is defined as

dµ
(0)
n,k =

(
n∏
i=1

d2σi

) ∏
I∈N

δ2
(
Ē α̇I
)∏
i∈P

δ2
(
Eαi
)
. (6.10)

It is beautiful that the punctures x, y do not enter the Parke-Taylor factor. In
addition, the integrand contains an additional factor that depends only on x, y
(operator O2) and i, j (external scalars)

I2(i, j;x, y) = − 〈xy〉2 (i j)2

(i x)2(i y)2(j x)2(j y)2
. (6.11)

A remarkable property is that the function I2(i, j;x, y) is independent of in-
formation of external gluon legs such that it has the exact same form for all
helicity sectors. In (6.9), one has fixed the four variables σαx , σαy and pull out
their four delta functions as δ4(P ) when removing GL(2,C) redundancy.

Now we may generalize our formula (6.9) along two directions – one is to su-
persymmetrize it to for the super form factor (6.3), and the other is to extend it
to bosonic form factors (6.2).

Super form factor with T2

Let us address the super form factor first. In addition to the bosonic part, (6.10),
N = 4 SUSY also requires fermionic delta functions which can be viewed as
the superpartner of the scattering equations. Our notation is that γα+a stands
for the Grassmann variable conjugate to θ+a

α for T2 (there is no γ− because we



66 6. From the scattering equations to form factors

only consider the chiral part of the stress tensor), and we introduce

η±a,i := ūA±aηA,i (6.12)

for each on-shell external leg i. Thus the supermomentum QαA can be written
as:

Qα+a = γα+a −
n∑
i=1

λαi η+a,i , Qα−a =
n∑
i=1

λαi η−a,i . (6.13)

Note that we need to split the indices of γ+ into two parts by projecting it along
two directions,

η+a,x ≡
λy,αγ

α
+a

〈y x〉
, η+a,y ≡

λx,αγ
α
+a

〈x y〉
, (6.14)

which imply that γ+ = λxη+,x+λyη+,y. The fermionic delta functions for η’s
then take the same form as the delta functions for λ̃. By combining the bosonic
and fermionic part, we obtain the supersymmetric measure in the k-sector:

dµ
(4)
n,k := dµ

(0)
n,k

k∏
I=1

δ0|2

(
η+,I −

∑
i∈P

η+,i

(I i)

)
δ0|2

(
η−,I −

∑
i∈P

η−,i
(I i)

)

× δ0|2

(
λy,αγ

α
+

〈y x〉
−
∑
i∈P

η+,i

(x i)

)
δ0|2

(
λx,αγ

α
+

〈x y〉
−
∑
i∈P

η+,i

(y i)

)

× δ0|2

(∑
i∈P

η−,i
(x i)

)
δ0|2

(∑
i∈P

η−,i
(y i)

)
. (6.15)

To write down the complete formula, let us take a closer look at formula (6.9)
again. An interesting observation is that the function I2(i, j;x, y) (6.11) can
be understood as coming from the η-projection when we evaluate the fermionic
delta functions of the supersymmetric formula. To conclude, all we need for
the super form factor (6.3) is simply the Parke-Taylor factor

F (NkMHV)
T2,n = δ4 (P )

∫
dµ

(4)
n,k

〈x y〉4

(1 2) · · · (n 1)
. (6.16)
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As we have mentioned, our new formula is very similar to that for superampli-
tude inN =4 SYM – the only modification is to include two on-shell legs x, y
in a supersymmetric way, to represent the operator T2.

As discussed in Chapter 4, it is straightforward to translate the formula to a
manifestly permutation-invariant form, similar to the Witten-RSV formula for
SYM amplitudes [8, 16]. By applying the same procedure to (6.16), we obtain
an equivalent formula for the super form factor with T2

F (NkMHV)
T2,n =

∫
dΩ

(4)
n,k

〈x y〉2

(1 2) · · · (n 1)
(6.17)

with the supersymmetric measure dΩ
(4)
n,k similar to the Witten-RSV form

d2n+4σ

vol GL(2,C)

∫
d2k+4ρ

∏
i=1,...,n,x,y

δ2

(
ti

k+1∑
m=0

ρmσ
m
i − λi

)

×
k+1∏
m=0

δ2|2

((
txσ

m
x λ̃x + tyσ

m
y λ̃y|0

)
+

n∑
i=1

tiσ
m
i

(
λ̃i|η−,i

))
(6.18)

×
k+1∏
m=0

δ2|2

(
txσ

m
x

(
λ̃x|η+,x

)
+ tyσ

m
y

(
λ̃y|η+,y

)
+

n∑
i=1

tiσ
m
i (λ̃i|η+,i)

)

where d2n+4σ := d2σxd
2σy

∏n
i=1 d

2σi.

Form factors with Om

Now we consider the bosonic form factor with the operator Om with m > 2.
A prior it is not apparent what to do for such operators with m > 2 fields: we
could either represent the operator using two on-shell legs as in (6.7) or using
m of them. We show that there is very strong evidence for the universality of
scattering equations for form factors with Om below.

The key observation is that no matter how many fields in the operator, we only
need two additional legs/punctures x, y, and dµn,k (including delta functions
imposing (6.7)) is exactly the same as in the m = 2 case.

For Om, all we need is a simple modification of Parke-Taylor factor which
takes into account the positions of the m on-shell scalars. This supports our
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general conjecture that all the information of the operator and external states
is encoded in the integrand of the formula. In other words, what we find is
that similar to m = 2 case, now we have a function Im that incorporates
the information of Om and m on-shell scalars. Our proposal is the following
formula

F (NkMHV)
Om,n = δ4 (P )

∫
dµ

(0)
n,k

Im(i1, . . . , im;x, y)

(1 2) · · · (n 1)
(6.19)

with the measure dµ(0)
n,k is exactly same with the one for O2 (6.10), and

Im(i1, . . . , im;x, y) = 〈x y〉m (i1 i2) · · · (im i1)∏m
α=1(iα x)2(iα y)2

, (6.20)

which goes back to (6.11) whenm = 2. The function Im takes a compact form
and incorporates the information of Om and m external scalars, while being
independent of information of external gluon legs. Unlike O2, when m > 2

it is still not clear how to supersymmetrize (6.19) to obtain new formulas for
super form factors with Tm which is a generalization of T2 and has Om as its
bottom component.

6.3 Examples

As consistency checks for both formulas (6.16) and (6.19), we evaluate them
and compare with known results for some form factors. These include MHV
and maximally-non-MHV super form factors for all multiplicities, as well as
some more complicated bosonic form factors.

MHV

First we consider the MHV sector which corresponds to k = 0 in our notation.
The MHV scattering equations have only a unique solution after fixing GL(2)-
redundancy, as shown in Chapter 4. It is convenient to fix the locations of the
two “additional” punctures σx, σy in a similar way to (4.9), then the unique
solution for the MHV equations is given by:

(i x) =
〈x y〉
〈i y〉

, (i y) =
〈x y〉
〈x i〉

, (i j) =
〈x y〉3 〈i j〉

〈x i〉 〈y i〉 〈x j〉 〈y j〉
. (6.21)
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Here the two-braket (i j) are natural variables. Note that the integral measure
can be written nicely in terms of the 2n 2-brackets (ix), (iy)

n∏
i=1

d2σi =
n∏
i=1

d(ix) d(iy), (6.22)

and all the delta functions can be rewritten in terms of them,

δ2

(
λi −

λx
(i x)

− λy
(i y)

)
=

〈xy〉3

〈ix〉2 〈iy〉2
δ

(
(ix)− 〈i y〉

〈x y〉

)
δ

(
(iy)− 〈x i〉

〈x y〉

)
.

(6.23)

Plugging the solution (6.21) and the Jacobian for measure and delta-functions,
(6.22), (6.23), into (6.19) and (6.16) respectively, we obtain immediately the
correct result for the bosonic form factor

FMHV
Om,n = δ4(P )

〈i1 i2〉 〈i2 i3〉 · · · 〈im i1〉
〈1 2〉 〈2 3〉 · · · 〈n1〉

, (6.24)

and similarly for the super form factor

F MHV
T2,n =

δ4(P ) δ4

(
γ+ −

n∑
i=1

λiη+,i

)
δ4

(
n∑
i=1

λiη−,i

)
〈1 2〉 〈2 3〉 · · · 〈n1〉

. (6.25)

Maximally non-MHV

Similarly, it is also easy to get the MHV (usually called maximally non-MHV)
form factor with T2 by simply flipping the helicities of spinors for the MHV
formula, i.e.,

FMHV
T2,n =

∫
dµ̄n

〈x y〉2 [x y]2

(1 2) · · · (n 1)
(6.26)
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with

dµ̄n =

(
n∏
i=1

d2σi

)
n∏
I=1

δ2

(
λ̃I −

λ̃x
(I x)

− λ̃y
(I y)

)
(6.27)

×
n∏
I=1

δ0|2
(
η+,I −

η+,x

(I x)
− η+,y

(I y)

)
δ0|2(η−,I).

The solution for this case is nothing but solution (6.21) by replacing 〈ij〉 →
[ij]. Imposing the unique solution and the Jacobian for the bosonic delta-
functions, one can immediately obtain

FMHV
T2,n = δ4(P )

q4

[1 2][2 3] · · · [n 1]
(6.28)

×
n∏
I=1

δ0|2
(
η+,I −

[I y]

[x y]
η+,x −

[x I]

[x y]
η+,y

)
δ0|2(η−,I).

Its (ηx)0(ηy)
0 component is the famous Sudakov form factor.

NMHV and NNMHV form factors

We have also evaluated our formulas for more involved examples where one
needs to sum over multiple solutions to scattering equations. For the form
factor of O2, we have evaluated it numerically for four-point NMHV, five-
point NMHV and NNMHV, as well as six-point NMHV and NNMHV cases.
This is done by first solving (6.7) and then summing over the resulting 4, 11,
11, 26 and 66 solutions respectively. In addition, for the form factor of O3,
we have checked up to five-point NMHV case. These results can be computed
from MHV rules or recursion relations as in [171], and in all these cases, we
find perfect agreement.

More interestingly, by following the same procedure of [140, 211], we can
evaluate the following two NMHV form factors analytically, and verified that



6.4. Discussions 71

they give correct results [171, 180]:

FO2

(
φ12, φ12, g

−, g+; q
)

(6.29)

=
1

〈41〉 [23]s34

(
〈14〉 〈23〉 [24]2

s234
+

[14][23] 〈13〉2

s134
− 〈13〉 [24]

)
,

FO3

(
φ12, φ12, φ12, g

−; q
)

=
[31]

[34][41]
. (6.30)

To summarize, our news formulas (6.16) and (6.19) have reproduced correct
results for lower-point cases as well as the MHV form factors with any number
of external states. Remarkably, all final results depend only on q but not on
individual momenta kx, ky, as expected. These checks provide very strong
evidence that our new formulas are correct.

6.4 Discussions

We have initiated the investigation on the scattering-equation-based prescrip-
tion for tree-level form factors in N = 4 SYM. Based on an off-shell exten-
sion of the scattering equations, we obtained the new formula (6.16) for forms
factors with the chiral part of stress-tensor multiplet operator T2, which has
O2 = Tr

[
(φ12)2

]
as its bottom component. More interestingly, we studied

generalizations to half-BPS operator Om for arbitrary m which are generally
no longer bilinear, and obtained again very compact formula (6.19). Our re-
sults strongly support the universality of the scattering equations (6.7) for chi-
ral form factors.

In [143], an interesting “duality” has been proposed, which relates the scatter-
ing equation formalism and G(k, n) Grassmannian description for amplitudes
inN =4 SYM. By repeated use of the Global residue theorem, one can rewrite
the Witten-RSV formula as particular sums of residues of the Grassmannian
contour integral, which give tree amplitudes in the so-called link representa-
tion. The same conclusion holds for our formulas for form factors. In general,
the formula must admit link representation which is given by particular con-
tours for the integrals over G(k + 2, n+ 2) (or G(k, n+ 2) for the anti-chiral
form factors), where x, y do not enter the cyclic measure. This agrees with
the results in [187] and [201], and we expect a careful investigation can pick
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out the precise contour that gives the tree form factor. Generic residues of the
Grassmannian contour integral correspond to on-shell diagrams, which have
manifest symmetry properties and significance for loops. It would be very
tempting to see if our formulas shed new lights on these ideas for form factors.

We expect that our results can be generalized to form factors for general oper-
ators inN =4 SYM at tree level. In [212], a closed formula for all MHV form
factors with most general operators was given, and it is likely that with the
scattering-equation-based prescription that can be generalized to any NkMHV
sector. It would also be very interesting to compare with these recent works
on N = 4 SYM form factors using twistor space method [213, 214], which
can help us understand better off-shell quantities in twistor space. It is plausi-
ble that the idea of connected prescriptions and twistor strings can be applied
to correlation functions in N = 4 SYM (see [215]). Last but not least, most
results have been restricted to four dimensions, but scattering-equation-based
construction can be useful for studying form factors in general dimensions as
well. Given the success of scattering equations at the loop level, a natural next
step would be applying them to loop-level form factors.



7 The scattering equations in
Regge kinematics

The representation of a tree-level amplitude as a residue integral also makes
manifest the properties of the amplitude in certain singular limits. As shown
exactly in Chapter 5, the scattering equation method provides a beautiful frame-
work to produce various double soft theorems in many theories (c.f. also [44,
132,162]). Similarly, in the single-soft limit, by expanding the scattering equa-
tions as well as other ingredients of the formulas for amplitudes around the soft
momentum, one can obtain various single soft theorems in many theories, for
example the soft graviton theorem up to sub-sub-leading order [24, 40–43]. In
the framework of the scattering equations, the collinear factorization of the am-
plitudes was also investigated up to sub-leading order in Yang-Mills, gravity
and cubic scalar theories [47]. It was found that the solutions of the scattering
equations can be interpreted as the zeros of the Jacobi polynomials in a two-
parameter family of kinematics [49], and the amplitudes in Yang-Mills and
gravity can be obtained explicitly for any multiplicity. More interestingly, the
results in [49] have been used to study the black hole formation in a particular
high-energy regime [216].

In this chapter and the next two chapters, we show that the scattering equa-
tions also present a very natural framework to study other kinematical limits
of scattering amplitudes, namely the Regge limits of a 2-to-(n−2) scattering
where the final state particles are ordered in rapidity. It is well known that
in multi-Regge kinematics any tree-level amplitude in gauge theory factorizes
into a product of universal building blocks known as impact factors and Li-
patov vertices [217–219], connected by t-channel propagators. More interest-
ingly, in this kinematical regime, the tree-level amplitude in Einstein gravity
also takes a similar fully-factorized form with gluon amplitudes, where the

73
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universal building blocks are the double copies of impact factors or Lipatov
vertices. This is very surprising since gravity amplitudes are incredibly com-
plicated in general kinematics. In more general quasi-multi-Regge kinematics
(QMRK), the gauge theory amplitude is again expected to have a factorized
form [220].

One of the goals of this work is to use the scattering-equation-based repre-
sentation of amplitudes in both Yang-Mills and gravity to shed light on the
quasi-Regge factorization of amplitudes. To achieve the goal relies on a sys-
tematic investigation of the asymptotic behavior of the scattering equations in
MRK as well as various quasi-Regge regimes.

To be well-organized, we first perform a thorough analysis of the asymptotic
behavior of the scattering equations in various Regge limits in this chapter. In
the next chapter, we derive the factorization of the amplitude in both Yang-
Mills and Einstein gravity in MRK. Then we extend the analysis to various
quasi-multi-Regge limits, and we obtain CHY-type representations for the gen-
eralised impact factors and Lipatov vertices in Chapter 9.

7.1 Multi-Regge kinematics

In order to fix our notations and conventions, we give in this section a brief
review on the quasi-Multi-Regge kinematics.

For a 2 → (n−2) scattering, multi-Regge kinematics is defined as the regime
where the final-state particles are strongly ordered in rapidity while having
comparable transverse momenta, i.e.,

y3 � y4 � · · · � yn and |k⊥3 | ' |k⊥4 | ' . . . ' |k⊥n |, (7.1)

where k⊥a denote the transverse momenta, and in four dimensions we define
the complexified transverse momenta as k⊥a = k1

a + ik2
a. Employing lightcone

coordinates ka = (k+
a , k

−
a , k

⊥
a ) with k±a = k0

a ± k3
a, the strong ordering in

rapidity is equivalent to a strong ordering in k+-components as follows:

k+
3 � k+

4 � · · · � k+
n . (7.2)
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It is convenient to work in the center-of-momentum frame where two incoming
particles are back-to-back on the z-axis,

k1 = (0,−χ; 0), k2 = (−χ, 0; 0) , χ ≡
√
s, (7.3)

where s is the square of the center-of-mass energy, and we take a convention
of considering all momenta outgoing.

In this kinematical regime, it is conjectured that the tree-level scattering am-
plitude in both Yang-Mills and Einstein gravity takes a surprisingly simple
factorized form: any n particle amplitude is given by only one Feynman graph
with effective vertices (see Figure 7.1).

Let us first see gauge theory amplitudes. In MRK every gluon amplitude fac-
torizes into a set of universal building blocks describing the emission of gluons
along a t-channel ladder [221, 222], i.e.,

An(1, . . . , n) (7.4)

' s C(2; 3)
−1

|q⊥4 |2
V(q4; 4; q5) · · · −1

|q⊥n−1|2
V(qn−1;n−1; qn)

−1

|q⊥n |2
C(1;n),

where qa =
∑a−1

b=2 kb with 4 ≤ a ≤ n are the momenta exchanged in the
t-channel. We use the “'” sign to denote equality up to terms that are power-
suppressed in the limit. The quantities that appear in the right-hand side of
eq. (7.4) are the impact factors [48, 217],

C(2+; 3+) = C(2−; 3−) = C(1+;n+) = C(1−;n−) = 0,

C(2−; 3+) = C(2+; 3−) = 1,

C(1−;n+) = C(1+;n−)∗ =
k⊥
∗

n

k⊥n

(7.5)

and the Lipatov vertices [48, 218, 219],

V
(
qa; a

+; qa+1

)
= V

(
qa; a

−; qa+1

)∗
=

q⊥
∗

a q⊥a+1

k⊥a
. (7.6)
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2 3

4

n−1

1 n

Figure 7.1: The factorized form of a tree-level amplitude in MRK

Helicity is conserved by the impact factors, which forces some of the helicity
combinations in eq. (7.5) to vanish.

Now we turn to gravity amplitudes. In MRK, any n graviton amplitude takes
the same factorized structure as in gauge theory [221, 222],

Mn (7.7)

' −s2 Cg(2;3)
−1

|q⊥4 |2
Vg(q4;4;q5) · · · −1

|q⊥n−1|2
Vg(qn−1;n−1;qn)

−1

|q⊥n |2
Cg(1;n).

We refer to Cg and Vg as the gravitational impact factor and gravitational
Lipatov vertex respectively. They can be written as the double copy of gauge
theory vertices. Cg is simply given by C2,

Cg(2; 3) =
(
C(2; 3)

)2
, Cg(1;n) =

(
C(1;n)

)2
. (7.8)
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We see from (7.8) that helicity is conserved by the impact factors in gravity,
like in gauge theory. The gravitational Lipatov vertex is defined as

Vg
(
qa; a

+; qa+1

)
= Vg

(
qa; a

−; qa+1

)∗
=

q⊥
∗

a

(
k⊥a q

⊥∗
a − k⊥

∗
a q⊥a

)
q⊥a+1

(k⊥a )2
.

(7.9)

It has also a double-copy construction, see Appendix C for detail. An interest-
ing feature is that only two types of effective three-point vertices are needed
for the multi-Regge limit of graviton scattering.

The (gravitational) impact factors and Lipatov vertices appearing in MRK are
entirely determined by the four- and five-point amplitudes in both gauge the-
ory and gravity. Since there are no non-MHV helicity configurations for four
and five particles, we see that in MRK any amplitude is determined by MHV-
type building blocks, independently of the helicity configuration. Although
consistent with all explicit results for tree-level amplitudes, eq. (7.4) was only
rigorously proven for arbitrary multiplicity for the simplest helicity configura-
tions [48]. One of the aims of this work is to explore how far the scattering
equations formalism can be used to shed light on the factorization of scattering
amplitudes in Regge kinematics.

Starting from the multi-Regge limit in eq. (7.1), one can define a tower of new
kinematic regimes, called quasi-multi-Regge kinematics (QMRK), by relaxing
the hierarchy among some of the rapidities of the produced particles, e.g.,

y3 ' · · · ' yk � yk+1 ' · · · ' yn−1 � yn , (7.10)

while all transverse components are of the same size. In QMRK the gauge
theory amplitude is conjectured to factorize in a way very similar to MRK in
eq. (7.4). For example, in the limit in eq. (7.10), the amplitude is expected to
factorize as follows:

An(1, . . . , n) (7.11)

' s C(2; 3, · · · , k)
−1

|q⊥k+1|2
V
(
qk+1; k+1, · · ·n−1; qn

) −1

|q⊥n |2
C(1;n).
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Here the two building blocks C(2; 3, · · · , k) and V(qa; a, · · · b; qb+1) are the
generalized impact factor and Lipatov vertex respectively. Impact factors for
the production of up to four particles have been computed in ref. [48,71] from
helicity amplitudes, and in ref. [223] using the effective action for high-energy
processes in QCD [224]. The Lipatov vertices are known for the emission of
up to four particles emitted in the center [48, 71, 225]. We do not discuss the
quasi-multi-Regge limit of graviton amplitudes in this work.

7.2 The scattering equations in lightcone variables

As shown in the previous section, the multi-Regge limit is most naturally de-
fined in terms of lightcone variables. It is thus natural to write the scattering
equations in terms of lightcone coordinates. For general dimensional scatter-
ing equations, (3.5), only Mandelstam variables are needed:

sij = 2ki · kj = k+
i k
−
j + k−i k

+
j − k

⊥
i
∗
k⊥j − k⊥i k⊥j

∗
. (7.12)

The four-dimensional scattering equations employ the spinor variables. In this
work we define two-component spinors (c.f. Appendix A) as [226]

λ1 = −λ̃1 =

(
0
√
χ

)
, λ2 = −λ̃2 =

(√
χ

0

)
,

λa =
1√
k+
a

(
k+
a

k⊥a

)
, λ̃a =

1√
k+
a

(
k+
a

k⊥
∗

a

)
, 3 ≤ a ≤ n.

(7.13)

While one can get equations with lightcone moementa by simply substituting
(7.13) into the scattering equations (4.5), we show that one can obtain a nicer
form by fixing the redundancy and rescaling variables and equations below.
First, let us use the GL(2,C) redundancy to fix four variables according to
eq. (4.9), i.e.,

σ1 = 0, σ2 = t2 → ∞, t1 = −1. (7.14)

Here we always use the convention where {1, 2} ⊆ N, and we define N ≡
N\{1, 2}. Moreover, we follow the convention that elements of P and N

are denoted by small and capital letters respectively, e.g. i ∈ P and I ∈ N.
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Second, we perform a rescaling for the ta variables as follows:

ti = τi

√
k+
i

χ
, tI = τI

√
χk+

I

k⊥I
. (7.15)

Then let us also perform a rescaling for the scattering equations according to:

S1
i ≡

1

λ1
i

E1
i , S2

i ≡
λ1
i

k⊥i
E2
i ; S̄ 1̇

I ≡ λ2
I Ē 1̇

I , S̄ 2̇
I ≡ λ1

I Ē 2̇
I ;

S̄ 1̇
1 ≡ λ2

1 Ē 1̇
1 , S̄ 2̇

1 ≡ λ2
1 Ē 2̇

1 ; S̄ 1̇
2 ≡ λ1

2 Ē 1̇
2 , S̄ 2̇

2 ≡ λ1
2 Ē 2̇

2 .

(7.16)

As a consequence, we obtain a set of equations that contain only the terms
linear in k+

a . Explicitly, they are

S1
i = 1 + τi −

∑
I∈N

τiτI
σi−σI

k+
I

k⊥I
= 0, S2

i = 1 +
k+
i

k⊥i

τi
σi
−
k+
i

k⊥i

∑
I∈N

τiτI
σi−σI

= 0;

S̄ 1̇
I = k⊥I −

∑
i∈P

τiτI
σI−σi

k+
i = 0, S̄ 2̇

I = k⊥
∗

I −
k+
I

k⊥I

∑
i∈P

τiτI
σI−σi

k⊥
∗

i = 0;

S̄ 1̇
1 = −

∑
i∈P

τi
σi
k+
i = 0, S̄ 2̇

1 = −χ−
∑
i∈P

τi
σi
k⊥
∗

i = 0;

S̄ 1̇
2 = −χ−

∑
i∈P

τik
+
i = 0, S̄ 2̇

2 = −
∑
i∈P

τik
⊥∗
i = 0. (7.17)

We would like to emphasize that no limit has been applied to these equations,
and they are completely equivalent to the scattering equations in (4.5), up to
fixing the GL(2,C) redundancy according to (7.14) and performing the rescal-
ing according to (7.15) and (7.16).

7.3 The scattering equations in Regge kinematics

Given the preparations in previous sections, this section aims to study the be-
haviour of the scattering equations in various quasi-multi-Regge limits.
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A warm-up: the MHV solution

Before we present in the next subsection a concise conjecture on the behaviour
of the solutions in these limits, we find it instructive to analyse in detail the
MHV sector, k = 2. We do this for two reasons. First, we have argued in
the previous section that in MRK any amplitude is determined by MHV-type
building blocks, so the MHV sector should capture a lot of information on the
multi-Regge limit. Second, while in general it is very hard, if not impossible,
to find exact analytic solutions to the scattering equations, in the MHV sector
one can solve the equations exactly and study their behaviour analytically.

As discussed in Chapter 3, there is a unique solution in the MHV sector:

σa =
k+
a

k⊥a
for 4 ≤ a ≤ n, (7.18)

here we use the SL(2,C) redundancy to fix three of the σa according to

σ1 = 0 , σ2 = ∞ , σ3 =
k+

3

k⊥3
. (7.19)

The complex conjugate of this solution is the solution of the equations in the
MHV sector k = n−2.

Let us now analyse what the MHV solution becomes in a quasi-multi-Regge
limit. From eqs. (7.18), (7.19) and (7.10) it is easy to see that for the MHV
solution (and also for its complex conjugate) the σa, a > 2, are of the same
order of magnitude as the corresponding lightcone coordinates k+

a , i.e. σa =

O(k+
a ). More precisely, for the MHV solution in eqs. (7.18) and (7.19) we

have

Re(σa) = O(k+
a ) and Im(σa) = O(k+

a ), 3 ≤ a ≤ n . (7.20)

In other words, in QMRK the MHV solution admits the same strong ordering
as the rapidities. In particular, in MRK the MHV solution admits a hierarchy
very reminiscent of the MRK hierarchy in eq. (7.1),

|Re(σ3)| � · · · � |Re(σn)| and | Im(σ3)| � · · · � | Im(σn)|. (7.21)
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Let us also look at the MHV solution of the four-dimensional scattering equa-
tions in eq. (4.5). They do not only depend on the variables σa, but also ta.
For concreteness, since we use the convention where {1, 2} ⊆ N, in the MHV
case we have N = {1, 2}. We have given this solution in (4.43) in Chapter 4.
Here we rewrite it in terms of lightcone momenta:

σa =
k+
a

k⊥a
, ta = −

√
k+
a

χ
, a ≥ 3, (7.22)

the other variables have been fixed by the GL(2,C) according to eq. (7.14) or
eq. (4.9). We see that, as expected, the σa behave again according to eq. (7.20).
The variables ti instead behave like

ta = O
(√

k+
a /χ

)
, a ≥ 3 . (7.23)
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Main conjectures

Our previous analysis shows that in every quasi-multi-Regge limit, the MHV
solution admits the same hierarchy as the rapidities of the produced particles.
Here we extend this observation to the solutions of the scattering equations in
other sectors. More precisely, we propose the following conjecture:

Main Conjecture: In QMRK, if the SL(2,C) redundancy is fixed
according to eq. (7.19), then all solutions of the D-dimensional scat-
tering equations (3.5) satisfy the same hierarchy as the ordering of the
rapidities that defines the QMRK, i.e.,

Re(σa) = O
(
k+
a

)
, Im(σa) = O

(
k+
a

)
, 4 ≤ a ≤ n. (7.24)

This holds for all σa solutions of the four-dimensional scattering equa-
tions after fixing the GL(2,C) redundancy according to eq. (7.14). A
particular example is that in MRK, we conjecture

|Re(σ3)| � |Re(σ4)| � · · · � |Re(σn)|
and | Im(σ3)| � | Im(σ4)| � · · · � | Im(σn)|.

(7.25)

Furthermore, in QMRK for the four-dimensional scattering equations,
the two sets of solutions (ti)i∈P and (tI)I∈N are individually ordered
according to the same hierarchy as the rapidities (though there may not
be any ordering between elements belonging to different sets).

We have performed a detailed numerical analysis of the scattering equations
for a set of external momenta which approach various different quasi-multi-
Regge regimes, both in their D and their four-dimensional guises. We can
approach a given quasi-multi-Regge limit numerically by choosing an appro-
priate numerical hierarchy between the lightcone components of the external
momenta. We have solved the D-dimensional scattering equations up to eight
points, and the four-dimensional scattering equations for all helicity sectors up
to seven external particles. All results of the numerical analyses agree with our
conjecture.
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We can formulate our conjecture more sharply and give the precise behaviour
of the solutions of the four-dimensional scattering equations. We observe that
in all cases, including for the non-MHV sectors k > 2, all solutions of the
scattering equations in eq. (4.5) or (7.17) behave in a similar way as the MHV
solution in eqs. (7.20) and (7.23). Based on this study, we have led to state the
following conjecture:

Conjecture 4d: In QMRK, if {3, n} ⊆ P and the GL(2,C) redun-
dancy is fixed according to eq. (7.14), then all solutions of the four-
dimensional scattering equations (4.5) behave as, with 3 ≤ a ≤ n,

Re(σa) = O
(
k+
a

)
, Im(σa) = O

(
k+
a

)
, ta = O

(√
k+
a χ−ha

)
,

(7.26)

where ha = 1 when a ∈ P, otherwise ha = −1.

We stress that the Conjecture 4d only holds in the case {3, n} ⊆ P. For any he-
licity amplitude in Yang-Mills and gravity, it is always able to take {3, n} ⊆ P

as a convention. The reason is pretty simple. As an example, let us see the for-
mula for N = 4 SYM amplitudes. In (4.38), it is completely free to divide n
particle labels into two sets, N and P with |N| = k for the Nk−2MHV su-
peramplitude. Therefore, we are always able to evaluate any superamplitude
using the formula (4.38) with fixing {3, n} ⊆ P as well as {1, 2} ⊆ N. The
all component (e.g. gluon) amplitudes can be extracted from the η-expansion
of the superamplitude according to the on-shell superfield. For the case of
{3, n} 6⊂ P, we have also performed a numerical analysis and found the so-
lutions ta have slightly different behaviour in QMRK. Here we do not show it
here explicitly and we suggest interested readers to appendix B of paper [138]
for details.

Finally, let us make a comment at this point. Equation (7.26) implies that the
variables σa scale in every helicity sector in the same way as in the MHV
sector, cf. eq. (7.22). The scaling of the variables ta in eq. (7.26), however,
depends on the “helicity configuration”. This is natural in the sense that, even
away from Regge kinematics the solutions σa are independent of the ways of
dividing n labels into two subsets N and P, |N| = k, 2 ≤ k ≤ n−2, and these
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solutions form a subset of the (n−3)! solutions to theD-dimensional scattering
equations. Very differently, the variables ta are specific to the four-dimensional
scattering equations and take different values in different configurations for
given k.

7.4 Discussions

These conjectures are among the main results of this work. Although we do
currently not have any proof of our conjectures, we find it remarkable that in
all cases we have investigated the solutions to the scattering equations display
this universal asymptotic behaviour, independently of the helicity sector. In
the next two chapters, we explore the consequences of our conjectures. In par-
ticular, we will show that these conjectures imply the expected factorization
of tree-level amplitudes in quasi-multi-Regge limits when combined with the
contour integration representation of tree-level amplitudes. This result is im-
portant for two reasons: First, it gives support to our conjectures, because it
shows that they allow us to recover the expected behaviour of tree-level am-
plitudes in quasi-multi-Regge limits. Second, it reveals the origin of Regge
factorization from the angle of the scattering equations.



8 Multi-Regge factorization from the
scattering equations

In the previous chapter, we observed that in the QMRK the solutions to the
scattering equations admit the same hierarchy as the rapidity ordering, and we
conjectured that this behaviour holds independently of the number of external
legs. In this chapter, we apply the conjecture to the case of multi-Regge kine-
matics. In MRK, any amplitude in gauge and gravity theories takes a simple
factorized form which is determined by MHV-type building blocks, as shown
in detail in the first section of Chapter 7. We show that our conjecture implies
that in MRK the four-dimensional scattering equations have a unique solution.
The amplitude in MRK is then determined uniquely by this solution in both
Yang-Mills and Einstein gravity. This is very similar to MHV amplitudes,
where the CHY-type formula has support only on a single solution of the scat-
tering equations.

8.1 An exact solution of the scattering equations

Let us begin with the study of the four-dimensional scattering equations (4.5)
in multi-Regge kinematics.

We have shown that the equations (4.5) can be nicely rewritten in terms of
lightcone momenta, as shown in eq. (7.17) in the previous chapter. Accord-
ing to our conjecture, in MRK any solution to the scattering equations (7.17)
satisfies

1

σa−σb
' 1

σa
when a < b, τa = O(k⊥a ). (8.1)

85
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Expanding the scattering equations (7.17) to leading power in MRK according
to (8.1), they get significantly simplified

S1
i = 1 + τi

(
1 +

∑
I∈N<i

ζI

)
= 0,

S2
i = 1 + ζi

(
1−

∑
I∈N>i

τI

)
= 0,

S̄ 1̇
I = k⊥I + τI

∑
i∈P<I

ζi k
⊥
i = 0,

S̄ 2̇
I = (k⊥I )∗ − ζI

∑
i∈P>I

τi(k
⊥
i )∗ = 0,

(8.2)

where M<a (M>a) denotes the subset of M of elements that are less (greater)
than a, and we have defined the rescaled variables

ζa ≡
k+
a

k⊥a

τa
σa
, 3 ≤ a ≤ n . (8.3)

Let us rewrite the scattering equations (8.2) as:

S1
i = 1 + ai τi = 0 , S̄ 2̇

I = (k⊥I )∗ + bI ζI = 0 ,

S2
i = 1 + ci ζi = 0 , S̄ 1̇

I = k⊥I + dI τI = 0 ,

(8.4)

with short-handed notations

ai ≡ 1 +
∑
I∈N<i

ζI , bI ≡ −
∑
i∈P>I

τi (k⊥i )∗,

ci ≡ 1−
∑
I∈N>i

τI , dI ≡
∑
i∈P<I

ζi k
⊥
i .

(8.5)

We observe that in MRK the equations (S1
i , S̄ 2̇

I ) = 0 only depend on the vari-
ables τi and ζI , while the equations (S2

i , S̄ 1̇
I ) = 0 only depend on τI and ζi.

We also see that each equation in (8.4) is linear in one of the variables. We
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can use this very special structure to find an explicit analytic solution of the
scattering equations in MRK.

To start, we can use the fact that the equations Sαi = 0 are linear in τi and ζi to
give

τi = − 1

ai
, ζi = − 1

ci
. (8.6)

Inserting eq. (8.6) into the expressions for bI and dI in eq. (8.5), we find

bI =
∑
i∈P>I

(k⊥i )∗

ai
=

∑
i∈P>I

(k⊥i )∗

(
1 +

∑
J∈N<i

ζJ

)−1

, (8.7)

dI = −
∑
i∈P<I

k⊥i
ci

= −
∑
i∈P<I

k⊥i

(
1−

∑
J∈N>i

τJ

)−1

. (8.8)

The bI are solely determined by the variables ζI , and similarly the dI are de-
termined by the variables τI . In order to proceed, we write N = {I`}1≤`≤m
(m ≡ k − 2) with I` < I`+1. The quantities bI and dI satisfy the recursions,
for 1 ≤ r ≤ m,

bIr = bIr+1 +

(
1 +

r∑
l=1

ζIl

)−1

(q⊥Ir+1
− q⊥Ir+1)∗, (8.9)

dIr = dIr−1 −

(
1−

m∑
l=r

τIl

)−1

(q⊥Ir − q
⊥
Ir−1+1). (8.10)
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The recursion starts with bIm+1 = dI0 = qIm+1 = qI0+1 = 0. Indeed, we have

bIr =
∑

i∈P>Ir

(k⊥i )∗

(
1 +

∑
J∈N<i

ζJ

)−1

=

( ∑
i∈P>Ir+1

+
∑

Ir<i<Ir+1

)
(k⊥i )∗

(
1 +

∑
J∈N<i

ζJ

)−1

= bIr+1 +

(
1 +

r∑
l=1

ζIl

)−1 ∑
Ir<i<Ir+1

(k⊥i )∗

= bIr+1 +

(
1 +

r∑
l=1

ζIl

)−1

(q⊥Ir+1
− q⊥Ir+1)∗.

(8.11)

The proof of the recursion for dIr is similar. We can combine the recursions
for bI and dI with the scattering equations and turn them into recursions for
τI and ζI . We illustrate this procedure explicitly on dI and τI . The procedure
for bI and ζI is similar. We start from the equation S̄ 1̇

Ir
= 0 and insert the

recursion in eq. (8.9). For r = 1, we find

0 = S̄ 1̇
I1 = k⊥I1 + dI1τI1 (8.12)

= −

(
1−

m∑
l=1

τIl

)−1 [
−k⊥I1

(
1−

m∑
l=2

τIl

)
+ τI1q

⊥
I1+1

]
.

This immediately leads to

τI1 =
k⊥I1
q⊥I1+1

(
1−

m∑
l=2

τIl

)
. (8.13)
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Similarly, using eq. (8.13) we obtain for r = 2,

0 = S̄ 1̇
I2 = k⊥I2 + dI2τI2 (8.14)

= k⊥I2 − τI2

[
k⊥I1
τI1

+

(
1−

m∑
l=2

τIl

)−1

(q⊥I2 − q
⊥
I1+1)

]
(8.15)

=

(
1−

m∑
l=2

τIl

)−1 [
k⊥I2

(
1−

m∑
l=3

τIl

)
− τI2q⊥I2+1

]
, (8.16)

and so we have

τI2 =
k⊥I2
q⊥I2+1

(
1−

m∑
l=3

τIl

)
. (8.17)

A similar formula holds for general r, and the τIr satisfy the recursion,

τIr =
k⊥Ir
q⊥Ir+1

(
1−

m∑
l=r+1

τIl

)
. (8.18)

The recursion starts with

τIm =
k⊥Im
q⊥Im+1

. (8.19)

It is easy to show by induction that the recursion admits the explicit solution

τIr =
k⊥Ir
q⊥Ir+1

m∏
l=r+1

q⊥Il
q⊥Il+1

, 1 ≤ r < m . (8.20)

The explicit solution for the variables ζIr can be obtained in the same way.
More precisely, one can show that there is a recursion

ζIr =

(
k⊥Ir
q⊥Ir

)∗ (
1 +

r−1∏
l=1

ζIl

)
, 1 < r ≤ m, (8.21)



90 8. Multi-Regge factorization from the scattering equations

with

ζI1 =

(
k⊥I1
q⊥I1

)∗
, (8.22)

and the recursion admits the explicit solution

ζIr =

(
k⊥Ir
q⊥Ir

)∗( r−1∏
l=1

q⊥Il+1

q⊥Il

)∗
, 1 < r ≤ m. (8.23)

Together with eqs. (8.6), (8.20) and (8.23) provide the explicit solution of the
scattering equations in MRK. We see that there is indeed a unique (indepen-
dent) solution to the four-dimensional scattering equations in MRK, which can
be traced back to the fact that at every step we only needed to solve linear equa-
tions. We can easily obtain explicit solutions for the coefficients ci and ai that
appear in eq. (8.6). For example, using eq. (8.18) and (8.20), we find

ci = 1−
∑
I∈N>i

τI =
∏

I∈N>i

q⊥I
q⊥I+1

. (8.24)

We recall that we use the convention that products over empty ranges are unity.
Similarly for ai, we have

ai = 1 +
∑
I∈N<i

ζI =

( ∏
I∈N<i

q⊥I+1

q⊥I

)∗
. (8.25)

Hence, we find

τi = −

( ∏
I∈N<i

q⊥I
q⊥I+1

)∗
and ζi = −

∏
I∈N>i

q⊥I+1

q⊥I
. (8.26)
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Finally, we can also write this solution in the original variables (ta, σa) using
eqs. (7.15) and (8.3).

ta =
√
k+
a ×



−1
√
χ

( ∏
I∈N<a

q⊥I
q⊥I+1

)∗
, a ∈ P,

√
χ

q⊥a+1

( ∏
I∈N>a

q⊥I
q⊥I+1

)
, a ∈ N,

(8.27)

σa =
k+
a

k⊥a
×



( ∏
I∈N<a

q⊥I
q⊥I+1

)∗( ∏
I∈N>a

q⊥I
q⊥I+1

)
, a ∈ P

k⊥a
q⊥a+1

(
q⊥a
k⊥a

)∗( ∏
I∈N<a

q⊥I
q⊥I+1

)∗( ∏
I∈N>a

q⊥I
q⊥I+1

)
, a ∈ N

(8.28)

Here we interpret a product over an empty range as 1. Let us make some
comments about this solution (referred to as the MRK solution). First, we im-
mediately see that the solution in eqs. (8.27) and (8.28) has the same hierarchy
as the rapidities of the produced particles, in agreement with Conjecture 4d.

Second, we find it remarkable that in MRK we can explicitly solve the scat-
tering equations for arbitrary multiplicity and arbitrary helicity configuration.
For each configuration N of particle labels in sector k, we find a solution of
the four-dimensional scattering equations (4.5). As shown in Chapter 4, the
solutions σa of the four-dimensional scattering equations also solve the D-
dimensional ones. It is very rare that one can solve the scattering equations for
arbitrary multiplicities, and so far this has only been done for the MHV sector.
We can recover the MHV solution of eq. (7.22) from eqs. (8.27) and (8.28) by
taking P = {3, · · · , n}. Indeed, in that case we have N<a = N>a = ∅, and
so the products in eqs. (8.27) and (8.28) do not contribute, and we immediately
recover eq. (7.22).

Finally, in the following sections we will show that we can obtain the multi-
Regge factorization of amplitudes in both gauge and gravity theories by local-
izing the CHY-type integrals to the MRK solution.
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8.2 Gluonic scattering in multi-Regge kinematics

In the previous section, we have shown that our conjecture implies that in
MRK the four-dimensional scattering equations have a unique solution. In this
section, we show that the conjecture also implies that any n-gluon amplitude
in MRK can be written in the factorized form in eq. (7.4). Since eqs. (8.27)
and (8.28) hold for arbitrary helicity configurations and multiplicities, this
shows that the MRK factorization holds independently of the helicity configu-
ration and the number of legs. This nicely complements the results of ref. [48],
where factorization was shown to hold for the simplest (MHV) helicity con-
figurations. We emphasise, however, that we cannot present at this point a
rigorous proof that multi-Regge factorization holds for arbitrary helicity con-
figurations because our derivation relies on the conjecture presented in the pre-
vious chapter. Finding a rigorous mathematical proof of our conjecture would
thus eventually imply an elegant proof of the factorization of tree-level gluon
amplitudes in MRK, for arbitrary multiplicities and helicity configurations.

We start by considering n-gluon scattering amplitudes in the case where the
two incoming gluons (labelled by 1 and 2 respectively) carry the same helic-
ity, and we comment on the case where they have different helicities at the
end of this section. The gluon amplitudes can be easily extracted from the
superamplitude (4.38). When we use N and P to collect the labels of gluons
with negative and positive helicities respectively, the formula for pure gluon
amplitudes does not receive an additional contribution from the Grassmann
delta-functions in (4.32). As shown earlier, the scattering equations (4.5) can
be rewritten in terms of lightcone momenta by resacling ta variables acooring
to (7.15) and fixing the GL(2,C) redundancy according to eq. (7.14). Simi-
larly, using the new equations (7.17), a n gluon amplitude can be written as

An(1−, 2−, . . . , n) = −s

∫
n∏
a=3

dσadτa
τa

1

σ34 · · ·σn−1,nσn
(8.29)

×

( ∏
i∈P,I∈N

k⊥I
k⊥i

)∏
I∈N

δ2
(
S̄ α̇I
)∏
i∈P

δ2
(
Sαi
)
,
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where we have eliminated four of the scattering equations and identify them
with the momentum conservation delta-functions (see Appendix B), i.e.,

δ2
(
S̄ α̇1
)
δ2
(
S̄ α̇2
)

= δ4

(
n∑
a=1

kµa

)
. (8.30)

We would like to emphasise that eq. (8.29) is exact and no Regge limit has
been applied to it.

From Conjecture 4d, it follows that in MRK the solutions to the scattering
equations satisfy (8.1). Inserting it into eq. (8.29) and passing to the rescaled
variables defined in eqs. (7.15) and (8.3), we see that the formula for the am-
plitude in MRK can be reduced to

An(1−, 2−, . . . , n) (8.31)

' −s

(∫
n∏
a=3

dτadζa
ζaτa

) ∏
i∈P

1

k⊥i
δ2
(
Sαi
)∏

I∈N

k⊥I δ
2
(
S̄ α̇I
) ,

where the arguments of the δ-functions are given in eq. (8.2). We know that
these equations have a unique solution given by eqs. (8.27) and (8.28). We
now show that when the integral in eq. (8.31) is localized on this solution, then
we recover the factorized form of a tree-level amplitude in MRK. We do this
by a procedure very similar to the one used in the previous section to find the
solution. The proof of eqs. (8.27) and (8.28) relies heavily on the fact that in
MRK the scattering equations decouple into a set of linear equations that can
be solved one-by-one. Here we use this fact to solve the δ-functions in the
integrand of eq. (8.31) one at the time. All the manipulations are identical to
those performed in the previous section, so we will be brief on the derivation
and only highlight some aspects related to solving the δ-functions.

We start by performing the integrations over the τi and ζi. From eq. (8.2) we
see that these integrations are independent from each other. We can localize
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them completely using δ
(
S1
i

)
and δ

(
S2
i

)
, and we find∫

dτi
τi
δ
(
S1
i

)
=

∫
dτi
τi
δ
(
1 + aiτi

)
= −1 , (8.32)∫

dζi
ζi
δ
(
S2
i

)
=

∫
dζi
ζi
δ
(
1 + ciζi

)
= −1 . (8.33)

After this step all the variables τi and ζi have been integrated out.

Using the same reasoning as in the previous section, we see that the integra-
tions over τI and ζI are now independent of each other, and so we can discuss
the integrations over the τI variables independently from the integrations over
the ζI variables. Let us start with the τI -integrations. We use the δ-functions
δ
(
S̄ 1̇
I

)
combined with the recursive procedure of the previous section to local-

ize all the τI variables. In particular, we localize the τI variables in increasing
order from I1 to Im. Let us look at the integration over τI1 . We start from
eq. (8.12) to obtain∫

dτI1
τI1

δ
(
S̄ 1̇
I1

)
=

∮
C

dτI1
τI1

1

S̄ 1̇
I1

=

∮
C

dτI1
τI1

1−
∑m

l=1 τIl
k⊥I1
(
1−

∑m
l=2 τIl

)
− τI1q⊥I1+1

= − 1

k⊥I1

q⊥I1
q⊥I1+1

, (8.34)

where we have interpreted the integral over the δ-function as a contour integral
over a contour C encircling the zero of the argument of the δ-function. The
remaining integrals over the τI variables can be performed in the same way in
increasing order, with the simple result∫

dτI
τI

δ
(
S̄ 1̇
I

)
= − 1

k⊥I

q⊥I
q⊥I+1

. (8.35)

Finally, we are left with the integrals over the ζI variables to perform. The
procedure is the same as for the τI variables, combined with the recursive
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procedure in the previous section. We find∫
dζI
ζI

δ
(
S̄ 2̇
I

)
= −

(
1

k⊥I

q⊥I+1

q⊥I

)∗
. (8.36)

We see that we can perform all integrations one after the other. As a result, the
amplitude takes a completely factorized form, which has its origin in the fact
that in MRK all the integrations in the CHY-type formula decouple and can be
performed one-by-one. The final result takes the very simple factorized form
in eq. (7.4) and rewrite here

An(1, . . . , n)

' s C(2; 3)
−1

|q⊥4 |2
V(q4; 4; q5) · · · −1

|q⊥n−1|2
V(qn−1;n−1; qn)

−1

|q⊥n |2
C(1;n).

Our conjecture thus implies the factorized form of the tree-level gluon ampli-
tude in MRK. Unlike previous derivations, we stress that our derivation is com-
pletely independent of the helicities of the produced particles, giving strong
support to the idea that MRK-factorization of tree-level amplitudes holds for
any multiplicity and for any helicity assignment.

Finally, we end discussions in this section with some comments on other he-
licity configurations and color orderings.

Let us first see what happens in the case where the incoming gluons 1 and
2 have opposite helicities, for example, when gluon 1 has positive helicity.
Since helicity is conserved by the impact factor C(1;n), we obtain a non-zero
result in MRK only when gluon n has negative helicity. According to the
formula for superamplitudes in (4.38), amplitudes An(1−, 2−, . . . , n+) and
An(1+, 2−, . . . , n−) can be computed using the same formula (8.29), up to
adding an additional factor (1n)−4 to the integrand. If the GL(2,C) redun-
dancy is fixed according to eq. (7.14), then this additional factor only depends
on the variables tn and σn. More precisely, we have,

1

(1n)
=

tn
σn

=

√
k+
n

χ

k⊥n
k+
n
ζn . (8.37)
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In MRK ζn is uniquely fixed by the equation S2
n = 1 + ζn = 0. Thus we have

1

(1n)4

∣∣∣∣
ζn=−1

=

(
k⊥n

(k⊥n )∗

)2

. (8.38)

This factor combines with the impact factor C(1−;n+) to give

C(1−;n+)

(
k⊥n

(k⊥n )∗

)2

=
k⊥n

(k⊥n )∗
= C(1+;n−) . (8.39)

We see that in the case where h1 = −h2 = +1, only the impact factor C(1;n)

changes, in agreement with the factorization of tree-level amplitudes in MRK.

Second, we discuss the case where the cyclic color ordering in partial gluon
amplitude is not aligned with the rapidity ordering. Previously, we have shown
how the MRK factorization of tree-level amplitudes where the cyclic color-
ordering is aligned with the rapidity ordering follows from the CHY-type rep-
resentation and Conjecture 4d. Here we show that all other cyclic color order-
ings are suppressed in MRK. This nicely complements the results of ref. [48],
where this result had been shown to hold only for the MHV sector.

We have seen that in MRK the scattering equations have a unique solution. As
a consequence, we can obtain a very simple relation between amplitudes in
MRK with different cyclic orderings,

AMRK
n (1−, 2−, µ3, . . . , µn) = AMRK

n (1−, 2−, 3, . . . , n)R[µ] , (8.40)

where AMRK
n is the n-point amplitude in MRK and (µ3, . . . , µn) is a permuta-

tion of (3, . . . , n) and we defined,

R[µ] =
σ3σ4 · · ·σn

σµ3µ4σµ4µ5 · · ·σµn−1µnσµn

∣∣∣∣
MRK solution (8.28)

=
n−1∏
i=3

Rµi

∣∣∣∣
MRK solution (8.28)

, Rµi ≡
σµi

σµiµi+1

. (8.41)



8.3. Gravitational scattering in multi-Regge kinematics 97

Our conjecture implies that

Rµi '

 1, µi < µi+1

− σµi
σµi+1

, µi > µi+1

=

 1, µi < µi+1,

O
(
k+
µi/k

+
µi+1

)
, µi > µi+1.

(8.42)

It is then easy to see that R[µ] is suppressed in MRK kinematics unless the
cyclic color-ordering is aligned with the rapidity ordering, in agreement with
known results for MHV amplitudes [48].

8.3 Gravitational scattering in multi-Regge kinematics

In this section, we extend the analysis in the previous section from Yang-Mills
theory to Einstein gravity. While the framework presented in Sections 8.1
and 8.2 is applicable to graviton amplitudes because of the universality of the
scattering equations, this is still highly non-trivial since graviton amplitudes
have a rather complicated structure even in the MHV sector.

Using a similar way with Yang-Mills, the formula for tree-level Nk−2MHV
graviton amplitude can be obtained from the superamplitude (4.40). Using
lightcone variables, it reads

Mn = −s2

(∫ n∏
a=3

dτadσa
τ3
a

)(∏
I∈N

(k⊥I )3

k+
I

δ2
(
S̄ α̇I
))

(8.43)

×

(∏
i∈P

1

k+
i k
⊥
i

δ2
(
Sαi
))

det′H det′H.

Here we employ again the convention where particles 1 and 2 carry negative
helicity and use N and P to collect the babels of negative and positive helic-
ity gravitons. For convenience, we have rescaled the two matrices defined in
(4.41) according to

Hab := χ−1Hab for a, b ∈ N; Hab := χHab for a, b ∈ P. (8.44)
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More precisely, in MRK the entries of H are given by

H12 = −1, H1I = − τI
σI

k+
I

k⊥I
, H2I = τI , (8.45)

HIJ =
τIτJ
σI−σJ

(
k+
I

k⊥I
−
k+
J

k⊥J

)
for I 6= J, (8.46)

Haa = −
∑

b∈N,b 6=a
Hab, a ∈ N, (8.47)

and for H we have

Hij =
τiτj
σi−σj

(
k+
i k
⊥∗
j − k+

j k
⊥∗
i

)
for i 6= j, (8.48)

Hii = −
∑

j∈P,j 6=i
Hij . (8.49)

We emphasize that the formula (8.43) evaluate graviton amplitudes for arbi-
trary kinematics.

Similarly, according to our conjecture, σa−σb ' σa for a < b in MRK, ex-
panding the formula (8.43) to leading power, it significantly simplified as

Mn ' −s2

(∫ n∏
a=3

dτadζa
τ2
a ζ

2
a

)(∏
I∈N

(k⊥I )2 δ2
(
S̄ α̇I
))

(8.50)

×

(∏
i∈P

1

(k⊥i )2
δ2
(
Sαi
))

det′H det′H,

where S̄I and Si are given in eq. (8.2). The unique solution of the scattering
equations is given by eqs. (8.20), (8.23) and (8.26), or by eq. (8.27) and (8.28)
in (σa, ta) variables. Like in Yang-Mills case, we fix {3, n} ⊆ P as a conven-
tion, and ζa ∼ τa/σa is defined in (8.3). The matrices H and H of course also
get simplified and we will give their explicit expressions later.

In the following, we show that we can obtain the multi-Regge factorization of
graviton amplitudes, shown in eq. (7.7), by localizing integrals in (8.50) to the
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MRK solution. Let us begin by recalling the results for the gluon amplitude(∫
n∏
a=3

dτadζa
ζaτa

) (∏
i∈P

1

k⊥i
δ2
(
Sαi
))(∏

I∈N

k⊥I δ
2
(
S̄ α̇I
))

= (−1)n

(∏
I∈N

1

k⊥
∗

I

q⊥I q
⊥∗
I+1

q⊥∗I q⊥I+1

)(∏
i∈P

1

k⊥i

)
. (8.51)

Form it we can conclude that for any function F(τa, ζa) of τa and ζa we have∫ n∏
a=3

dζadτa
ζaτa

∏
I∈N

δ2
(
S̄ α̇I
)∏
i∈P

δ2
(
Sαi
)
F(ζa,τa)

= (−1)n

∏
I∈N

1

|k⊥I |2
q⊥I q

⊥∗
I+1

q⊥∗I q⊥I+1

F(ζa,τa)
∣∣∣
MRK solution

. (8.52)

For gravitational scattering amplitudes, from (8.50) we can easily read that F
function takes

F (GR) = −s2

(∏
i∈P

1

(k⊥i )2

1

ζiτi

)
det′H

(∏
I∈N

(k⊥I )2

ζIτI

)
det′H. (8.53)

The main task of the rest part of this section is to calculate this quantity on the
support of the unique solution of the four-dimensional scattering equations in
MRK.

MHV sector

Let us first consider the F function defined in (8.53) in the MHV sector. The
experience from the MHV sector will be useful for evaluating the determinants
in other NkMHV sectors.
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In this case, P = {3, . . . , n}, the solution in (8.26) becomes ζi = τi = −1,
and we have

Hij = (k⊥j ζj) (k⊥
∗

i τi) = (k⊥i k
⊥
j )xi when i > j, (8.54)

Hij = (k⊥i k
⊥
j )xj when i < j, (8.55)

Hii = −
∑

j∈P,j 6=i
Hij = (k⊥i )2

(
xi + vi

)
, (8.56)

where we define

xa ≡
k⊥
∗

a

k⊥a
, va ≡

k⊥a q
⊥∗
a − q⊥a k⊥

∗
a

(k⊥a )2
. (8.57)

Let us choose to delete the first column and row corresponding to the particle
label “3” from the matrix H. Then the reduced determinant can be written as

det′H =
1

(k⊥3 )2

(∏
i∈P

(k⊥i )2

)
det φ̄, (8.58)

with

φ̄ =



x4+v4 x5 · · · xn−1 xn

x5 x5+v5 · · · xn−1 xn

...
...

. . .
...

...

xn−1 xn−1 · · · xn−1+vn−1 xn

xn xn · · · xn xn


. (8.59)

This matrix is nothing but the leading order approximation of Hodges’ matrix1

[148, 149] in MRK. We can observe a lot of nice properties. In particular, a
conspicuous feature is that the entries φ̄ij are equal when j < i for each i-th
row. As we now show in the following, this implies further simplification.

1For arbitrary external kinematics, in the MHV sector, the four-dimensional scattering equa-
tions have only one set of independent of solutions and the formula (8.43) is simply reduced
to Hodges’ formula where the MHV amplitude of gravitons is given by the determinant of a
symmetric matrix.
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By performing some elementary row/column transformations of the matrix,
we have

det φ̄ = det φ̄′, (8.60)

with

φ̄′ =



v4 x5−x4−v4 · · · xn−1−x4−v4 xn−x4

0 v5 · · · xn−1−x5 xn−x5

...
...

. . .
...

...

0 0 · · · vn−1 xn−xn−1

xn 0 · · · 0 xn


. (8.61)

This is almost an upper triangular matrix. We find it remarkable that we can
nicely compute its determinant by employing the so-called the matrix deter-
minant lemma. In order to proceed, let first us present this theorem in brief as
follows:

Matrix determinant lemma (MDL) Let A be an invertible matrix, u and v be
two vectors. Then the matrix determinant lemma states that [227, 228]

det
(
A + uTv

)
=
(
1 + vA−1uT

)
det(A). (8.62)

Proof: Let us first see the special case of the identity matrix, i.e.A = 1.
Noting the following identity [228](

1 0

v 1

)(
1 + uTv uT

0 1

)(
1 0

−v 1

)
=

(
1 uT

0 1 + vuT

)
, (8.63)

calculating the determinant of both sides ends the proof for the case of A = 1.
Then from

A + uTv = A
(
1 + A−1uTv

)
, (8.64)
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we can prove the lemme, i.e.,

det
(
A + uTv

)
= det

(
A
)

det
(
1 + A−1uTv

)
= det(A)

(
1 + vA−1uT

)
. (8.65)

We first simply decompose the matrix φ̄′ defined in (8.61) into an upper tri-
angular part and a matrix that has only non-zero element xn in the lower left
corner. To be more precise, we write

φ̄′ = ϕ+ µT ν with µ = (0, . . . , 0, 1), ν = (xn, 0, . . . , 0), (8.66)

where ϕ is nothing but the matrix φ̄′ with replacing the first element of the last
row xn by zero. Then by making use of the matrix determinant lemma, we
have

det φ̄′ =
(

detϕ
)(

1 + νϕ−1µT
)

= v4 v5 · · · vn−1 xn

(
1 + xn

(
ϕ−1

)
1,n−3

)
. (8.67)

In general, it seems difficult to exactly find the inverse of the matrix ϕ. Fortu-
nately, it is not hard to obtain the entry (ϕ−1)1,n−3 by induction (see Appendix
D for the detail of derivation),

(ϕ−1)1,n−3 = −k
⊥
3 + k⊥n
k⊥∗n

. (8.68)

Plugging it into (8.67) immediately gives

det φ̄′ = −k
⊥
3

k⊥n
v4 v5 · · · vn−1 xn. (8.69)

Noting

Vg(qi, i+, qi+1) = q⊥
∗

i vi q
⊥
i+1, Vg(1−;n+) = x2

n, (8.70)
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and equations (8.69), (8.58), (8.53) and (8.52), we obtain

Mn(1−, 2−) (8.71)

= −s2 Cg(2−; 3+)
−1

|q⊥4 |2
Vg(q4, 4

+, q5) · · · −1

|q⊥n |2
Cg(1−;n+).

In summary, we derived the correct multi-Regge factorization of any MHV
amplitude of gravitons. In order to extend the analysis in the MHV sector to
other helicity sectors, at this point let us summarize some key technical ideas
that have been used above. First, we can transform the matrix into a near
upper triangular form by some elementary row and column operations since
the matrix has a particular structure in MRK. Then the matrix determinant
lemma can be used to compute its determinant. We show in the next section
that this technique is useful for other helicity configurations.

All helicity configurations

Let us first consider the positive helicity part P. In MRK, the entries of
(n−k)× (n−k) matrix H take

Hij = (k⊥j ζj) (k⊥
∗

i τi) = (k⊥i τi) (k⊥j ζj)xi, for i > j (8.72)

Hij = (k⊥j τj)(k
⊥
i ζi)xj = (k⊥i τi)(k

⊥
j ζj) cij , cij =

ζiτj xj
ζjτi

, for i < j.

For diagonal elements, we have

Hii = −
∑
j∈P<i

Hij −
∑
j∈P>i

Hij

= −(τik
⊥∗
i )

∑
j∈P,j<i

ζj k
⊥
j − (ζik

⊥
i )

∑
j∈P,j>i

τj k
⊥∗
j

= −τik⊥
∗

i

∑
j∈P,j<i

ζj k
⊥
j + ζik

⊥
i

∑
j∈P,j≤i

τj k
⊥∗
j

= (k⊥i ζi) (k⊥i τi)
(
xi + ui

)
, (8.73)
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where one has used the momentum conservation (8.30) in the third line, and
ui is defined as

ui ≡
∑
j∈P<i

(
τj k

⊥
j

τi k⊥i
xj −

ζj k
⊥
j

ζi k⊥i
xi

)
. (8.74)

Using the scattering equations (8.2) and their solution, one can further obtain

ui = vi =
k⊥i q

⊥∗
i − q⊥i k⊥

∗
i

(k⊥i )2
. (8.75)

Let us delete the first column and row corresponding to particle label “3”, then
the reduced determinant becomes

det′H =

( ∏
i∈P,i 6=3

(k⊥i )2ζi τi

)
det H

′
, (8.76)

where

H
′

=



vi1+xi1 ci1i2 ci1i3 · · · ci1n

xi2 vi2+xi2 ci2i3 · · · ci2n

xi3 xi3 vi3+xi3 · · · ci3n
...

...
...

. . .
...

xn xn xn · · · xn


. (8.77)

Here labels satisfy 3 < i1 < i2 < · · · < n. In the case of the MHV sector,
since cij = xj (i < j), this matrix is identical to the matrix φ̄ in (8.59). More
remarkably, they have a similar structure and share some useful properties. As
a consequence, we can use the same technique to calculate the determinant as
in the MHV sector. We summarize the result as follows (see Appendix D for a
detailed derivation):

det′H =

(∏
i∈P

(k⊥i )2 ζi τi

)
xn

q⊥4 q
⊥
n

∏
i∈P
i 6=3,n

vi . (8.78)
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Let us now discuss the k × k matrix H. It is reasonable to expect that the sim-
ilar structure appears in this matrix such that we can compute its determinant
using the matrix determinant lemma. Let us first compute its entries as follows:

H12 = −1, H1I = −ζI , (8.79)

HI2 =
(
xIτI

)
x∗I , H2I = c2I ζI , c2I ≡

τI
ζI
, (8.80)

HIJ =
(
xIτIζJ

)
x∗I , I > J (8.81)

HIJ = cIJ
(
xIτIζJ

)
x∗I , cIJ ≡

ζIτJ
τIζJ

, I < J (8.82)

H22 = −H12 −
∑
I∈N

H2I , (8.83)

HII = −H1I − H2I −
∑

J∈N<I

HIJ −
∑

J∈N>I

HIJ . (8.84)

By using the scattering equations (8.2) and their unique solution, it is easy to
obtain

H22 = 1−
∑
I∈N

τI =
∏
I∈N

q⊥I
q⊥I+1

, (8.85)

HII = ζI

(
1−

∑
J∈N>I

τJ
)
− τI

(
1 +

∑
J∈N<I

ζJ
)

= xIζIτI (v∗I + x∗I).

Then we have

det′H =

(∏
I∈N

xIζIτI

)
det H′, (8.86)
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where one choose to remove the first column and row corresponding to particle
label “1”, and H′ is defined as

H′ =



H22 c2I1 c2I2 · · · c2Im

x∗I1 v∗I1+x∗I1 cI1I2x
∗
I1
· · · cI1Imx

∗
I1

x∗I2 x∗I2 v∗I2+x∗I2 · · · cI2Imx
∗
I2

...
...

...
. . .

...

x∗Im x∗Im x∗Im · · · v∗Im+x∗Im


, (8.87)

where I1 < · · · < Im ∈ N, m = k−2. This matrix again displays a similar
structure with φ̄ in (8.59). Hence we can calculate its determinant by a similar
technique based on the matrix determinant lemma. The final result is

det′H =

(∏
I∈N

xIζIτI

)∏
I∈N

v∗I . (8.88)

The details of the derivation can be found in Appendix D.

Putting everything together, we obtain the fully-localized form of any NkMHV
amplitude of gravitons

Mn ' −s2 Cg(2; 3)
−1

|q⊥4 |2
Vg(q4; 4; q5) · · ·

× · · · −1

|q⊥n−1|2
Vg(qn−1;n−1; qn)

−1

|q⊥n |2
Cg(1;n),

with

Vg(qi, i+, qi+1) = q⊥
∗

i vi q
⊥
i+1 =

q⊥
∗

i

(
k⊥i q

⊥∗
i − k⊥

∗
i q⊥i

)
q⊥i+1

(k⊥i )2
, (8.89)

Vg(qI , I−, qI+1) = q⊥I v
∗
I q
⊥∗
I+1 =

q⊥I
(
k⊥
∗

I q⊥I − k⊥I q⊥
∗

I

)
q⊥
∗

I+1

(k⊥
∗

I )2
, (8.90)

in agreement with the Lipatov formula (7.7). Finally, we provide an elegant
derivation of the tree-level multi-Regge factorization of gravitational scattering
amplitudes.
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Let us conclude this section by making some comments. First, we have as-
sumed in previous sections that the two incoming particles 1 and 2 carry the
same helicity. Here we show that all conclusions hold for the case where the
gravitons 1 and 2 have opposite helicities. For example, let us consider ampli-
tudeMn with helicity configuration (1+, 2−, n−, . . .). In this case, in MRK,
we have

Mn(1+, 2−, n−, . . .) = Mn(1−, 2−, n+, . . .)

(
1

(1n)8

∣∣∣∣
MRK

)
. (8.91)

The factor (1n)−8 combines with the impact factor Cg(1+;n−) to give(
1

(1n)8

∣∣∣∣
MRK

)
Cg(1−;n+) = Cg(1−;n+)∗ = Cg(1+;n−). (8.92)

Second, we would like to show that the helicity is conserved in gravitational
impact factors, like gauge theory. As an example, we consider amplitude
Mn(1−, 2−, 3−, 4+, . . .). In the multi-Regge limit, we have

Mn(1−, 2−, 3−, 4+, . . .)

= Mn(1−, 2−, 3+, 4−, . . .)

(
1

(3 4)8

∣∣∣∣
MRK

)
(8.93)

= Mn(1−, 2−, 3+, 4+, . . .)

(
− (k⊥4 )2 q⊥4 q

⊥∗
5

(k⊥
∗

4 )2 q⊥
∗

4 q⊥5

)(
1

(3 4)8

∣∣∣∣
MRK

)
.

This shows that the amplitudeMn(1−, 2−, 3−, 4+, . . .) is suppressed in MRK
since (

1

(3 4)8

∣∣∣∣
MRK

)
' O

((
k+

4 /k
+
3

)4)
, (8.94)

which is implied by our conjecture in the solutions of the scattering equations
in MRK.

Finally, let us see what happens in the case where particles with other spins
in supergravity multiplet are involved. For example, in case of one pair of
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gravitinos, i.e. (1−
G̃
, n+

G̃
)

Mn(1−
G̃
, n+

G̃
, . . .) = Mn(1−, n+, . . .)

(
−1

(1n)

∣∣∣∣
MRK

)
. (8.95)

Similarly, a combination of the factor (1n)−1 and the graviton impact factor
Cg(1+;n−) gives

(
−1

(1n)

∣∣∣∣
MRK

)
Cg(1−;n+) =

(
k⊥
∗

n

k⊥n

)3/2

= Cg(1−G̃;n+
G̃

), (8.96)

which exactly agrees with the result in [221, 222]. It is also easy to obtain
the result for other cases where particles with other spins in the supergravity
multiplet are involved.

8.4 Conclusions

We have shown that our conjecture implies that the scattering equations, as
well as the CHY-type formulas for amplitudes in gauge theory and gravity,
simplify vastly in MRK. We have explicitly determined the unique solution (up
to GL(2,C) redundancy) of the four-dimensional scattering equations in MRK
for any multiplicity and any helicity configuration, and furthermore, derived
the expected multi-Regge factorization of the amplitudes by inserting the MRK
solution into the CHY-type formulas in both Yang-Mills and Einstein gravity
in this chapter. These give very strong support to the validity of our conjecture.

We will extend our investigation to the quasi-multi-Regge kinematics in the
following chapter.



9 Quasi-multi-Regge factorization from
the scattering equations

In the previous chapter, we have shown that one can derive the factorization
of gluon and graviton amplitudes from the scattering equations baed on the
conjecture presented in Chapter 7. One feature of the derivation is indepen-
dent of the number n of external legs as well as their helicities. In this chapter,
we extend the analysis to quasi-multi-Regge regimes. More precisely, we in-
vestigate quasi-multi-Regge limits of gluon amplitudes. We will show that, in
agreement with expectations from Regge theory, in each of these two cases our
conjecture implies that the amplitude factorizes into a set of universal build-
ing blocks which are multi-particle generalisations of the impact factors and
Lipatov vertices in the case of MRK, independently of the multiplicity and
the helicities of the produced particles. As a byproduct, we obtain CHY-type
representations for these building blocks.

9.1 The first type of quasi-multi-Regge limits

The goal of this section is to show that our conjecture implies that in the quasi-
multi-Regge limit where

y3 ' · · · ' yr � · · · � yn, (9.1)

any tree-level gluon amplitude factorizes as

An(1,. . ., n) ' s C(2; 3, . . . , r)
−1

|q⊥r+1|2
V(qr+1; r+1; qr+2) · · · (9.2)

× · · · × −1

|q⊥n−1|2
V(qn−1;n−1; qn)

−1

|q⊥n |2
C(1;n),
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where C(2; 3, . . . , r) is a generalised impact factor that only depends on the
subset of momenta (k2, . . . , kr) and corresponding helicities. We will now
show that the generalised impact factors are universal, i.e., they do not depend
on the quantum numbers of the other particles involved in the scattering.

Let us start by analysing the case r = n−1. We assume without loss of gen-
erality that particles 1 and n have negative and positive helicities respectively.
For simplicity, we also assume that h2 = −1. The case h2 = +1 can be re-
covered by using the same argument described in the previous chapter. The
general logic will be similar to the MRK case, so we will be brief and we will
not describe all the steps in detail here. We start by fixing the GL(2,C) re-
dundancy as in eq. (7.14), and we apply Conjecture 4d to expand the scattering
equations to leading order in the limit. We observe that there is a subset of
scattering equations that become linear in τn and ζn,

S1
n = 1 + τn

(
1 +

∑
I∈N

ζI

)
= 0 , (9.3)

S2
n = 1 + ζn = 0 , (9.4)

where we use the rescaled variables defined in eqs. (7.15) and (8.3). Note that
here we keep only the leading-power terms in the limit (9.1) with r = n−1.
We can easily evaluate the corresponding residues,

(q⊥n )∗

k⊥n

∫
dτn
τn

∫
dζn
ζn

δ
(
S1
n

)
δ
(
S2
n

)
=

(k⊥n )∗

k⊥n
= C(1−;n+) , (9.5)

where we have identified it with the impact factor C(1;n). The amplitude then
takes the expected factorized form

An(1−, 2−,. . ., n+) ' s C(2−; 3, . . . , n−1)
−1

|q⊥n |2
C(1−;n+) , (9.6)
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where C(1−;n+) is the same impact factor as in MRK, cf. eq. (7.5). The gen-
eralised impact factor C(2−; 3, . . . , n−1) admits a CHY-type representation,

C
(
2−; 3, . . . , n−1

)
(9.7)

= q⊥n

∫
n−1∏
a=3

dσadτa
τa

1

σ34 · · ·σn−2,n−1σn−1

 ∏
i∈P,I∈N

k⊥I
k⊥i


×
∏
I∈N

δ

(
k⊥I −

∑
i∈P

τIτi
σI−σi

k+
i

)

×
∏
I∈N

δ

(
(k⊥I )∗ −

k+
I

k⊥I

∑
i∈P

τIτi
σI−σi

(k⊥i )∗ − ζI
(q⊥n )∗

1 +
∑

J∈N ζJ

)

×
∏
i∈P

δ

(
1 + τi −

∑
I∈N

τiτI
σi−σI

k+
I

k⊥I

)
δ

(
1 + ζi −

k+
i

k⊥i

∑
I∈N

τiτI
σi−σI

)
,

where N = N\{2} and qn =
∑n−1

a=2 ka is the total momentum exchanged in
the t-channel. A similar formula can be derived when h2 = +1. We have
checked that our formula correctly reproduces various known results in the
literature [71, 225, 229]. In particular, eq. (9.7) correctly reproduces known
results for the MHV-type impact factors C

(
2−; 3+, . . . , (n−1)+

)
for arbitrary

multiplicities. All results obtained are collected in Appendix E. Moreover, we
have checked that this formula reproduces the correct results for up to n = 7

numerically.

In Appendix F, we also show the formula in eq. (9.7) has the factorization
properties expected from a gluon amplitude at tree level. In particular, if the
gluon i becomes soft, ki → 0, the impact factor factorizes into an impact factor
with one particle less, times the usual eikonal factor [79]. For example, if the
soft gluon carries positive helicity, we have

C
(
2; 3, . . . , a, i, b, . . . , n−1

)
' C

(
2; 3, . . . , a, b, . . . , n−1

) 〈a b〉
〈a i〉 〈i b〉

, (9.8)

where (a, b) = (i−1, i+1) are the gluons adjacent to i for the chosen color-
ordering. Similarly, if two produced gluons, say i and i+1, become collinear,
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we have

C
(
2; 3, . . . , n−1

)
' C

(
2; 3, . . . , i−1, ph, i+2, . . . , n−1

)
Split−h

(
i, i+1

)
, (9.9)

where p = ki + ki+1 denotes the momentum of the parent gluon before the
splitting, and Split denotes the usual tree-level splitting function (c.f. eq. (2.18)
for explicit forms). Finally, in the case where particle n−1 has much smaller
rapidity as the other produced gluons, we have

C
(
2; 3, . . . , n−1

)
' C

(
2; 3, . . . , n−2

) −1

|q⊥n−1|2
V(qn−1;n−1; qn), (9.10)

with qn = qn−1 + kn−1 = k2 + k3 + · · ·+ kn−1.

The previous considerations also imply that the amplitude has the expected fac-
torization behaviour in the quasi-multi-Regge limit where y3 ' · · · ' yr �
· · · � yn. Indeed, we can simply apply eq. (9.10) iteratively to add one large
rapidity gap at the time, and we immediately see that the amplitude takes the
factorized form given in eq. (9.2). We note that this factorization is a direct
consequence of Conjecture 4d and the CHY-type formulas of gluon ampli-
tudes, and it does not rely on any other assumptions. In particular, we see
that the factorized form holds for arbitrary multiplicities and helicity config-
urations. Moreover, we see that the impact factors are universal, in the sense
they do not depend on the quantum numbers of the other produced particles,
in agreement with general expectations.

9.2 The second type of quasi-multi-Regge limits

In this section, we study another type of quasi-multi-Regge limits

y3 � · · · � yr ' · · · ' ys � · · · � yn, (9.11)
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where the amplitude is expected to factorize as follows:

An(1, . . . , n) ' s C(2; 3)
−1

|q⊥4 |2
V(q4; 4; q5) · · · −1

|q⊥r |2
V(qr; r, . . . ,s; qs+1) · · ·

× · · · −1

|q⊥n−1|2
V(qn−1;n−1; qn)

−1

|q⊥n |2
C(1;n). (9.12)

We start by analysing the case (r, s) = (4, n−1), and we assume that (h1,h2)=

(−1,−1). Helicity conservation implies that we obtain a non-zero result only
if (h3, hn) = (+1,+1), which we assume from now on. We proceed in the
usual way, and we use Conjecture 4d to expand the scattering equations to
leading order in the limit. We then observe that the equations Sα3 = Sαn = 0

are linear in ζi and τi, i ∈ {3, n}. We can thus localize the integrals over these
variables on the residues obtained by solving these linear equations. We arrive
at the following factorized form for the amplitude:

An(1−, 2−, 3,. . ., n) (9.13)

' s C(2−; 3)
−1

|q⊥4 |2
V(q4; 4, . . . , n−1; qn)

−1

|q⊥n |2
C(1−;n),

where the generalised Lipatov vertices admit the following CHY-type repre-
sentation,

V
(
q4; 4, . . . , n−1; qn

)
= (q⊥4 )∗q⊥n

∫
n−1∏
a=4

dσadta
ta

1

σ45 · · ·σn−2,n−1σn−1

 ∏
i∈P,I∈N

k⊥I
k⊥i


×
∏
I∈N

δ

(
k⊥I −

∑
i∈P

titI
σI−σi

k+
i +

tI
1−

∑
J∈N tJ

q⊥4

)
(9.14)

×
∏
I∈N

δ

(
k⊥
∗

I −
k+
I

k⊥I

∑
i∈P

titI
σI−σi

k⊥
∗

i −
ζI

1 +
∑

J∈N ζJ
q⊥
∗

n

)

×
∏
i∈P

δ

(
1−

∑
I∈N

titI
σi−σI

k+
I

k⊥I
+ ti

)
δ

(
1−

k+
i

k⊥i

∑
I∈N

titI
σi−σI

+ ζi

)
.
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Here N and P denote the subsets of {4, . . . , n−1} of particles with negative
and positive helicity respectively. In previous analyses, we always remove
the four delta-functions δ2(S̄ α̇1 )δ2(S̄ α̇2 ) and identify them with the momentum
conservation constraint, cf. eq. (8.30). Alternatively, we can also use the equa-
tions S̄ α̇1 = S̄ α̇2 = 0 to localize the integrals over {σ3, τ3, σn, τn} and identify
δ2(Sα3 )δ2(Sαn ) with the δ-function expressing momentum conservation:

δ2
(
Sα3
)
δ2
(
Sαn
)

= s k⊥3 k
⊥∗
n δ4

(
n∑
a=1

kµa

)
. (9.15)

Consequently, this leads to the following alternatively equivalent formula for
the generalized Lipatov vertex:

V
(
q4; 4, . . . , n−1; qn

)
= (q⊥4

∗
q⊥n )

∫
n−1∏
a=4

dσadτa
τa

J1,2;3,n

σ45 · · ·σn−2,n−1σn−1

( ∏
i∈P,I∈N

k⊥I
k⊥i

)

×
∏
I∈N

δ

(
k⊥I −

∑
i∈P

(
τIτi
σI−σi

+
τIτi
σi

)
k+
i − τIq

⊥
n

)

×
∏
I∈N

δ

(
k⊥
∗

I −
∑
i∈P

(
k+
I

k⊥I

τIτi
σI−σi

− ζIτi
)
k⊥
∗

i − ζIq⊥
∗

4

)

×
∏
i∈P

δ

(
1−

∑
I∈N

τiτI
σi−σI

k+
I

k⊥I
+ τi

)
δ

(
1−

k+
i

k⊥i

∑
I∈N

τiτI
σi−σI

+ ζi

)
,

(9.16)

where

J1,2;3,n = q⊥4 q
⊥∗
n

(
q⊥n +

∑
i∈P

ζik
⊥
i

)−1(
q⊥
∗

4 −
∑
i∈P

τik
⊥∗
i

)−1

. (9.17)

We have checked that the two CHY-type formulas are consistent with known
results in the literature for generalised Lipatov vertices for the production up to
three particles, as well as for NMHV-type Lipatov vertices for the production
of up to four particles, see Appendix E for analytic results. In addition, we
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show in Appendix F that eq. (9.14) has the correct factorization properties.
In particular, if y4 (yn−1) is much greater (smaller) than the rapidities of all
the other emitted particles, then the Liptatov vertex itself factorizes. More
precisely, in the limit y4 � yi with 5 ≤ i ≤ n−1

V
(
q4; 4, . . . , n−1; qn

)
' V

(
q4; 4; q5

) −1

|q⊥5 |2
V
(
q5; 5, . . . , n−1; qn

)
, (9.18)

and in the limit yn−1 � yi with 4 ≤ i ≤ n−2 we have

V
(
q4; 4, . . . , n−1; qn

)
' V

(
q4; 4, . . . , n−2; qn−1

) −1

|q⊥n−1|2
V
(
qn−1;n−1; qn

)
. (9.19)

Using these properties we can iterate the factorization and gradually approach
the quasi-multi-Regge limit y3 � · · · � yr ' · · · ' ys � · · · � yn, and we
see that the amplitude takes the factorized form in eq. (9.12). We emphasise
again the factorization is a direct consequence of Conjecture 4d and the CHY-
type formulas for gluon amplitudes. In particular, we find that this factorization
holds for arbitrary helicity configurations and that the ensuing generalised Li-
patov vertices are universal and do not depend on the quantum numbers of the
other particles involved in the scattering.

9.3 Comments

In the previous sections we have studied two families of quasi-multi-Regge
limits, and we have shown that in those cases our conjecture implies that the
amplitude has the expected factorization into universal building blocks. In
principle, one could also consider more general quasi-multi-Regge limits, like
for example

y3 ' . . . ' yr−1 � yr ' . . . ' ys � ys+1 ' . . . ' yn . (9.20)
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In this limit the amplitude is expected to factorize as

An(1,. . ., n) ' s C(2; 3, . . . , r − 1)
−1

|q⊥r |2
V(qr; r, . . . , s; qs+1)

× −1

|q⊥s+1|2
C(1; s+1, . . . , n). (9.21)

Unfortunately, we are currently not able to derive this factorization from Con-
jecture 4d and the CHY-type formula of the amplitude. The main obstacle is
that for these more general quasi-multi-Regge limits we cannot identify a set of
variables that enter the scattering equations linearly in the limit. This property,
however, was the cornerstone in previous sections to prove factorization in
(quasi-)multi-Regge limits. We stress that our inability to derive factorizations
for more general QMRKs from Conjecture 4d and the CHY-type formula of the
amplitude does by no means imply that no such factorization exists. Indeed,
if we consider for example eq. (9.21) and we insert the CHY-type formulas for
the generalised impact factors and Lipatov vertices in eqs. (9.7) and (9.14) we
obtain a representation for the amplitude in this limit that is consistent with the
known factorizations of the amplitude in all soft, collinear and multi-Regge
limits. We then find it hard to imagine that the amplitude could take any other
form in this limit than the one given in eq. (9.21).

A second comment is about amplitudes involving quarks. There are various
quasi-multi-Regge limits which involve one or more quark pairs in the final
state. For example, in the QMRK y3 � y4 ' y5 � y6, we have

A6(1, 2, 3, 4q, 5q̄, 6) ' s C(2; 3)
−1

|q⊥4 |2
V(q4; 4q, 5q̄; q6)

−1

|q⊥6 |2
C(1; 6). (9.22)

Since there are CHY-type formulas for tree-level amplitudes involving mass-
less quarks [133], and since the scattering equations are universal and do not
depend on the details of the theory, we can immediately extend our analysis to
these amplitudes and use our conjecture to derive their factorization in various
quasi-multi-Regge limits. Similarly, we can also obtain CHY-type represen-
tations for the corresponding generalised impact factors and Lipatov vertices,
and we have checked that in this case we are able to reproduce the known ana-
lytic expressions from the literature [48,71,225,230]. For example, we list the
analytic result for V(q2; 4+

q̄ , 5
−
q ; q1

)
in Appendix E.
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9.4 Conclusions and discussions

Together with the previous two chapters, we have initiated the study of Regge
kinematics through the lens of the scattering equations. Based on numerical
studies, we have formulated a precise conjecture about the behaviour of the
solutions to the scattering equations in the Regge limit, both in their D and
four-dimensional versions in Chapter 7. While we currently have no proof
of our conjecture, we have tested its validity by showing that we can derive
the expected factorization of the amplitudes when we combine the conjecture
with the four-dimensional CHY-type formulas. This is a highly non-trivial
prediction of our conjecture, which gives us confidence that it describes the
correct asymptotic behaviour of the solutions of the scattering equations in
QMRK.

Our conjecture is not only of formal interest, but it has concrete applications
to tree-level scattering amplitudes. In particular, we have applied our conjec-
ture to show that in MRK the four-dimensional scattering equations have a
unique solution (up to GL(2,C) redundancy), independently of the multiplic-
ity, and we have explicitly determined this MRK solution in Chapter 8. We
find it remarkable that in MRK we may find the exact solution of the four-
dimensional scattering equations for any sector k for arbitrary multiplicities.
Indeed, so far this has only been achieved for the MHV sector. In QMRK we
cannot obtain exact solutions to the scattering equations anymore. Instead, we
have derived CHY-type formulas for the generalised impact factors and Lipa-
tov vertices valid for an arbitrary number of particles, and we have checked
that these formulas reproduce known analytic results from the literature for
low multiplicities in Chapter 9.

We see two possible directions for future research. First, it would be inter-
esting to find proof of our conjecture. This would not only clarify some new
mathematical property of the scattering equations, but it would have direct
implications for tree-level scattering amplitudes. Indeed, so far the factoriza-
tion of color-ordered helicity amplitudes has only been rigorously proven for
arbitrary multiplicities for the simplest helicity configurations. In this work,
we have shown that our conjecture implies the expected factorization for arbi-
trary helicity configurations. A rigorous mathematical proof of our conjecture
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would thus immediately lead to an elegant proof of the Regge factorization of
all tree-level amplitudes in Yang-Mills and gravity.

Second, while in this work we have focused exclusively on gluon and graviton
amplitudes, the scattering equations and the CHY-type formula are valid for
much larger classes of massless quantum field theories, and thus our conjec-
ture applies also to theories other than gauge theory and gravity. In particular,
since we have shown that our conjecture implies the factorization of gauge
theory amplitudes in various quasi-multi-Regge limits, it would be interesting
to investigate if similar factorizations can be derived for other massless quan-
tum field theories in QMRK. The study of Regge kinematics has so far mostly
focused on Yang-Mills and gravity, and it would be interesting to study the
implications for other theories.



10 Solving the scattering equations by
homotopy continuation

We present an efficient method to solve the scattering equations numerically
in this chapter. The content in this chapter is based on the paper [231].

10.1 Homotopy continuation

Let us first give a brief introduction to homotopy continuation [232, 233],
which is the primary method in numerical algebraic geometry that we will
use throughout this chapter. In order to solve a system of equations p(z) = 0

with p(z) = (p1(z), . . . , pN (z)) and z = (z1, . . . , zN ), the fundamental idea
is to introduce a continuous deformation (homotopy)

p(z)→ p(z, t), t ∈ [0, 1], (10.1)

which connects the target system p(z,1) = p(z) with a start system p(z,0) = 0

whose solutions z(0) are known. Then the solutions z(1) of the target system
can be obtained from z(0) via smooth paths as the continuation parameter
t varies from 0 to 1. To be explicit, constructing a differentiable homotopy
p(z, t) and differentiating it with respect to t lead to a system of ordinary
differential equations (ODEs) on z = z(t) as follows:

dpi(z, t)

dt
=

N∑
j=1

∂pi(z, t)

∂zj

dzj(t)

dt
+
∂pi(z, t)

∂t
= 0. (10.2)
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Viewing this as a system of linear equations on dzi/dt, it can be transformed
into the following standard form:(

dz

dt

)
= −

(
∂p(z, t)

∂z

)−1(∂p(z, t)
∂t

)
, (10.3)

where terms in parentheses should be understood as matrices. Providing the
initial condition z(0), the desired solutions z(1) of the target system can be
obtained by integrating the system of the ODEs (10.3). Usually, numerical
algorithms for initial value problems [234] are applied to obtain an estimate for
z(1). This approximated solution serves as the initial guess of the true solution,
and are fed to the Newton method to improve its precision further [232].

10.2 The homotopy continuation of the scattering equations

The homotopy continuation method described above has been well-studied, in
particular for polynomial systems, during the past decades. Therefore, it is
natural to straightforwardly apply this technique to the polynomial form of the
scattering equations [51], as shown in (3.17). A frequently used homotopy in
the mathematics literature is

hm(σ, t) = t hm(σ) + (1−t)(σmm+2−1), i ∈ {1, . . . , n−3}. (10.4)

The advantage of such construction is that the start system has (n−3)! known
solutions and the number of solutions remains unchanged for any regular t.
Although such a homotopy can be used to solve the scattering equations in
principle, with some experimentations, we found that it is highly inefficient.
One reason is on the technical side, saying that the complexity of evaluating
ODEs (10.2) corresponding to the polynomial system is too high. Another
reason is that the initial system is significantly different from the target system;
this implies that a huge number of steps are spent to reach the target system.

In this work, we extend the homotopy continuation method to solve the frac-
tional scattering equations (3.5) by establishing an appropriate homotopy.

Instead of constructing the homotopy continuation for scattering equations di-
rectly, we propose the physical homotopy in the kinematic spaceKn (the space
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spanned by linearly independent Lorentz invariants sij = 2ki · kj [235]), i.e.,

S → St, (10.5)

where S ∈ Kn denotes a set of kinematical variables. The momentum conser-
vation and on-shell conditions hold for St at any t. More explicitly, a simple
construction is:

sij(t) = (1− t) s̄ij + t sij , (10.6)

where s̄ij and sij are two sets of Mandelstam variables belonging to the physi-
cal region of interest inKn. Clearly, as long as on-shell conditions and momen-
tum conservation are satisfied for s̄ij and sij , they are satisfied for sij(t). By
abuse of terminology, we define the kinematic homotopy as a one-parameter
smooth path in the kinematic space Kn, shown by (10.5). The physical kine-
matic homotopy connects different points inKn, and this may be used to estab-
lish the connection between the physics quantities evaluated at different points.

The kinematic homotopy St naturally induces a homotopy for the scattering
equations

fa(t) =
∑
b 6=a

sab(t)

σa(t)− σb(t)
= 0. (10.7)

Since the physical homotopy preserves on-shellness and momentum conserva-
tion, the system has exact (n−3)! solutions for any regular t. To proceed, let us
use the SL(2,C) redundancy to fix three punctures, for example (σ1, σ2, σn)→
(0, 1,∞). The last equation fn = 0 is then trivially satisfied [23]. Differenti-
ating other equations with respect to t gives the following system of ODEs:

n−1∑
j=3

Φij σ̇j + f ′i = 0, i ∈ {1, 2, . . . , n−1} (10.8)

with

σ̇i ≡
dσi(t)

dt
, Φij ≡

∂fi(σ, t)

∂σj
, f ′i ≡

∂fi(σ, t)

∂t
. (10.9)
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An important property is that the matrix Φ(t) has exactly rank n−3 at any
t [23]. This ensures that there is no singularity in our algorithm. To improve
numerical stability, we retain all (n−1) equations except fn = 0 which is satis-
fied trivially, and employ matrix decomposition methods [234] to generate the
standard form, like eq. (10.3). Therefore, once the solutions of the scattering
equations for s̄ij is known, the solutions for sij can be obtained by numerically
integrating the ODEs in eq. (10.8).

10.3 Algorithm

However, so far the initial solutions (the solutions of the scattering equations
for kinematical invariants sij(0) = s̄ij) are not readily available yet. We would
like to emphasize that it is highly non-trivial to obtain the initial solutions, in
particular when the multiplicity n is large. In order to initiate our program,
we develop an algorithm based on the properties of the scattering equations in
some special kinematical regions as well as the homotopy continuation tech-
nique. This algorithm will be described in detail in the following.

We employ the homotopy (10.6) again, i.e. sij(t) = (1−t) ŝij + ts̄ij . Here the
kinematical invariants ŝij satisfy

ŝ1i > 0, ŝ2i > 0, ŝij > 0, i, j ∈ {3, . . . , n−1}, (10.10)

which are referred to as the positive region denoted byK+
n in [236]. A remark-

able property is that all (n−3)! solutions of the scattering equations in K+
n are

real if we fix the SL(2,C) acoording to (σ1, σ2, σn)→ (0, 1,∞) [236]. More
interestingly, all variables (σ3, . . . , σn−1) live inside the interval (0, 1) and
distinct from each other for each solution. It is clear that due to this feature,
the scattering equations in K+

n can be solved much more quickly, compared
to generic kinematic regions. As will be detailed below, all (n−3)! real solu-
tions can be obtained using the homotopy continuation technique again.1 Once
these solutions are readily available, they will serve as initial solutions, and we
can use the homotopy (10.6) and integrate the system of the ODEs (10.8) to
generate the solutions for general kinematics s̄ij . It is also worth stressing that

1In [236], for the kinematics in the positive region, one kind of algorithms were proposed
based on interpreting the scattering equations as the equilibrium equations for a stable system
of n−3 particles on the real interval (0, 1).



10.3. Algorithm 123

we may encounter singularities if we still adopt the real contour for t from 0 to
1, since the starting and target points live in unphysical and physical regions of
Kn respectively. A solution to avoiding singularities is to employ a complex
contour for t. In our program, we choose a simple contour consisting of two
line segments in the complex t plane: 0→ 0.5 + 0.5 i→ 1.

Now the final task is to obtain all solutions to the scattering equations for one
point in K+

n . Inspired by the soft limit of the scattering equations, we propose
the following homotopy contnuation2

ŝ1i(t) = ŝ1i, ŝ2i(t) = ŝ2i, 3 ≤ i ≤ n−2

ŝij(t) = ŝij , 3 ≤ i < j ≤ n−2

ŝa,n−1(t) = t ŝa,n−1, 1 ≤ a ≤ n−2.

(10.11)

We refer to it as the inverse soft homotopy. All the remaining kinematic invari-
ants can be easily obtained via on-shell conditions and momentum conserva-
tion. Clearly, this homotopy preserves the “positivity” of the kinematic region
K+
n . Another remarkable property is that in the limit t → 0 which defines the

soft limit kn−1 → 0, the kinematic space of n particles is reduced to (n−1)-
particle one which is still in the positive region. As shown in Section 3.3, in
this limit, fn−1(t) is invariant up to a factor t, i.e.,

fn−1(t) = t f̃n−1(t), f̃n−1(t) =
n−2∑
a=1

ŝa,n−1

σn−1−σa
, (10.12)

while other equations become nothing but the system of scattering equations
associated with (n−1) particles without the soft momentum in K+

n−1.

In order to solve the scattering equations in K+
n−1, we can use the inverse soft

homotopy (10.11) recursively until the four-particle case, whose unique solu-
tion is known, i.e.σ3 = −s12/s13 with gauge fixing (σ1, σ2, σ4)→ (0, 1,∞).
The equation corresponding to the soft particle f̃n−1 = 0 (referred to as the
soft equation) is equivalent to a polynomial equation of degree n−3 in σn−1.
For each solution of the scattering equations for the (n−1)-point system with-
out the soft particle, the n−3 zeroes of the soft equation f̃n−1(σn−1) = 0 are

2Based on the soft limit, one alternative algorithm was constructed and implemented in
Mathematica in [23].
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distributed in the n−3 sub-intervals of (0, 1), separated by σ3, σ4, · · · , σn−2.
Thus simple numerical techniques such as the bisection method can be applied
to obtain all n−3 roots. For using the inverse soft homotopy (10.11) each
time, a similar method can be used to solve the soft equation. Here it should
be noted that the fn−1(t) is always replaced by f̃n−1(t) when we employ the
inverse soft homotopy (10.11). Finally, we will obtain all (n−3)! solutions to
the scattering equations for any point in K+

n .

With the initial solutions from solving the scattering equations in K+
n , by inte-

grating the corresponding differential equations given in (10.8), we can obtain
the solutions to the scattering equations for one point in Kn.

To summarise, we have proposed a homotopy continuation method to solve
the scattering equations and given a workable framework in detail. As shown
schematically below (superscript (s) stands for the soft limit), our method con-
sists of two main steps.

K+(s)
5

(10.11)−−−−→ · · · (10.11)−−−−→ K+(s)
n

(10.11)−−−−→ K+
n

(10.6)−−−→︸ ︷︷ ︸
Step I

Kn
(10.6)−−−→ Kn︸ ︷︷ ︸
Step II

(10.13)

The first step is to obtain the initial solutions, which consists of two substeps:
First, solve the scattering equations in K+

n by using the inverse soft homotopy
(10.11) recursively. Then, with these solutions as initial solutions, we can
use the homotopy (10.6) to solve the scattering equations for one point in the
realistic target region. As the next step, once we have all (n−3)! solutions
to the scattering equations for one physically realistic point in the kinematic
space, we can track these solutions to any point in the kinematic space using
the homotopy (10.6). In the second step, the solutions of the start system can
be continued to the target system much more easily, since they both live in the
same physically realistic region.

The method presented above has been implemented into a C++ program. For
the numerical integration of differential equations, we adopt the Runge-Kutta-
Fehlberg method [237] provided by ODEINT [238], and for the numerical solu-
tion of linear equation system, we employ the Householder QR decomposition
with column pivoting provided by EIGEN [239]. In obtaining the initial solu-
tions, the local accuracy is set to be 10−15, while in the second step, the local
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accuracy is set to be 10−7. In both steps, the Newton method is adopted to
increase the precision to 10−15. The code is publicly available at

https : //github.com/zxrlha/sehomo.

In order to validate our algorithm, we consider the randomly selected non-
exceptional points in the phase space corresponding to 2→ n−2 scattering up
to n = 13. All tests were performed on a Macintosh laptop with a 2.7 GHz
processor. The results of the computation times are summarized in Table 10.1.
In the table, tn are the computation times for obtaining all ](n) = (n−3)!

solutions, and t̄n ≡ tn/(n−3)! represents the average time for each solution,
for solving the scattering equations with a set of prepared initial solutions in
the physically realistic region of Kn. That is to say, they correspond to Step
II showed in (10.13). Here we would also like to note that our algorithm for
obtaining the initial solutions (i.e. the Step I in (10.13)) works well. More
precisely, in this step, the time cost is dominated by tracking solutions from
unphysical positive region to physically realistic region in Kn, while solving
the scattering equations in the positive region recursively is very fast. For
example, it costs less than 30 minutes for n = 11 case.

As a consequence of the Newton method, all solutions can be obtained with an
accuracy of 10−15. We have also checked that all solutions are distinct from
each other; thus we can verify that no solution is missed.

We observed that the total time to obtain all solutions increases significantly
as n increases, mainly due to a factorial increase in the number of solutions.
On the other hand, the average time of obtaining one solution increases much
more slowly, and it is still at O(ms) level even for n = 13. It is noteworthy
that obtaining different solutions is completely independent, thus can be done
in parallel.

We also found that the time costs are dominated by solving the differential
equations. Therefore if higher precision on solutions is requested, only the last
step, i.e. the Newton iterations should be performed within higher precision,
which has an only small impact on the total time cost.

https://github.com/zxrlha/sehomo
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n ](n) tn t̄n (ms)

5 2 1.3 ms 0.7

6 6 5.0 ms 0.8

7 24 35 ms 1.5

8 120 0.22 s 1.8

9 720 1.3 s 1.8

10 5040 13 s 2.5

11 40 320 2.3 min 3.2

12 362 880 30 min 4.9

13 3 628 800 5.6 h 5.5

Table 10.1: The total time costs tn of solving n-point scattering equations are
shown. The number of solutions as well as the averaged time per solution
t̄n ≡ tn/(n− 3)! are also shown.

In addition, due to the property of the algorithm, for two neighbouring points
in the phase space, clearly it will be much easier to obtain the solutions of the
scattering equations from each other. Therefore, one could speed up the calcu-
lation through a book-keeping method: first the initial solutions are prepared
at several typical kinematic points rather than only one point, and the closest
point are adopted as the initial point when doing the actual calculation.

Lastly, we extend our method to solve the four-dimensional scattering equa-
tions. Here we consider 2 → (n−2) scattering. It is a good idea to work
with the equations in light-cone variables (7.17) since they are fully equivalent
to the four-dimensional scattering equations (4.5). Working in the center-of-
momentum frame (c.f. Section 7.1 for detail), we propose a homotopy contin-
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uation for momenta:

k⊥i (t) = (1−t) p⊥i + t p′
⊥
i , i ∈ {4, . . . , n}

k+
i (t) = (1−t) p+

i + t p′
+
i , i ∈ {3, . . . , n}

k⊥3 (t) = −
n∑
i=4

(1−t) p⊥i + t p′
⊥
i ,

k+
2 (t) = −

n∑
i=3

(1−t) p+
i + t p′

+
i ,

(10.14)

where p and p′ are two sets of momenta. The last two equations follow from the
momentum conservation. k−i (t) can be obtained using on-shell and momen-
tum conservation conditions and have a more complicated dependence on the
continuation parameter t. Fortunately, all k−i components are not needed since
they do not explicitly appear in (7.17). Substituting (10.14) into the equations
(7.17), it is straightforward to establish a system of ODEs. The initial condi-
tions can be obtained using a similar algorithm with D-dimensional case, as
shown previously.

We will not provide more details, but make a comparison with ref. [66], where
a method was introduced to solve the four-dimensional scattering equations
(4.5) and implemented in Mathematica. Overall, our algorithm is much
faster than the one in [66]. Here we identify some significant differences as
follows. As already pointed out, obtaining solutions is utterly independent
of each other in our method. In contrast, in [66] the solutions are obtained
sequentially, and as more solutions obtained, finding the next solution becomes
increasingly difficult. Consequently, we can easily obtain all solutions for high
points (e.g. n = 13), while even for n = 10 it is quite challenging to solve the
equations for all helicity sectors by the method developed in [66].

10.4 Conclusion and discussions

We have proposed the kinematic homotopy continuation, which connects dif-
ferent points in kinematic space. Such a deformation naturally induces a ho-
motopy continuation of the scattering equations. As a result, the solutions of
the scattering equations with different points inKn can be related to each other.
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We have developed an efficient algorithm to generate all numerical solutions of
the scattering equations. This opens a new window of opportunity for further
explorations in various prospectives.

First of all, this powerful method allows us to solve the scattering equations
with high accuracy and high efficiency in different contexts. It is interesting to
investigate the properties of the scattering equations and the CHY formulas in
various kinematical regions, such as collinear and multi-Regge limits. While
the discussion above is limed at the tree level, our method can be directly
generalized to solve the scattering equations at the loop level, which have been
derived from ambitwistor strings.

In practical terms, it allows one to develop a new framework to compute scat-
tering amplitudes at tree and loop level. Once one obtains all solutions to the
scattering equations, as a next step, it is straightforward to generate tree ampli-
tudes or loop integrands by summing up the contributions from these solutions.
For instance, since the scheme to extend the CHY formalism to loop level has
been developed at least for gauge and gravity theories, this may make possible
to compute the amplitudes in these theories up to the two-loop order.

More interestingly, the kinematic homotopy developed in this work has further
significance beyond solving the scattering equations. Intriguingly, the kine-
matic homotopy may provide an avenue to study various physical quantities,
such as scattering amplitudes and scattering forms [235,240,241], in the kine-
matic space directly.
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Throughout this work, we have explored many aspects of the scattering equa-
tions. In this concluding chapter, we summarize the main results achieved and
make some comments on further avenues of research.

Our results have led to a deeper understanding of the mathematical struc-
tures underlying the scattering equations, which are universal for all massless
theories. First, we clarified the equivalence between two types of the four-
dimensional scattering equations and worked out how to exactly transform the
two corresponding formulations of S-matrices one another in Chapter 4. Sec-
ond, we have initiated the study of the asymptotic behavior of the scattering
equations in the high-energy limit in Chapters 7, 8 and 9. We observed that
the solutions to the scattering equations display the same hierarchy as the ra-
pidity ordering in various quasi-Regge regimes, and we conjectured that this
behaviour holds for any multiplicity. In particular, we explicitly solved the
four-dimensional scattering equations for any helicity configuration for any
multiplicity and derived the correct factorized form of tree amplitudes in Yang-
Mills and Einstein gravity in the multi-Regge kinematics. Our conjecture also
implies the expected factorization of the amplitude in Yang-Mills theory in
quasi-multi-Regge kinematics. Finally, a good understanding of the scattering
equations has also led us to develop efficient methods of solving the scattering
equations in Chapter 10. We introduced the physical homotopy continuation
of the scattering equations and designed an ingenious algorithm to generate all
numerical solutions of the scattering equations with high accuracy and high
efficiency based on the properties of the scattering equations in various kine-
matic regimes.

Our results also have broadened the scope of the applications of the scattering
equation formalism. Based on the four-dimensional scattering equations, we
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have obtained the new representations for the complete tree-level S-matrix in
maximally supersymmetric DBI-VA theory as well as in the U(N) NLSM and
a special Galileon theory in Chapter 5. These new formulas also have shown
the power of producing various double soft theorems. In Chapter 6, we have
also extended the scattering equation formalism designed for on-shell ampli-
tudes to form factors where a composite operator carries off-shell momentum.
With the help of a set of modified scattering equations, we constructed new
compact formulas for form factors with the chiral stress-tensor multiplet opera-
tor and a specific family of scalar operators inserted inN =4 SYM. Our results
strongly support the availability and universality of the scattering-equation
method for form factors and also have initiated to study off-shell quantities
in this context. We expect that our results can be generalized to form factors
for general operators and even purely off-shell correlation functions in N = 4

SYM.

While our research has focused primarily on the formal aspects of the scatter-
ing equations, we hope our results shed new light on particle phenomenology.
So far, only partial results for amplitudes with gluons and a few quark pairs
or/and massive bosons exist (see e.g. [133,242–244]). Once one has a contour-
integral representation of scattering amplitudes in the full Standard Model, it
may be combined with the numerical algorithm presented in this work to de-
velop a faster and more reliable numerical evaluation of the tree-level S-matrix
of the SM than traditional results obtained by summing a prohibitively large
number of Feynman diagrams.

Another longstanding open question is how to generalize the scattering equa-
tions to loop-level amplitudes. Even though the impressive progress has been
made regarding constructing compact representations for loop amplitudes (in-
tegrands), in particular in supersymmetric theories, from the scattering equa-
tions based on ambitwistor strings [31–37], it is still highly non-trivial and
desirable to obtain new representations for loop amplitudes in realistic theo-
ries such as QCD. This is especially crucial to apply the scattering equations
to “simplify predictions and analyses of LHC experiments ” [245].



A The spinor-helicity formalism

We provide a brief introduction to the spinor-helicity formalism in this ap-
pendix. We massively follow refs. [8, 246, 247] in the following.

Let us begin by relating a four-vector kµ to the following matrix

kαα̇ = kµσ
µ
αα̇ =

(
k0 + k3 k1 − ik2

k1 + ik2 k0 − k3

)
, (A.1)

with kµ = (k0,~k) and σµ = (12×2, ~σ), where ~σ = (σ1, σ2, σ3) are Pauli
matrices. If k is light-like, the matrix kαα̇ is rank deficient since det(kαα̇) =

k2 = 0. Hence it can be represented as

kαα̇ = λαλ̃α̇, (A.2)

where the two-component objects λ and λ̃ are known as spinors carrying dif-
ferent helicities respectively, as explained later. It is clear that for any given
null momentum k, the λ, λ̃ are unique up to a little group transformation

(λ, λ̃) −→ (tλ, t−1λ̃), t ∈ C∗. (A.3)

An explicit representation used in this work is

λa =
eiθ√
k+
a

(
k+
a

k⊥a

)
, λ̃a =

e−iθ√
k+
a

(
k+
a

k⊥
∗

a

)
. (A.4)

131



132 A. The spinor-helicity formalism

The λ and λ̃ transform in the representations (1/2, 0) and (0, 1/2) of Lorentz
group respectively1. There is an invariant antisymmetric tensor

εαβ = εα̇β̇ =

(
0 1

−1 0

)
= −εαβ = −εα̇β̇. (A.6)

to raise and lower spinor indices. More precisely,

λα = εαβλβ, λ̃α̇ = εα̇β̇λ̃β̇, λα = εαβλ
β, λ̃α̇ = εα̇β̇λ̃

β̇, (A.7)

kα̇α ≡ λ̃α̇λα = εα̇β̇εαβσµ
ββ̇
kµ =

1

2
σ̄να̇ασ̄β̇βν σµ

ββ̇
kµ = σ̄α̇αµ kµ, (A.8)

where σ̄µ ≡ (12×2,−~σ) and one has used the following identities (c.f. [248])

εαβεα̇β̇ =
1

2
σ̄µα̇ασ̄β̇βµ and Tr

(
σµσ̄ν

)
= Tr

(
σ̄µσν

)
= 2ηµν . (A.9)

The kinematic invariants also be written in terms of spinors. Let us define
spinor products as follows:

〈i j〉 ≡ εαβλiαλjβ = λiαλ
α
j and [i j] ≡ εα̇β̇λ̃iα̇λ̃jβ̇ = λ̃iα̇λ̃

α̇
j . (A.10)

From the definition, it is easy to see 〈i j〉 = −〈j i〉 and [i j] = −[j i]. For
two massless momenta ki = λiλ̃i and kj = λj λ̃j , the Lorentz product can be
expressed as

sij = (ki + kj)
2 = 2ki · kj = 〈ij〉 [ij]. (A.11)

It has also become clear that the representation of a null momentum kµ as a
product of two spinors makes manifest the on-shell condition k2 = 0 since
〈i i〉 = 0 = [i i]. By viewing spinors as two-component vectors in C2, we can
decompose any spinor λi as

λi =
〈ik〉
〈jk〉

λj +
〈ij〉
〈kj〉

λk ⇒ 〈ij〉 〈kl〉+ 〈jk〉 〈il〉+ 〈ki〉 〈jl〉 = 0, (A.12)

1In four dimensions, the complexified Lorentz group is locally isomorphic to

SO(1, 3,C) ∼= SL(2,C)× SL(2,C), (A.5)

thus finite dimensional representations are classified as (i, j) with integers or half-integers i, j.
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which is known as the famous Schouten identity.

Here we give the physical interpretation of spinors λ and λ̃. It is evident that
they satisfy the Weyl equations, i.e.,

kµσ̄α̇αµ λα = 0 and kµσ
µ
αα̇λ̃

α̇ = 0, (A.13)

They clearly show that the spinor λ (or λ̃) is the wavefunction of a massless
particle of helicity −1/2 (or +1/2) in momentum space.

It is also natural to find an analogous description of wavefunctions for mass-
less vector bosons. For positive helicity and negative helicity vectors, one
has [249–254]

ε+αα̇(λ, λ̃; η) =
ηαλ̃α̇
〈η λ〉

, ε−αα̇(λ, λ̃; η̃) =
λαη̃α̇

[λ̃ η̃]
, (A.14)

where η and η̃ are two arbitrary chosen reference spinors corresponding to
gauge freedom, often judiciously chosen to simplify expressions. This repre-
sentation was sometimes referred to “Chinese Magic”.

The wave functions of (massless) particles with other spins also can be built
in terms of spinor variables. In particular, a polarization tensor of graviton
can be expressed in terms of the symmetric-traceless tensor product of two
polarization vectors, εµν = εµεν . Therefore the graviton polarization tensor
can be written in terms of spinor variables2:

ε+,αα̇ββ̇i (λi, λ̃i;λx, λy) =
λαx λ̃

α̇
i

〈x i〉
λβy λ̃

β̇
i

〈y i〉
+ (x↔ y),

ε−,αα̇ββ̇i (λi, λ̃i; λ̃x, λ̃y) =
λαi λ̃

α̇
x

[i x]

λβi λ̃
β̇
y

[i y]
+ (x↔ y),

(A.15)

where x and y are arbitrary reference spinors.

Now we have constructed the wave functions ψ(λ, λ̃, h) in terms of the spinors
for massless particles with various spins, an interesting and important obser-

2This representation for graviton polarization tensors satisfies ε+i · ε
−
i ≡ ε

+,µν
i ε−i,µν = 1.
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vation is (
λα

∂

∂λα
− λ̃α̇ ∂

∂λ̃α̇

)
ψ(λ, λ̃, h) = −2hψ(λ, λ̃, h). (A.16)

Having established a unified description for the wave functions of massless
particles with various spins, we turn to see scattering amplitudes. From the
Feynman rules, it is easy to see that the amplitude must be a multi-linear func-
tion of the wave function ψi corresponding to the external leg “i”, and also
depends on the momenta of external legs because of the propagators. There-
fore, any scattering amplitude can be regarded as a function of the spinors λa
and λ̃a as well as helicities ha, i.e.,

An
(
{λi, λ̃i, hi}

)
. (A.17)

This is also the origin of the name of the helicity amplitude. Since the am-
plitude is linear in each external wave function ψi, eq. (A.16) immediately
implies(

λαi
∂

∂λαi
− λ̃α̇i

∂

∂λ̃α̇i

)
An
(
{λj , λ̃j , hj}

)
= −2hiAn

(
{λj , λ̃j , hj}

)
, (A.18)

for each particle i with helicity hi. These conditions give strong constraints
on helicity amplitudes, and are very useful in bootstrapping amplitudes [255]
(see also [256]).



B Conservation of momentum

We show the four-dimensional scattering equations, eqs. (4.5), imply momen-
tum conservation in detail in this appendix.

As shown in the previous appendix, for any spinor λαa we can decompose it
along two nonparallel spinors, e.g. λα1 and λα2

λαa =
〈2 a〉
〈2 1〉

λα1 +
〈1 a〉
〈1 2〉

λα2 . (B.1)

Then momentum conservation delta function can be represented as

δ4

(
n∑
a=1

λαa λ̃
α̇
a

)
= δ4

(
λα1

[
λ̃α̇1 +

n∑
a=3

〈2 a〉
〈2 1〉

λ̃α̇a

]
+ λα2

[
λ̃α̇2 +

n∑
a=3

〈1 a〉
〈1 2〉

λ̃α̇a

])

=
1

〈1 2〉2
δ2

(
λ̃α̇1 +

n∑
a=3

〈2 a〉
〈2 1〉

λ̃α̇a

)
δ2

(
λ̃α̇2 +

n∑
a=3

〈1 a〉
〈1 2〉

λ̃α̇a

)
. (B.2)

In the following we prove

δ2

(
λ̃α̇I −

∑
i∈P

cIi λ̃
α̇
i

)
δ2

(
λ̃α̇J −

∑
i∈P

cJi λ̃
α̇
i

)
= 〈IJ〉2 δ4

(
n∑
a=1

λαa λ̃
α̇
a

)
, (B.3)

for arbitrary {I, J} ⊆ N, where cIi = 1/(I i). Without loss generality, we
consider the case of I = 1 and J = 2. By using the following equations

λαi +
∑
I∈N

cIiλ
α
I + c1iλ

α
1 + c2iλ

α
2 = 0, N ≡ N\{1, 2} (B.4)

135



136 B. Conservation of momentum

we have

c1i =
1

〈1 2〉

(
〈2 i〉+

∑
I∈N

cIi 〈2 I〉
)
, (B.5)

c2i =
1

〈2 1〉

(
〈1 i〉+

∑
I∈N

cIi 〈1 I〉
)
. (B.6)

Plugging them back into the delta functions on the left-hand side of (B.3) gives

δ2

(
λ̃α̇1 −

∑
i∈P

c1i λ̃
α̇
i

)
= δ2

(
λ̃α̇1 −

∑
i∈P

〈2 i〉
〈1 2〉

λ̃α̇i −
∑
I∈N

〈2 I〉
〈1 2〉

∑
i∈P

cIiλ̃
α̇
i

)

= δ2

(
λ̃α̇1 +

∑
a=3

〈2 a〉
〈2 1〉

λ̃α̇a

)
, (B.7)

where we used the scattering equations∑
i∈P

cIiλ̃
α̇
i = λ̃α̇I . (B.8)

Similarly we have

δ2

(
λ̃α̇2 −

∑
i∈P

c2i λ̃
α̇
i

)
= δ2

(
λ̃α̇2 +

∑
a=3

〈1 a〉
〈1 2〉

λ̃α̇a

)
. (B.9)

A combination of eqs. (B.7), (B.9) and (B.2) yields

δ2

(̃
λα̇1 −

∑
i∈P

c1i λ̃
α̇
i

)
δ2

(̃
λα̇2 −

∑
i∈P

c2i λ̃
α̇
i

)
= 〈1 2〉2 δ4

(
n∑
a=1

λαa λ̃
α̇
a

)
. (B.10)



C Lipatov formula for the Graviton
Reggeization

This appendix provides a review of the multi-Regge factorization of tree-level
gravitational scattering amplitudes.

In the multi-Regge kinematical regime, the compact formula for tree-level am-
plitudes with any number of external gravitons was obtained from t-channel
unitarity methods by Lev Nikolaevich Lipatov more than three decades ago
[221,222]. The formula takes a surprisingly simple factorized form: a product
of universal building blocks connected by t-channel propagators, as shown in
Figure 7.1 in Chapter 7. To be clear, here we rewrite it explicitly:

Mn (C.1)

' −s2Cg(2;3)
−1

|q⊥4 |2
Vg(q4;4;q5) · · · −1

|q⊥n−1|2
Vg(qn−1;n−1;qn)

−1

|q⊥n |2
Cg(1;n).

There are two types of universal building blocks, Cg and Vg (referred to as
gravitational impact factor and gravitational Lipatov vertex respectively). We
define them explicitly below.

The effective graviton-graviton-(Reggeized graviton) vertex reads

Γµν,αβ ≡ ΓµαΓνβ + ΓµβΓνα, (C.2)
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which is manifestly a double copy of the gluon-gluon-(Reggeized gluon1) ver-
tex that is defined as

Γµα2;3 = −ηµα +
2(kµ1k

α
2 − k

µ
3k

α
1 )

s
+ s23

2kα1 k
µ
1

s2
, (C.3)

Γµα1;n = −ηµα +
2(kµ2k

α
1 − k

µ
nkα2 )

s
+ s1n

2kα2 k
µ
2

s2
. (C.4)

Similarly, the effective (Reggeized graviton)-(Reggeized graviton)-graviton ver-
tex can also be obtained as the double copy of gauge theory vertices:

Γµνi (qi, qi+1) ≡ 2
(
Cµi C

ν
i −N

µ
i N

ν
i

)
, (C.5)

where the Cµ is the famous Lipatov vertex of (Reggeized gluon)-(Reggeized
gluon)-gluon in QCD [218]

Cµi (qi, qi+1) (C.6)

= −(q⊥i )µ − (q⊥i+1)µ +

(
2q2
i+1

s1i
− s2i

s

)
kµ1 −

(
2q2
i

s2i
+
s1i

s

)
kµ2 ,

with (q⊥)µ ≡ (0, 0; q⊥), while Nµ is the so-called QED Bremsstrahlung ver-
tex:

Nµ
i (qi, qi+1) =

√
q2
i q

2
i+1

(
kµ1
s1i
− kµ2
s2i

)
. (C.7)

The contractions between vertices and the polarization tensors of external gravi-
tons give the gravitational impact factor and gravitational Lipatov vertex ap-
pearing in formula (7.7), i.e.,

Cg(2; 3) = Γµν,αβ(k2, k3) εµν2 (k2)εαβ3 (k3),

Cg(1;n) = Γµν,αβ(k1, kn) εµν1 (k1)εαβn (kn),

Vg(qi, i, qi+1) = Γi,µν(qi, qi+1) εµνi (ki), i ∈ {3, . . . , n}.

(C.8)

Here we translate these building blocks to the modern language, say spinor-
helicity variables. In four dimensions, in addition to momenta, the wavefunc-

1Reggeized gluon is often referred to as “Reggeon” in the literature.
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tions of massless particles (including graviton polarization tensors) may be
written in terms of two-component Weyl spinors, see Appendix A. Using the
spinor-helicity variables defined in eqs. (7.13) and (A.15), it is easy to com-
pute the gravitational impact factors and Lipatov vertices defined in (C.8). A
straightforward calculation gives

Cg(2+; 3+) = Cg(2−; 3−) = Cg(1+;n+) = Cg(1−;n−) = 0,

Cg(2−; 3+) = Cg(2+; 3−) = 1,

Cg(1−;n+) = Cg(1+;n−)∗ =

(
k⊥
∗

n

k⊥n

)2

,

(C.9)

and

Vg
(
qi; i

+; qi+1

)
= Vg

(
qi; i
−; qi+1

)∗
=

q⊥
∗

i

(
q⊥
∗

i q⊥i+1 − q⊥i q⊥
∗

i+1

)
q⊥i+1

(k⊥i )2
(C.10)

=
q⊥
∗

i

(
k⊥i q

⊥∗
i − k⊥

∗
i q⊥i

)
q⊥i+1

(k⊥i )2
. (C.11)

We see from the first line in (C.9) that helicity is conserved by the impact
factors, like in gauge theory.

Finally, we would like to make some comments on the effective vertices (C.2)
and (C.5) in gravity in MRK. These effective vertices have also been derived
from an effective action (see e.g. [219, 257, 258]). It is extremely remark-
able that the double copy relation between gravity and gauge theories was
uncovered for the first time in multi-Regge kinematics. In general kinematics,
Kawai, Lewellen and Tye (KLT) found that a closed string amplitude can be
expressed in terms of sums of products of two open string amplitudes [91].
In the field theory limit, the KLT relation naturally implies the double copy
relation between amplitudes in gravity and Yang-Mills. More recently, Bern,
Carrasco and Johansson discovered that the amplitudes in gauge theory and
gravity can be related via the so-called “color-kinematics duality” [74, 103].





D Proof of the three identities
in Chapter 8

In this appendix, we prove three identities used to derive the multi-Regge
factorization of the graviton amplitudes in Chapter 8. They are eq. (8.68),
eq. (8.78) and eq. (8.88).

Identity in (8.68)

Here we focus on the following triangular matrix:

ϕ =



v4 x5−x4−v4 · · · xn−1−x4−v4 xn−x4

0 v5 · · · xn−1−x5 xn−x5

...
...

. . .
...

...

0 0 · · · vn−1 xn−xn−1

0 0 · · · 0 xn


. (D.1)

Our goal is to find (ϕ−1)1,n−3. Let us use α = (α4, α5, . . . , αn)T to denote the
last column of the inverse of this matrix, then it satisfies the following equation

ϕα = (0, . . . , 0, 1)T. (D.2)

In the following we show that its solution is

αi =
k⊥i
k⊥∗n

, i = n, n−1, . . . , 5 (D.3)

α4 = −k
⊥
3 + k⊥n
k⊥∗n

. (D.4)
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First, we can easily get from xnαn = 1

αn =
1

xn
=

k⊥n
k⊥∗n

. (D.5)

Then we assume all αj with j > i are given by (D.3), and let us solve αi from
the following equation:

viαi +
n∑

j=i+1

(xj − xi)αj = 0. (D.6)

Plugging the values of αj (j > i) given in (D.3) into this equation gives

αi = − 1

vi

n∑
j=i+1

(xj − xi)αj =
k⊥i
k⊥∗n

, (D.7)

which agrees with eq. (D.3). Finally, solving the last equation gives

(ϕ−1)1,n−3 ≡ α4 = − 1

v4

(
n∑
j=5

(xj − x4)αj − v4

n−1∑
j=5

αj

)

= −k
⊥
3 + k⊥n
k⊥∗n

. (D.8)

Identity in (8.78)

In the following, we consider the reduced determinant of the Hk×k whose in-
dices take values from the set P.

First fo all, it is useful to introduce a new notation related to particle labels:
I`i ∈ N denotes the smallest number that satisfies I`i > i ∈ P. For example,
`3 = 1 because of 3 < I1 ∈ N. Then, by abuse of multiple subscripts, we can
rewrite ζi and τi in terms of ζI and τI as follows:

τi =


−
k⊥
∗

I`i

q⊥
∗

I`i

ζ−1
I`i
, i < Im,

−
∏

1≤l≤m

q⊥
∗

Il

q⊥
∗

Il+1

, i > Im,

ζi =


−
k⊥I`i
q⊥I`i

τ−1
I`i
, i < Im,

−1, i > Im.

(D.9)
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Let us also rewrite the matrix (8.77):

H
′

=



vi1+xi1 ci1i2 · · · ci1ip ci1n

xi2 vi2+xi2 · · · ci2ip ci2n

...
...

. . .
...

...

xip xip · · · vip+xip cipn

xn xn · · · xn xn


, (D.10)

where particle labels in P have been reordered as 3 < i1 < · · · < ip < n with
p = (n−k)−2. By performing some elementary row and column transforma-
tions, we have

det H
′

= det H
′′
, (D.11)

with

H
′′

=



vi1 ci1i2−xi1−vi1 · · · ci1ip−xi1−vi1 ci1n−xi1
0 vi2 · · · ci2ip−xi2 ci2n−xi2
...

...
. . .

...
...

0 0 · · · vip cipn−xip
xn 0 · · · 0 xn


. (D.12)

Using the matrix determinant lemma, we have

det H
′

= xn

( ∏
i∈P,i 6=3,n

vi

)(
1 + xn

(
Φ̄−1

)
1,p+1

)
, (D.13)

where Φ̄ is nothing but H
′′

with replacing the first element of the last row xn
by zero. Now our task becomes to calculate the entry in the upper right corner
of the inverse of the matrix Φ̄. Let us denote the last column of the inverse of
Φ̄ as:

(αi1 , αi2 , . . . , αip , αn)T. (D.14)
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Clearly, αi1 = (Φ̄−1)1,p+1. Then it can be determined by the following linear
equations:

Φ̄ · (αi1 , αi2 , . . . , αn)T = (0, 0, . . . , 1)T. (D.15)

The solution is

αj = −
k⊥j
k⊥∗n

ζj , i1 < j ≤ n, (D.16)

αi1 = x∗n

(
k⊥3
k⊥n

ζ3 − 1

)
. (D.17)

Plugging (D.16) into (D.13) immediately leads to

det H
′

= −xn

( ∏
i∈P,i 6=3,n

vi

)
k⊥3
k⊥n

ζ3 τ3 . (D.18)

We immediately obtain (8.78) by inserting det H
′

into (8.76).

We show how to obtain (D.16) and (D.17) by induction in the following. First,
it is very easy to obtain αn from equation (D.15),

αn = x∗n = − k⊥n
k⊥∗n

ζn, (D.19)

where one uses the solution of the MRK scattering equations, ζn = −1. As a
next step, we assume all αj’s (j > i) are given by (D.16), and then let us solve
αi which satisfies the following equation:

viαi +
∑

j∈P,j>i

(
cij − xi

)
αj = 0, i > i1. (D.20)
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Using the definition of cij and αj given by (D.16), we have

∑
j∈P,j>i

(
cij − xi

)
αj =

∑
j∈P,j>i

(
− ζiτj

τi

k⊥
∗

j

k⊥∗n
+ xi

k⊥j
k⊥∗n

ζj

)

=
ζi
k⊥∗n

∑
j∈P,j>i

(
−
τjk
⊥∗
j

τi
+ xi

ζjk
⊥
j

ζi

)

=
ζi
k⊥∗n

(
− Ti
τi

+
xiZi
ζi

)
, (D.21)

where we denote

Ti =
∑

j∈P,j>i
τjk
⊥∗
j , Zi =

∑
j∈P,j>i

ζjk
⊥
j . (D.22)

Next, we calculate these tow terms for two cases respectively: the label i is
bigger than the label of any negative-helicity particle or not.

• We first consider the case of the label i is less than the largest label
carried by negative-helicity particles, i.e. i < Im. In this case, we have

Ti =
∑

j∈P,i<j<I`i

τjk
⊥∗
j +

∑
j∈P,j>I`i

τjk
⊥∗
j (D.23)

= τi
∑

i<j<I`i

k⊥
∗

j +
k⊥
∗

I`i

ζI`i
(D.24)

= τi
∑

i<j<I`i

k⊥
∗

j − τi q
⊥∗
I`i

(D.25)

= −τi q⊥
∗

i+1. (D.26)

Here we used the scattering equations S̄ 2̇
I = 0, (8.2), in the second line

(D.24), and the solution (D.9) in the third line (D.25). Similarly, for Zi
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we have

Zi = −
∑

j∈P,j≤i
ζjk
⊥
j (D.27)

= −
∑

j∈P,j<I`i

ζjk
⊥
j +

∑
j∈P,i<j<I`i

ζjk
⊥
j (D.28)

=
k⊥I`i
τI`i

+ ζi
∑

j∈P,i<j<I`i

k⊥j (D.29)

= −ζi q⊥I`i + ζi
∑

j∈P,i<j<I`i

k⊥j (D.30)

= −ζi q⊥i+1 (D.31)

• In the other case, i.e. i > Im, it is easy to obtain

Ti = τi
∑
i<j≤n

k⊥
∗

j = −τi q⊥
∗

i+1, (D.32)

Zi = −ζi
∑
i<j≤n

k⊥j = −ζi q⊥i+1. (D.33)

In both cases, as expected, we obtain the same results for Ti and Zi. By insert-
ing them into (D.21), we find

∑
j∈P,j>i

(
cij − xi

)
αj =

ζi
k⊥∗n

(
− Ti
τi

+
xiZi
ζi

)
=

k⊥i
k⊥∗n

vi ζi . (D.34)

Finally, equation (D.20) can be solved exactly by

αi = − k⊥i
k⊥∗n

ζi, (D.35)

which proves (D.16).
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As a final step, we prove (D.17) via finding αi1 which satisfies

vi1αi1 +
∑

j∈P,j>i1

(
ci1j − xi1 − vi1

)
αj + vi1αn = 0. (D.36)

Noting that

∑
j∈P,j>i1

(
ci1j − xi1 − vi1

)
αj =

ζi1
k⊥∗n

(
− Ti1
τi1

+ (xi1 + vi1)
Zi1
ζi1

)

= −
q⊥i1
k⊥∗n

vi1 ζi1 , (D.37)

we have

αi1 =
q⊥i1
k⊥∗n

ζi1 − x∗n = −x∗n
(
k⊥3
k⊥n

ζ3 τ3 + 1

)
, (D.38)

which ends the proof.

Identity in (8.88)

Let us now discuss another part corresponding to the set N. Our goal is to
evaluate the determinant of the following matrix:

H′ =



H22 c2I1 c2I2 · · · c2Im

x∗I1 v∗I1+x∗I1 cI1I2x
∗
I1
· · · cI1Imx

∗
I1

x∗I2 x∗I2 v∗I2+x∗I2 · · · cI2Imx
∗
I2

...
...

...
. . .

...

x∗Im x∗Im x∗Im · · · v∗Im+x∗Im


(D.39)

with

H22 =
∏
I∈N

q⊥I
q⊥I+1

, c2I =
τI
ζI
, cIJ =

ζIτJ
τIζJ

for I < J. (D.40)
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Using a little linear algebra, det H′ becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H22 c2I1−H22 c2I2−H22 · · · c2Im−H22

0 v∗I1 (cI1I2−1)x∗I1 · · · (cI1Im−1)x∗I1 − x
∗
I1
xImv

∗
Im

0 0 v∗I2 · · · (cI2Im−1)x∗I2 − x
∗
I2
xImv

∗
Im

...
...

...
. . .

...

x∗Im 0 0 · · · v∗Im

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(D.41)

By the matrix determinant lemma, we have

det H′ = H22

(∏
I∈N

v∗I

)(
1 + x∗Im

(
Φ−1

)
1,m+1

)
, (D.42)

where

Φ =



H22 c2I1−H22 c2I2−H22 · · · c2Im−H22

0 v∗I1 (cI1I2−1)x∗I1 · · · (cI1Im−1)x∗I1− x
∗
I1
xImv

∗
Im

0 0 v∗I2 · · · (cI2Im−1)x∗I2− x
∗
I2
xImv

∗
Im

...
...

...
. . .

...

0 0 0 · · · v∗Im


.

(D.43)

Thus now our task is to calculate the last entry in the first row of the inverse
of this matrix. As we will see in the following, a similar technique used in
previous sections also works in this case.

Let us denote the first row of the inverse of the Φ as:

(ᾱ0, ᾱ1, . . . , ᾱm) (D.44)
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They can be determined by the following linear equations:

(ᾱ0, ᾱ1, . . . , ᾱm) Φ = (1, 0, . . . , 0) (D.45)

The solution of this equation is

ᾱ0 =
1

H22
=
∏
I∈N

q⊥I+1

q⊥I
, (D.46)

ᾱa = ᾱ0 xIaτIa for 1 ≤ a < m, (D.47)

ᾱm =
(
ᾱ0 − 1

)
xIm . (D.48)

In the following, we prove them by induction. First of all, it is straightforward
to obtain ᾱ0 and ᾱ1 by solving the first two equations in (D.45). In next step,
we assume all ᾱb’s (b < a) are given by (D.46) and (D.47), then let us solve
ᾱa which satisfies the following equation:

v∗Iaᾱa +
(
c2Ia − H22

)
ᾱ0 +

a−1∑
r=1

(
cIrIa − 1

)
x∗Ir ᾱr = 0, (D.49)

for 1 < a < m. Here we first consider the second term on the left-hand side of
the equation. By observing the MRK, given by eqs. (8.26), (8.20) and (8.23),
we find that H22 and c2I can be written as

H22 =
∏
I∈N

q⊥I
q⊥I+1

=
q⊥Ia
k⊥Ia

(
a−1∏
l=1

q⊥Il
q⊥Il+1

)
τIa , (D.50)

c2Ia =
τIa
ζIa

=
q⊥∗Ia
k⊥∗Ia

(
a−1∏
l=1

q⊥∗Il
q⊥∗Il+1

)
τIa . (D.51)

Therefore we have(
c2Ia − H22

)
ᾱ0 =

(
ha − h′a

)
ᾱ0 xIaτIa , (D.52)
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where

ha ≡
k⊥Iaq

⊥∗
Ia(

k⊥
∗

Ia

)2
(
a−1∏
l=1

q⊥
∗

Il

q⊥
∗

Il+1

)
, h′a ≡

q⊥Ia
k⊥
∗

Ia

(
a−1∏
l=1

q⊥Il
q⊥Il+1

)
. (D.53)

Let us now turn to the last term on the left-hand side of (D.49). Comparing to
the solution of the MRK scattering equations in eqs. (8.26), (8.20) and (8.23),
we have

τIr =
k⊥Irq

⊥
Ia+1

k⊥Iaq
⊥
Ir+1

(
a∏

l=r+1

q⊥Il
q⊥Il+1

)
τIa , r < a. (D.54)

This leads to

(
cIrIa − 1

)
x∗Ir ᾱr =

(
cIrIa − 1

)
x∗Ir ᾱ0 xIr

k⊥Irq
⊥
Ia+1

k⊥Iaq
⊥
Ir+1

(
a∏

l=r+1

q⊥Il
q⊥Il+1

)
τIa

=
(
fra − gra

)(
ᾱ0 xIaτIa

)
, (D.55)

where we introduce some short-handed notations:

gra =
k⊥Irq

⊥
Ia+1

k⊥
∗

Ia
q⊥Ir+1

(
a∏

l=r+1

q⊥Il
q⊥Il+1

)
, (D.56)

fra =
k⊥Irq

⊥
Ia+1

k⊥
∗

Ia
q⊥Ir+1

(
a∏

l=r+1

q⊥Il
q⊥Il+1

)
cIrIa =

k⊥Iak
⊥∗
Ir
q⊥
∗

Ia(
k⊥
∗

Ia

)2
q⊥
∗

Ir

(
a−1∏
l=r

q⊥
∗

Il

q⊥
∗

Il+1

)
.

Then equation (D.49) becomes

v∗Iaᾱa +
[(
ha − h′a

)
+

a−1∑
r=1

(
fra − gra

)](
ᾱ0 xIaτIa

)
= 0 (D.57)
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for 1 < a < m. Then by performing a lot of straightforward calculations, we
obtain

ha +
a−1∑
r=1

fra =
k⊥Iaq

⊥∗
Ia(

k⊥
∗

Ia

)2 , (D.58)

h′a +
a−1∑
r=1

gra =
q⊥Ia
k⊥
∗

Ia

. (D.59)

By plugging them into (D.57) gives immediately

ᾱa = ᾱ0 xIaτIa . (D.60)

As a final step, we can obtain ᾱm by solving the following equation:

v∗Imᾱm +
(
c2Im−H22

)
ᾱ0 +

m−1∑
r=1

(
cIrIm−1

)
x∗Ir ᾱr −

m−1∑
r=1

x∗IrxImv
∗
Imᾱr = 0.

(D.61)

For the second and the third terms, we have

(
c2Im − H22

)
ᾱ0 +

m−1∑
r=1

(
cIrIm − 1

)
x∗Ir ᾱr = −v∗Imᾱ0 xImτIm . (D.62)

For the last term, we have

m−1∑
r=1

x∗IrxImv
∗
Imᾱr =

m−1∑
r=1

x∗IrxImv
∗
Imᾱ0 xIrτIr

= v∗Imᾱ0 xIm

m−1∑
r=1

τIr . (D.63)

Using the scattering equations (8.2) and their unique solution in eqs. (8.26),
(8.20) and (8.23), we have

m−1∑
r=1

x∗IrxImv
∗
Imᾱr = v∗Imᾱ0 xIm

(
1− H22 − τIm

)
. (D.64)
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Finally, we find

ᾱm = ᾱ0 xIm
(
1− H22

)
= xIm

(
ᾱ0 − 1

)
. (D.65)

Plugging it into (D.42) gives

det H′ =
∏
I∈N

v∗I . (D.66)



E Explicit results for Lipatov vertices
and impact factors

As both consistency checks as well as applications of the CHY-type formulas
for the generalized Lipatov vertex and impact factor and obtained in Chapter
9, we analytically evaluate them and compare with known results for some
helicity configurations in this appendix. These include MHV and anti-MHV
sectors for any number of legs, as well as some more complicated examples
beyond the MHV sector.

MHV

First, we consider the MHV sector in which the four-dimensional scattering
equations have only one independent solution, as shown in previous chapters.
In this case, since the scattering equations have unique MHV solution, it is
easy to obtain analytical results. Using the MHV solution we have computed
the MHV amplitudes in Yang-Mills and MHV form factors for some certain
operators. Here we exactly evaluate our formulas in the MHV sector.

Let us first see the MHV Lipatov factor where P = {3, . . . , n} and N = ∅.
For this object, the Jacobian (9.17) in formula (9.16) is just one, and the two
formulas for the Lipatov vertex, i.e. eqs. (9.14) and (9.16), become identical in
MHV sector. Simply substituting the MHV solution into the formula gives

Vn−4

(
q2; 4+, . . . , (n−1)+; q1

)
=
q⊥2
∗
q⊥1

k⊥4

√
k+

4

k+
n−1

1

〈4 5〉 · · · 〈n−2 n−1〉
. (E.1)
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Using formula (9.7) we can also obtain the MHV impact factor:

Cn−3

(
2−; 3+, . . . , (n−1)+; q1

)
= − q

⊥
1

k⊥3

√
k+

3

k+
n−1

1

〈3 4〉 · · · 〈n−2 n−1〉
. (E.2)

Very similarly, it is also easy to evaluate our formulas for Lipatov vertices and
impact factors in the MHV sector.

NMHV and NNMHV

In the following, we evaluate analytically several more complicated examples
by following the similar procedure used in [140,211]. We illustrate this method
in the example below.

Let us first consider a NMHV Lipatov vertex for g∗g∗ → g+g− for which our
formula (9.16) gives

V
(
q2; 4+, 5−; q1

)
=
|q⊥2 |2|q⊥1 |2k⊥5

k⊥4

∫
dσ4dτ4dσ5dτ5

τ4τ5 σ45σ5

× δ2(Sα4 )δ2(S̄ α̇5 )(
q⊥1 − ζ4k⊥4

)(
q⊥2
∗

+ τ4k⊥4
∗) (E.3)

where q1 = k1 + k6 and q2 = −k2 − k3 and the scattering equations are give
by

S1
4 = 1− τ4τ5

σ45

k+
5

k⊥5
+ τ4, (E.4)

S2
4 = 1− k+

4

k⊥4

τ4τ5

σ45
+ ζ4, (E.5)

S̄ 1̇
5 = k⊥5 +

(
τ5τ4k

+
4

σ45
− τ5ζ4k

⊥
4

)
+ τ5q

⊥
1 , (E.6)

S̄ 2̇
5 = k⊥

∗
5 +

(
k+

5

k⊥5

τ5τ4

σ45
+ ζ5τ4

)
k⊥4
∗

+ ζ5q
⊥
2
∗
. (E.7)
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We first introduce a new variable

z =
τ4τ5

σ45
. (E.8)

Then we can observe that the three equations S1
4 , S2

4 and S̄ 1̇
5 are linear in

variables σ5, τ5 and z. After fixing these three variables, the formula becomes
a one-dimensional contour integral over τ4, where the contour is determined
by the zeros of S̄ 2̇

5 = 0, and we can evaluate it by residue theorem. The final
result is

V2

(
q2; 4+, 5−; q1

)
= +

x2
5 q
⊥
1 q
⊥
2

(
k⊥4
∗)3

s561x4
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x5 [4 5] +

√
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∗)(√
x5 〈4 5〉 k⊥4

∗ −√x4 k⊥5 q
⊥
2
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4 q
⊥
1
∗|q⊥2 |2

(
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)(√
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+
√
x4 k⊥5 k

⊥
3
∗)(

x5|k⊥4 |2+x4|k⊥5 |2
)

+
x2
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∗

√
x5

(
x4 + x5

)
[4 5]

(
k⊥4 + k⊥5

)(√
x5[4 5] +

√
x4q⊥1

∗) ,
(E.9)

where xi = k+
i /(k

+
4 +k+

5 ) for i = 4, 5. Our result exactly agrees with previ-
ously known results, including

V2

(
q2; 4+, 5−; q1

)
= −

x
3/2
4 q⊥2

∗(
k⊥5 + q⊥1

)3
k⊥4
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√
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)(
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(
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)(
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+
x

3/2
4 q⊥1 q

⊥
2
∗

√
x5 [4 5]

(
k⊥4 + k⊥5

)
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which was computed by the CSW rules in [225], and another one obtained
earlier from the Feynman diagrams [71, 220, 229, 259]

V2

(
q2; 4+, 5−; q1

)
(E.11)

=
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.

In similar way, evaluating our formula for the Lipatov vertex of g∗g∗ → qq̄

gives
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which also agrees with the known result [71, 220, 229, 259]:
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(E.12)
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Let us turn to study the next-to-next-to-leading impact factor which describes
g∗g → ggg. By using a similar technique, our formula (9.7) also can obtain
this impact factor with various helicity configurations analytically. The results
are listed below. In these cases, we define xi = k+

i /(k
+
3 +k+

4 +k+
5 ), i = 3, 4, 5.
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(E.15)

All these results agree with known results obtained using the CSW rule [225]
and helicity amplitudes [71] respectively. Moreover, we discuss the Regge
limit of these impact factors. Let us first see the last two objects given by
(E.14) and (E.15) respectively. In the limit y3 � y4 ' y5, they behave as

C3(2−; 3+, 4±, 5∓; q1) ' C(2−; 3+)
1

|q⊥2 |2
V2(q2; 4±, 5∓; q1), (E.16)
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where the leading impact factor C(2−; 3+) = 1, as shown exactly in eq. (7.5),
while next-to-leading Lipatov factors are given by
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+
q⊥1 |q⊥2 |2

k⊥4
∗
k⊥5
(
q⊥2 − k⊥4

)
+

x2
5 q
⊥
2
∗
(k⊥4 )3
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) ,
which are complex conjugates of each other, and we have checked that they are
equivalent to formulas (E.9), (E.10) or (E.11). For the helicity impact factor



160 E. Explicit results for Lipatov vertices and impact factors

C3(2−; 3−, 4+, 5+; q1), in limit y3 � y4 ' y5, it behaves as
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which is suppressed by the prefactor O
(
(k+

4 +k+
5 /k

+
3 )2
)
. This is consistent

with the fact that the leading impact factor C(2−; 3−) is vanishing.



F Factorizations of impact factors and
Lipatov vertices

In this appendix, we show that the generalised impact factors and Lipatov ver-
tices that appear in QMRK have the expected factorizations in soft, collinear
and Regge limits.

Soft limits

Let us start by discussing the soft limits of the impact factors and the Lipatov
vertices defined through the CHY-type formulas in eqs. (9.7) and (9.14). The
argument is the same in both cases and follows the analysis of the soft limit of
the full amplitude in refs. [24,25] closely. In the following we only discuss the
case of the generalised Lipatov vertex V(q4; 4, . . . , n−1; qn).

Without loss of generality we assume that k5 → 0, and we assume that the soft
gluon has positive helicity. The argument in other cases is identical. Keeping
only the leading behaviour as k5 → 0 in eq. (9.14), we can write

V
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(F.1)
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where In−5 collects the terms in the integrand of eq. (9.14) independent of σ5

and τ5,
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Let us write down Sα5 explicitly:
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As a first step, let us use the delta function δ(S1
5 ) in eq. (F.3) to fix τ5. We then

obtain
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We apply the global residue theorem, which allows us to express the residue
at S2

5 = 0 in terms of the residues at σ5 = σ4 and σ5 = σ6. Even though the
computation depends on the helicity configuration of the two adjacent legs, the
final result does not, and a straightforward calculation gives
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)
' 〈4 6〉
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)
. (F.7)

Collinear limit

We now study the generalised impact factors and Lipatov vertices in the limit
where a pair of produced particles become collinear. We again restrict our-
selves to the study of Lipatov vertices, and we assume that the momenta k4 and
k5 are collinear. We take the following parametrization for the two collinear
massless momenta [260],
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(F.8)

The collinear limit is realised as ε → 0 and the collinear direction is K =

k4 + k5 = kx +O(ε2).

In ref. [47] it was shown that in the limit where two gluons become collinear
only those solutions contribute where σ4 and σ5 coincide in the limit. Like the
case of the double soft limit (see Chapter 5), it is then useful to perform the
change of variables from (σ4, σ5) to (ρ, ξ):

σ4 = ρ+
1

2
εξ +O(ε2) , σ5 = ρ− 1

2
εξ +O(ε2) , (F.9)
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such that that σ4−σ5 = εξ + O(ε2) and dσ4dσ5 = εdξdρ. In these new
variables eq. (9.14) takes the form:
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)
(F.10)

×

∫
n−1∏
a=6

dσadτa
τa

∫
dξdρdτ4dτ5

ξτ4τ5

∏
I∈N

δ2
(
S α̇I
) ∏
i∈P

δ2
(
Sαi
)

(ρ−σ6)σ67 · · ·σn−2,n−1σn−1
.

We now show that after integrating out ξ and some linear combination of τ4

and τ5 we can recover the expected factorized form of the Lipatov vertex in
the collinear limit. In order to proceed, we need to analyse separately the cases
where the collinear particles have either the same or opposite helicities.

• (h4, h5) = (+,+)

Let us first consider the case where the two particles have positive helicity. It is
convenient to perform the change of variables from (τ4, τ5) to (τx, τy) defined
by,

τx = z τ4 + (1−z) τ5 and τy =
√
z(1−z)

(
τ5 − τ4

)
, (F.11)

such that

dτ4dτ5 =
1√

z(1−z)
dτxdτy. (F.12)

Equation (F.10) then becomes,

V
(
q4; 4, 5, . . . , n−1; qn

)
=

(q⊥4 )∗q⊥n
(k⊥x )2

1

(z(1−z))3/2

( ∏
i∈P\{4,5},I∈N

k⊥I
k⊥i

)

×

∫
n−1∏
a=6

dσadτa
τa

∫
dρdτx
τx

∫
dξdτy
ξ

τx
τ4τ5

∏
I∈N

δ2
(
S α̇I
) ∏
i∈P

δ2
(
Sαi
)

(ρ−σ6)σ67 · · ·σn−2,n−1σn−1
,
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where the scattering equations are given below in detail. First, S̄ α̇I become

S̄ 1̇
I = k⊥I −

∑
i∈P\{4,5}

τIτi
σI−σi

k+
i −

τIτx
σI−ρ

k+
x +

τI q
⊥
4

1−
∑

J∈N tJ
+O(ε),

S̄ 2̇
I = k⊥

∗
I −

k+
I

k⊥I

∑
i∈P\{4,5}

τIτi
σI−σi

k⊥
∗

i

−
k+
I

k⊥I

τIτx
σI−ρ

(k⊥x )∗ − ζI
1 +

∑
J∈N ζJ

(q⊥n )∗ +O(ε),

up to leading order in the collinear limit. While Sαi with i 6= 4, 5 remain
unchanged, Sα4 and Sα5 become

S1
4 = 1 + τ4

[
1−

∑
I∈N

(
τI

ρ−σI
− εξ

2

τI
(ρ−σI)2

)
k+
I

k⊥I

]
+O(ε2), (F.13)

S1
5 = 1 + τ5

[
1−

∑
I∈N

(
τI

ρ−σI
+
εξ

2

τI
(ρ−σI)2

)
k+
I

k⊥I

]
+O(ε2), (F.14)

S2
4 = 1 + τ4

k+
x

k⊥x

{
1

ρ
−
∑
I∈N

τI
ρ−σI

+

[√
1−z
z

〈xy〉
k⊥x

(
1

ρ
−
∑
I∈N

τI
ρ−σI

)

− ξ

2

(
1

ρ2
−
∑
I∈N

τI
(ρ−σI)2

)]
ε

}
+O(ε2), (F.15)

S2
5 = 1 + τ5

k+
x

k⊥x

{
1

ρ
−
∑
I∈N

τI
ρ−σI

−

[√
z

1−z
〈xy〉
k⊥x

(
1

ρ
−
∑
I∈N

τI
ρ−σI

)

− ξ

2

(
1

ρ2
−
∑
I∈N

τI
(ρ−σI)2

)]
ε

}
+O(ε2). (F.16)

Next, we consider the following linear combinations,

Sαx ≡ z Sα4 + (1−z)Sα5 , (F.17)

Sαy ≡
√
z(1−z)

(
−Sα4 + Sα5

)
. (F.18)
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such that δ2
(
Sα4
)
δ2
(
Sα5
)

= z(1−z) δ2
(
Sαx
)
δ2
(
Sαy
)
. At leading order eq. (F.17)

reduces to

S1
x = 1 + τx

(
1−

∑
I∈N

τI
ρ−σI

k+
I

k⊥I

)
+O(ε),

S2
x = 1 + τx

(
1

ρ
−
∑
I∈N

τI
ρ−σI

)
k+
x

k⊥x
+O(ε).

(F.19)

The interpretation of these equations is as follows: the collinear momenta have
been replaced by a new parent particle with momentum kx and positive helic-
ity, and to this particle we associate the variables (ρ, τx). The remaining step
is then to integrate out the variables (ξ, τy) associated to the collinear splitting
using the equations Sαy = 0 in eq. (F.18).

To leading order in ε the equations Sαy = 0 are independent of ξ, so we need
to expand them to next-to-leading order,

S1
y = τyΛ1 −

1

2
ε ξ
(

2
√
z(1−z)τx + (2z−1)τy

)
Λ2 +O(ε2), (F.20)

S2
y =

k+
x

k⊥x

{
Λ3τy −

(
τx −

1− 2z√
z(1−z)

τy

)
〈x y〉
k⊥x

Λ3ε

+
ξ

2

(
2
√
z(1−z)τx + (2z−1)τy

)
Λ4ε

}
+O(ε2), (F.21)

where we introduced the shorthands,

Λ1 = 1−
∑
I∈N

τI
ρ−σI

k+
I

k⊥I
,

Λ3 =
1

ρ
−
∑
I∈N

τI
ρ−σI

,

Λ2 =
∑
I∈N

τI
(ρ−σI)2

k+
I

k⊥I
,

Λ4 =
1

ρ2
−
∑
I∈N

τI
(ρ−σI)2

.

(F.22)

We use eq. (F.20) to fix τy,

τy =
εξ
√
z(1−z) Λ2 τx

Λ1 − 1
2εξ(2z−1)Λ2

. (F.23)
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Finaly, we use the global residue theorem to express the residue at S2
y in terms

of the residues at ξ = 0 and ξ = ∞. The residue at ξ = ∞ vanishes, and we
obtain

V
(
q4; 4+, 5+, . . . , n−1; qn

)
' 1

ε 〈x y〉
1√

z(1−z)
V
(
q4;K+, 6, . . . , n−1; qn

)
=

1

ε
Split−(4+, 5+)V

(
q4;K+, 6, . . . , n−1; qn

)
. (F.24)

• (h4, h5) = (+,−)

In the case where the collinear particles have opposite helicities, the general
philosophy is similar to the previous case, though some of the steps are tech-
nically more involved. We only highlight the main steps here. We perform the
following change of variables,

τx = z τ4 + τ5 and τy =

√
z

1−z
(
τ5 − (1−z)τ4

)
, (F.25)

such that dτ4dτ5 =
√

1−z
z dτxdτy, and eq. (F.10) reduces to

V
(
q4; 4, 5, . . . , n−1; qn

)
'
(
q⊥4
∗
q⊥n
) ∏

i∈P\{4}
I∈N\{5}

k⊥I
k⊥i

(1−z
z

)3/2

×

∫
n−1∏
a=6

dσadτa
τa

∫
dρdτx

∫
dξdτy
ξτ4τ5

∏
I∈N

δ2
(
S α̇I
) ∏
i∈P

δ2
(
Sαi
)

(ρ−σ6)σ67 · · ·σn−2,n−1σn−1
.

(F.26)
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The scattering equations entering eq. (F.26) can be cast in the form:

S1
i = 1 + τi −

∑
I∈N\{5}

τiτI
σi−σI

k+
I

k⊥I
− τiτ5

σi−ρ
k+
x

k⊥x
+O(ε), (F.27)

S2
i = 1 +

k+
i

k⊥i

(
τi
σi
−

∑
I∈N\{5}

τiτI
σi−σI

− τiτ5

σi−ρ

)
+O(ε), (F.28)

S̄ 1̇
I = k⊥I −

∑
i∈P\{4}

τIτi
σI−σi

k+
i −

τIτ4

σI−ρ
zk+

x + aτI +O(ε), (F.29)

S̄ 2̇
I = k⊥

∗
I −

k+
I

k⊥I

( ∑
i∈P\{4}

τIτi
σI−σi

k⊥
∗

i +
τIτ4

σI−ρ
zk⊥

∗
x + b0

τI
σI

)
+O(ε),

(F.30)

S1
4 = 1 + τ4 −

∑
I∈N\{5}

τ4τI

ρ−σI+1
2εξ

k+
I

k⊥I
− τ4τ5

ε ξ

k+
5

k⊥5
, (F.31)

S2
4 = 1 +

k+
4

k⊥4

(
τ4

ρ+ ε ξ/2
−

∑
I∈N\{5}

τ4τI

ρ−σI+1
2εξ
− τ4τ5

ε ξ

)
, (F.32)

S̄ 1̇
5 = k⊥5 −

∑
i∈P\{4}

τ5τi

ρ−σi−1
2εξ

k+
i +

τ5τ4

ε ξ
k+

4 + aτ5, (F.33)

S̄ 2̇
5 = k⊥

∗
5 −

k+
5

k⊥5

( ∑
i∈P\{4}

τ5τi

ρ−σi−1
2εξ

k⊥
∗

i −
τ5τ4

ε ξ
(k⊥4 )∗+ b

τ5

ρ−1
2εξ

)
,

(F.34)

with

a ≡ q⊥4
(

1−
∑
J∈N

tJ

)−1

, b ≡ q⊥∗n
(

1 +
∑
J∈N

tJ
σJ

k+
J

k⊥J

)−1

, (F.35)

and b0 in eq. (F.30) is the leading order approximation of b in ε.
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In the first step, we use δ(S1
4 ) to fix τy. Since S1

4 = 0 is a quadratic equation
in τy, it has two solutions as follows:

τ±y =

(
(2z−1)k+

5 τx + εξΞk⊥5
)
±
√
−4zεξk⊥5 k

+
5 +

(
k+

5 τx − εξΞk⊥5
)2

2k+
5

√
z(1−z)

,

(F.36)

with

Ξ ≡ 1−
∑

I∈N\{5}

τI

ρ−σI+1
2εξ

k+
I

k⊥I
. (F.37)

Equation (F.26) then reduces to

V
(
q4; 4, 5, . . . , n−1; qn

)
' (q⊥4 )∗q⊥n

( ∏
i∈P\{4}
I∈N\{5}

k⊥I
k⊥i

)
(1− z)1/2z−3/2

×

∫
n−1∏
a=6

dσadτa
τa

∫
dρdτx
τx

∫
dξ

ξ

(
∆|τy=t+y

−∆|τy=t−y

) τx

τ+
y − τ−y

,

(F.38)

where

∆ ≡
δ
(
S2

4

)
δ2
(
S̄ α̇5
)

(1 + τ4Ξ)

∏
i∈P\{4}

δ2
(
Sαi
) ∏
I∈N\{5}

δ2
(
S̄ α̇I
)

(ρ−σ6)σ67 · · ·σn−2,n−1σn−1
. (F.39)

Finally, we again use the global residue theorem and integrate out ξ by sum-
ming the residues at ξ = 0 and ξ =∞. The residue at ξ =∞ again vanishes,
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and we find

V
(
q4; 4, 5, . . . , n−1; qn

)
= −q⊥∗4 q⊥n

 ∏
i∈P\{4},I∈N\{5}

k⊥I
k⊥i

(1−z
z

)

×

∫
n−1∏
a=6

dσadτa
τa

∫
dρdτx
τx

(
∆|(ξ,τy)=(0,τ+y ) −∆|(ξ,τy)=(0,τ−y )

)
.

(F.40)

Let us analyse the contributions from the two terms in eq. (F.40) separately.
We start by considering the term containing ∆|(ξ,τy)=(0,τ+y ). We have

lim
ξ→0

τ+
y = τx

√
z

1−z
, (F.41)

which implies τ4 = 0 and τ5 = τx. Inserting this into the scattering equations,
we obtain

S1
i = 1 + τi −

∑
I∈N\{5}

τiτI
σi−σI

k+
I

k⊥I
− τiτx
σi−ρ

k+
x

k⊥x
+O(ε), (F.42)

S2
i = 1 +

k+
i

k⊥i

(
τi
σi
−

∑
I∈N\{5}

τiτI
σi−σI

− τiτx
σi−ρ

)
+O(ε), (F.43)

S̄ 1̇
I = k⊥I −

∑
i∈P\{4}

τIτi
σI−σi

k+
i + a′τI +O(ε), (F.44)

S̄ 2̇
I = (k⊥I )∗ −

k+
I

k⊥I

( ∑
i∈P\{4}

τIτi
σI−σi

(k⊥i )∗ + b′
τI
σI

)
+O(ε), (F.45)

S̄ 1̇
5 = k⊥x −

∑
i∈P\{4}

τxτi
ρ−σi

k+
i + a′τx +O(ε) (F.46)

S̄ 2̇
5 = (k⊥x )∗ − k+

x

k⊥x

( ∑
i∈P\{4}

τxτi
ρ−σi

(k⊥i )∗ + b′
τx
ρ

)
+O(ε), (F.47)
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with ζx ≡ τx
ρ
k+x
k⊥x

and

a′ = q⊥2

(
1− τx −

∑
J∈N\{5}

tJ

)−1

,

b′ = q⊥1
∗
(

1 + ζx +
∑

J∈N\{5}

ζJ

)−1

.

(F.48)

In addition, in this case we have

1 + τ4Ξ = 1, S2
4 = − 1√

z(1−z)
〈x y〉
k⊥x

ε+O(ε2). (F.49)

We see that S̄ α̇5 only depends on kx, and not on k4 and k5 separately. Thus, if
we let S̄ α̇x = S̄ α̇5 , we obtain the scattering equations associated with a single
parent particle with momentum kx and negative helicity, and we have

− 1

ε 〈x y〉
(1−z)2√
z(1−z)

V
(
q4;K−, 6, . . . , n−1; qn

)
(F.50)

=
1

ε
Split+(4+, 5−)V

(
q4;K−, 6, . . . , n−1; qn

)
. (F.51)

We can perform a similar analysis for the term ∆|(ξ,τy)=(0,τ−y ), and letting

S1
x = S̄ 1̇

5/k
⊥
x and S2

x = z S2
4 we obtain scattering equations for a parent parton

with momentum kx and positive helicity. This gives a contribution

1

ε [x y]

z2√
z(1−z)

V
(
q4;K+, 6, . . . , n−1; qn

)
(F.52)

=
1

ε
Split−(4+, 5−)V

(
q4;K+, 6, . . . , n−1; qn

)
. (F.53)

Quasi multi-Regge limits

In this section, we prove that our CHY-type formulas for the impact factors
and the Lipatov vertices have the expected factorization properties if the last
particle, with momentum kn−1, has much smaller rapidity as the other parti-
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cles. A similar analysis can be performed in the case where the first particle
has much greater rapidity than the other.

Here we only discuss the impact factor C(2; 3, . . . , n−1) and derive the fac-
torization in the limit y3 ' · · · ' yn−2 � yn−1. The argument follows the
same lines as the derivation of the factorization of the amplitude in QMRK in
Section 9.1, so we will be brief. More precisely, we use the Conjecture 1 and
two δ-functions to localize the integrals over τn−1 and ζn−1. The derivation
depends on the helicity of the particle n−1, and we now discuss each case in
turn.

Let us first study the case where the gluon with momentum kn−1 has positive
helicity. The two equations Sαn−1 = 0 are linear in ζn−1 and τn−1. More
precisely, we have

S1
n−1 = 1 + τn−1

(
1 +

∑
I∈N

ζI

)
= 0, S2

n−1 = 1 + ζn−1 = 0. (F.54)

We can use these equations to fix ζn−1 and τn−1. We obtain,

ζn−1 = −1 and τn−1 = − 1

1 +
∑

I∈N ζI
. (F.55)

We can insert eq. (F.55) into the remaining scattering equations S̄α̇I , and we get

S̄1
I = k⊥I −

∑
i∈P\{n−1}

τIτi
σI−σi

k+
i , (F.56)

S̄2
I = k⊥

∗
I −

k+
I

k⊥I

∑
i∈P\{n−1}

τIτi
σI−σi

k⊥
∗

i − ζI
(q⊥n − k⊥n−1)∗

1 +
∑

J∈N ζJ
. (F.57)

After ζn−1 and τn−1 have been integrated out, we immediately find

C
(
2−, 3, . . . , n−1

)
' C

(
2−, 3, . . . , n−2

) −1

|q⊥n−1|2
V
(
qn−1;n−1; qn

)
, (F.58)

where qn−1 = qn − kn−1, and the impact factor C
(
2−, 3, . . . , n−2

)
in the

right-hand side is given again by the CHY-type formula in eq. (9.7).
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Similarly, in another case where the gluon with momentum kn−1 has negative
helicity, we first use the equation

S̄ 2̇
n−1 = k⊥

∗
n−1 − ζn−1

q⊥
∗

n

1 +
∑

J∈N ζJ
= 0 (F.59)

to localize the integral over ζn−1, and the formula for the impact factor be-
comes

q⊥n×
−k⊥n−1 (q⊥n )∗

(k⊥n−1)∗(q⊥n−1)∗

∫
n−2∏
a=3

dσadτa
τa

1

σ34 · · ·σn−2

 ∏
i∈P,I∈N\{n−1}

k⊥I
k⊥i


×

∏
I∈N\{n−1}

δ

(
k⊥I −

∑
i∈P

τIτi
σI−σi

k+
i

)

×
∏

I∈N\{n−1}

δ

(
(k⊥I )∗ −

k+
I

k⊥I

∑
i∈P

τIτi
σI−σi

(k⊥i )∗ − ζI
(q⊥n − k⊥n−1)∗

1 +
∑

J∈N\{n−1}
ζJ

)

×

∫
dτn−1

τn−1
δ

(
k⊥n−1 + τn−1

∑
i∈P

ζik
⊥
i

)

×
∏
i∈P

δ

(
1 + τi −

∑
I∈N

τiτI
σi−σI

k+
I

k⊥I

)
δ

(
1 + ζi −

k+
i

k⊥i

∑
I∈N

τiτI
σi−σI

− ζiτn−1

)
.

Finally, we use the residue theorem to localize the integral over τn−1 on the
residues at τn−1 = 0 and τn−1 = ∞. The residue at τn−1 = ∞ vanishes,
and the residue at τn−1 = 0 immediately reproduces the desired factorization
formula.
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