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ABSTRACT

To accommodate the ever-growing need for accurate theoretical predictions of scattering events, recent
years have seen a tremendous amount of effort towards understanding the mathematical structure of
scattering amplitudes. As a testing ground for developing new computational techniques, theorists have
turned to idealised setups such as N = 4 SYM, the maximally supersymmetric Yang- Mills theory in four
dimensions. In this theory, scattering amplitudes display an enormous amount of interesting structure.
One of the most remarkable traits is the property of maximal transcendental weight, which implies that all
polylogarithmic functions appearing in an L-loop amplitude have weight 2L. As of yet for generic amplitudes
this property remains an observation. Furthermore, N = 4 SYM is the only gauge theory known to exhibit
this feature. In this thesis, we aim to investigate this property. First, we identify a special kinematic regime
called the multi-Regge or high-energy limit. Turning to pl...
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Abstract

To accommodate the ever-growing need for accurate theoretical predictions of

scattering events, recent years have seen a tremendous amount of effort towards

understanding the mathematical structure of scattering amplitudes. As a testing

ground for developing new computational techniques, theorists have turned to

idealised setups such as N = 4 SYM, the maximally supersymmetric Yang-

Mills theory in four dimensions. In this theory, scattering amplitudes display

an enormous amount of interesting structure. One of the most remarkable

traits is the property of maximal transcendental weight, which implies that all

polylogarithmic functions appearing in an `-loop amplitude have weight 2`. As

of yet for generic amplitudes this property remains an observation. Furthermore,

N = 4 SYM is the only gauge theory known to exhibit this feature.

In this thesis, we aim to investigate this property. First, we identify a special

kinematic regime called the multi-Regge or high-energy limit. Turning to planar

N = 4 SYM, we develop a computational technique in this regime which is

recursive in the perturbative order, allowing the maximal transcendentality

of the high-energy limit of planar N = 4 SYM to be shown to all orders.

Building on this, we study part of the parton-parton cross section in the high-

energy limit for generic gauge theories, aiming to find other theories which

may display maximal transcendentality. We find simple constraints in terms

of the matter content which imply maximal transcendental weight for this

object. For theories with matter in the adjoint and fundamental representation

of the gauge group, these constraints are satisfied by supersymmetric theories

with a vanishing one-loop beta function, hinting towards a connection between

maximal transcendentality and superconformal symmetry. Finally, we study a

two-loop amplitude in general kinematics in N = 2 superconformal quantum

chromodynamics, one of the theories found to display maximal transcendentality

in our computation in the high energy limit. Our aim is to see whether this

maximal transcendentality continues to hold beyond the high-energy limit. We

find that maximal transcendentality is broken, but the lower-weight terms at

leading-colour are given by a single multiple zeta value, confirming published

results. Beyond leading-colour, we observe an interplay between the lower-weight

terms and Catani infrared subtraction.
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Introduction

Fundamental Physics and Quantum Field Theory

Understanding the fundamental constituents of matter and their interactions

has been a major theme throughout the history of (first) philosophy and (later)

physics. As early as 500 B.C., the pre-Socratic philosophers in ancient Greece

postulated various theories on the fundamental nature of matter. Chief among

these was the atomism of Leukippos and Demokritos. In this theory, macroscopic

matter was thought to be built up of building blocks called atoms — from

the Greek “ατoµoν” meaning “indivisible”. Though the view that matter has a

discontinuous character at the smallest scales remains present in modern physics,

we have come a long way from the original atomistic theory. The development

of experimental techniques led to a confirmation of the existence of atoms –

which correspond to a certain chemical element, as had been hypothesised in the

early development of chemistry – in the early 20th century. Shortly after, the

existence of the negatively-charged electron was shown and it was understood

that the (no longer aptly-named) atom had a substructure. This substructure

consisted of a nucleus made up of positively charged protons and neutrons

with zero charge, surrounded by a cloud of orbiting electrons. The atomic

substructure was a welcome discovery, as it unified atomic chemistry by showing

that all chemical elements were to be understood as different compositions of

the same three building blocks, restoring the spirit of reductionism from which

the atomic ideology stemmed.

Probing further into the heart of matter requires studying its consituents at ever

higher energies. Thus we are dealing with physical objects at subatomic scales

travelling at high speeds. The physical theory which studies such objects is

called quantum field theory (QFT), in which elementary particles are considered

to be excitations of quantised fields permeating space-time. There are two such

types of fields, fermionic fields which correspond to matter particles such as

1
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the electron and bosonic fields which describe the elementary forces such as

electromagnetism, mediated by its force-carrying particle the photon. A theory

is then defined by a list of these fields and their interactions.

In the past decades, studying particle collisions has allowed us to discover many

more elementary particles, grouped in a set called the Standard Model. For one,

it was found that the proton and neutron are not elementary but rather are

made up of two types of quarks called up and down, held together by gluons

which mediate the strong nuclear force that binds them. The theory governing

these particles is called quantum chromodynamics (QCD). A neutral matter

particle called the neutrino was theorised from radioactive decay and later

experimentally found to exist. Said radioactive decay called for the need to

introduce another elementary force, called the weak nuclear force, mediated

by particles called the W and Z-bosons. This force was then unified with the

electromagnetic force into electroweak theory. Furthermore, it was found that

there are three generations of matter particles, by which we mean that each

matter particle comes in three versions, only differentiated by mass. The most

recent discovery and final puzzle piece of the Standard Model is the Higgs boson

which was discovered at the Large Hadron Collider (LHC). This particle is

required for the internal mathematical consistency of the Standard Model. The

particle content of the Standard Model is summarised in Figure 1.
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Figure 1: The particle content of the Standard Model of particle physics.

Coloured fields represent bosons, whereas the grey fields correspond to fermions,

the three generations being distinguished by shade. (Modified version of graphic

due to C. Burgard and D. Galbraith.)
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Though the Standard Model describes all known fundamental phenomena

(barring gravity) to striking accuracy, there are many experimental observations

and theoretical motivations which lead us to believe that it should be expanded

upon. To detect such physics beyond the Standard Model, we need accurate

theoretical predictions which can be compared to experimental results. Let us

now turn to the canonical way to compute such predictions in QFT.

Scattering Processes and Feynman Diagrams

Particle collisions are described by a quantity called the scattering cross section,

which represents the probability for a given process to occur. This probability

can be computed through the absolute value squared of a scattering amplitude,

the central objects of study in this thesis. Consider a scattering process of

two particles scattering, resulting in (N − 2) particles being emitted from the

collision as represented in Figure 2.

N

1

6

5

4

. . .

32

N − 1

Figure 2: A pictorial representation of a generic scattering process

We can model this process as an operation mapping an initial state |IN〉 to

a final state |OUT〉. The operator which defines this evolution is called the

S-matrix and the probability for the process to occur is given by |〈OUT|S |IN〉|2.

Separating out the trivial part of the S-matrix for which no scattering occurs

as S = 1 + iT , the scattering amplitude A is schematically given by equation

〈OUT| T |IN〉 ∼ δ(4)

(
p1 + pN −

N−1∑
i=2

pi

)
A , (1)

where the delta function imposes momentum conservation. The canonical

way to compute such objects is by expanding them in terms of the coupling

constant, a scalar variable which characterises the strength of the force exerted

in an interaction. When this number is small, we can get a good estimate

of the final result by computing the first few terms in this expansion, called

the perturbative expansion. These terms can be computed by making use of
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the technique of Feynman diagrams. In this technique, the interactions of

particles are translated into vertices of graphs, which can then be arranged into

diagrams schematically representing the scattering event in an infinite number

of ways. Such diagrams can then be translated to contributions to the scattering

amplitude using the Feynman rules, which assign to each diagram a function of

the external states. The topology of the diagram is related to the perturbative

order at which it contributes. The leading terms are characteristically given by

tree-level diagrams, which contain no closed cycles. Higher-order contributions

are referred to as loop diagrams, with the next-to-leading terms having one

closed cycle (one-loop), next-to-next-to-leading terms having two closed cycles

(two-loop), and so on. Examples of such diagrams are given in Figure 3. For

this reason, the perturbative orders are also referred to as loop orders.

Loop calculations are significantly more involved than computing at tree-level,

since the contribution associated to a loop diagram involves an integral over

the momentum running through the loop. Performing these integrations is no

easy feat, as there is no algorithmic way of tackling them at arbitrary orders,

and little knowledge on the special functions to which they may evaluate in

general. Furthermore, the number of diagrams which need to be computed

increases dramatically with the number of external particles, also called legs

or points of a diagram. For this reason, the state-of-the-art for computing

scattering amplitudes can be referred to as the loop-leg frontier. In QCD, where

state-of-the-art results are typically four-particle scattering events at two loops,

higher-loop and -leg results are incredibly challenging to obtain. To push this

loop-leg frontier further, there has been a lot of effort the last few decades

towards understanding the mathematical structure of scattering amplitudes,

with the aim of making these computations more feasible.

Figure 3: An example of a tree-level, one-loop and two-loop diagram,

respectively.

In order to study the mathematical structures arising from the computation of

scattering amplitudes, physicists have turned to theories which exhibit a high

degree of symmetry as mathematical laboratories, hoping that the techniques

developed in such idealised theories can be extended in some sense to theories

which represent physical nature. Maximally supersymmetric SU(Nc) gauge
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theory has proven to be particularly fertile ground for studying structures

arising in perturbative calculations. In this theory, loop integrals can often be

expressed by a class of special functions called polylogarithms, which display a

tremendously rich amount of algebraic structure.

It is natural to associate a certain number to each polylogarithm called the

weight, which is given by the number of integrations involved in the definition of

the function. An incredibly peculiar property of the maximally supersymmetric

SU(Nc) gauge theory, is that for all known results in this theory, all poly-

logarithmic functions appearing in an `-loop amplitude have weight 2`. This

property is referred to as the property of maximal transcendental weight and

maximally supersymmetric SU(Nc) gauge theory is the only known theory which

obeys this structure. There is as of yet no general proof that this property

holds for any result to all orders, nor an understanding of which property of the

maximally supersymmetric theory lies at its root. In this thesis, we undergo a

study of transcendental weight in various contexts. For the remainder of this

chapter, we give an overview of what is to come.

Outline of this Thesis

The work presented in this thesis aims to study the transcendental weight of

special functions appearing in scattering amplitudes in idealised theories with a

high degree of supersymmetry. It is organised as follows.

In Chapter 1, we define supersymmetry and its implications for quantum field

theories. In particular, we will review the supersymmetric version of the

Poincaré algebra and the field theories we can construct from it. After these

general considerations, we will turn to the theories in which this work situated:

maximally supersymmetric Yang-Mills theory and supersymmetrised versions

of quantum chromodynamics.

In Chapter 2, a short overview of modern techniques for computing scattering

amplitudes is presented. We will first review some methods for separating

the various types of functional dependences which arise in these computations,

before turning our attention to the computation of loop integrals and the special

functions which arise from such computations. We introduce the notion of

transcendental weight, a scalar quantity associated to such special functions and

whose possible range for a scattering amplitude in supersymmetric field theories

is the central topic of this thesis. Finally, we will comment on the planar limit of

maximally supersymmetric Yang-Mills theory, a setting in which the scattering

amplitudes display remarkable simplicity.
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The original work starts in Chapter 3, where we study the high-energy limit of

the planar maximally supersymmetric Yang-Mills theory [1–6]. After defining

precisely what this limit means for the kinematics, we review a conjectural

representation for the amplitude to all orders in terms of a certain integral

transform called the Fourier-Mellin transform. This conjectural representation is

obtained by resumming the perturbative expansion in terms of large logarithms

which appear in this limit. We will see that the geometry of the configuration

space restricts the special functions which may arise, and this in turn allows us

to simplify the computations dramatically. We present a method for computing

amplitudes in this theory recursively in loop order, and eventually comment

on the consequences this recursive structure has on the analytic structure of

scattering amplitudes, in particular with regard to the transcendental weight.

Having studied the high-energy limit in a specific theory, we turn to a more

general setup in Chapter 4, where we study a part of the resummed cross-section

for parton-parton scattering [7]. This object can easily be defined for a gauge

theory with generic matter content. Using quantum chromodynamics as a

testing case, we compute the various contributions to this object at next-to-

leading order in the large logarithm to high orders in the coupling constant

and consequently study their analytic properties and transcendental weight.

Subsequently, turning to generic matter content allows us to translate demands

on the transcendental weight of the result into constraints on the matter content.

In particular, we classify the theories with adjoint and fundamental matter for

which this object has uniform transcendental weight.

Finally, in Chapter 5 we turn to half-maximally supersymmetric quantum

chromodynamics, one of the theories we found to have uniform transcendental

weight in the high-energy limit. We aim to see whether uniform transcendentality

continues to hold beyond the high-energy limit. We review the computation of

the four-gluon two-loop amplitude in this theory [8] and study its mathematical

structure.
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1 | Supersymmetric

Field Theories

Symmetry has been a central principle in physics for the past decades. On the

one hand it operates as a guiding light for simplicity, as the most symmetric

description of a physical process will be the most elegant, often facilitating

further generalisation. On the other hand, beyond being an important ideal,

symmetry can be a useful tool for theorists. Imposing a symmetry which is

not present in nature allows one to study the mathematical structure of an

idealised setup before unleashing the developed machinery onto less symmetric

theories which model physical reality. The work described in this thesis was done

entirely in such mathematical laboratories, namely extended supersymmetric

field theories.

In this chapter we introduce the supersymmetry algebra and its effect on field

theories, before introducing the main protagonists of our story: N = 4 super

Yang-Mills theory and supersymmetric quantum chromodynamics.

9



10 1. Supersymmetric Field Theories

1.1. Supersymmetry Algebra and Multiplets

1.1.1. Embedding the Poincaré Algebra

The fundamental space-time symmetries of a quantum field theory in four

dimensions are described by the Poincaré algebra, defined by the set of generators

{Pµ,Mµν} where Pµ generates translations and Mµν generates Lorentz trans-

formations. Their commutation relations are given by

[Pµ, Pν ] = 0 ,
[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηνρMµσ + iηµσMνρ ,

[Mµν , Pρ] = −iηµρPν + iηνρPµ ,

(1.1)

where ηαβ = diag(1,−1,−1,−1) denotes the Minkowski metric in mostly-minus

convention. The generators Ji of rotations and Ki of Lorentz boosts are given

by

Ji = 1
2εijkMjk , Ki = M0i , (1.2)

where εijk is the four-dimensional Levi-Civita tensor. Note that the algebra

of Mµν is called the Lorentz algebra and its subalgebra which is connected to

the identity SO+(3, 1) has universal covering group SL(2,C). The generators of

SL(2,C) are given by the matrices

σµν = i

4(σµσ̄ν − σν σ̄µ) , (1.3)

where σµ denotes a vector of Pauli matrices

σµ =
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
, (1.4)

and we will refer to the elements ψα of the fundamental representation of

SL(2,C) as left-handed Weyl spinors, while the elements χ̄α̇ of the conjugate

representation will be called right-handed Weyl spinors.

It is a natural question whether this symmetry algebra can be extended in a

meaningful way. Can one define quantum field theories with a larger symmetry

algebra into which the Poincaré algebra is embedded non-trivially? In a seminal

paper published in 1967 [9], Coleman and Mandula showed that any such

bosonic extension of space-time symmetries would render the S-matrix trivial.

Since we are interested in interacting field theories this tells us that — at least

as far as bosonic generators go — the Poincaré algebra is the full story.
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It is however possible to add fermionic operators if we consider a graded extension

of the Poincaré algebra, which contains both even (E) and odd (O) operators

such that

{O,O} = E, [E,E] = E, [E,O] = O, (1.5)

where {., .} denotes the anticommutator. Such extensions, dubbed supersymmetry

(SUSY) were considered in the early 70s both in the context of field theory [10,11]

and in the early development of string theory [12–14]. It is natural to wonder

whether a no-go result similar to the Coleman-Mandula theorem could be

formulated in the graded case, as a priori there was no bound on the properties

of the odd operators. A paper from 1975 by Haag,  Lopuszański and Sohnius [15]

showed that if one allows odd generators, they must have spin 1/2. In what

follows, we will study the consequences of adding such objects to the Poincaré

algebra. For a more complete treatment of supersymmetry see [16].

1.1.2. Superalgebra

We add spin-1/2 generators {Qi
α | i = 1, . . . , N } with conjugates1 Q̄i

α̇ = (Qi
α)†

to the Poincaré algebra and call the resulting set the generators of the super-

Poincaré algebra. The odd generators Qi
α and their conjugates will henceforth

be refered to as supercharges.

We wish to determine the structure relations of these supercharges with the

generators of the Poincaré algebra. Their interaction with the Lorentz group

can be inferred from their spinorial character. Since supercharges are Weyl

spinors, the Lorentz group must act on them via the SL(2,C) generators,

Qi
α → Qi ′

α = exp
(

− i

2ω
µνσµν

)β

α

Qi
β . (1.6)

On the other hand, the supercharges are operators, which implies that Lorentz

transformations U = exp
(
− i

2ω
µνMµν

)
act on them as

Qi
α → Qi ′

α = U†Qi
αU . (1.7)

Comparing (1.6) and (1.7) to first order in ωµν , one can see that

[Qi
α,Mµν ] = (σµν)β

αQ
i
β . (1.8)

The commutator of the supercharges with the generator of translations can be

inferred from Jacobi relations. The index structure implies that it must be of

the form

[Qi
α, P

µ] = c (σµ)αα̇Q̄
iα̇ . (1.9)

1Throughout this thesis, we will denote the conjugate of an object a by ā.
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From the Jacobi identity[
Pµ, [P ν , Qi

α]
]

+
[
P ν , [Qi

α, P
µ]
]

= 0 , (1.10)

we can see that

0 = c (σµ)αα̇[P ν , Q̄iα̇] − c (σν)αα̇[Pµ, Q̄iα̇] ,
= |c|2(σν σ̄µ − σµσ̄ν)β

αQβ ,
(1.11)

which implies c = 0. From this we get

[Qi
α, P

µ] = 0 . (1.12)

The only structure relations left to be determined are those which contain only

supercharges. The anticommutator {Qi
α, Q̄

j

β̇
} must be of the form

{Qi
α, Q̄

j

β̇
} = 2Cij(σµ)αβ̇Pµ . (1.13)

The matrix C is necessarily Hermitian, so we can diagonalise it, as there exists

some unitary matrix U such that UCU−1 = diag(c̄) and by transforming

Qi
α → Ui

lQ
l
α , Q̄j

β̇
→ (U−1)j

kQ̄
k
β̇
, (1.14)

we get

{Ql
α, Q̄

k
β̇
} = 2(c̄)l δ

lk(σµ)αβ̇Pµ . (1.15)

We require (c̄)l > 0, as the anticommutator is intimately tied to the energy of

the states in our system, so we may rescale the supercharges to obtain

{Ql
α, Q̄

k
β̇
} = 2 δlk(σµ)αβ̇Pµ . (1.16)

Finally, we are left to determine the anticommutator {Qi
α, Q

j
β}. The most

general term we can write down which matches the index structure is

{Qi
α, Q

j
β} = εαβZ

ij + Cij (σµν)αβMµν . (1.17)

However, the left hand side commutes with Pµ due to (1.12) and the Jacobi

relation, whereas the second term in the right hand side does not. Thus we are

left with

{Qi
α, Q

j
β} = εαβZ

ij , (1.18)

where we have introduced new objects called central charges Zij = −Zji

which commute with all generators. These central charges form an algebra of

internal symmetries and are a unique feature of massive theories with extended

supersymmetry, by which we mean N > 1.
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To summarize, the structure relations involving the supercharges are of the form

[Qi
α, P

µ] = 0 ,
[Qi

α,Mµν ] = (σµν)β
αQ

i
β ,

{Qi
α, Q̄

j

β̇
} = 2 δij(σµ)αβ̇Pµ ,

{Qi
α, Q

j
β} = εαβZ

ij .

(1.19)

Combined with the commutation relations found in (1.1), this fixes our entire

algebra. In the following section we will discuss the representations of the

super-Poincaré algebra for various degrees of supersymmetry.

1.1.3. Supermultiplets

In what follows, we will refer to the representations of the super-Poincaré algebra

as supermultiplets. To start, let us discuss a few important facts regarding the

action of supercharges on states in quantum field theory. First of all, since the

supercharges are spinorial objects, if we construct a non-zero state |ω′〉 = Q|ω〉
by acting with the supercharges on an arbitrary state, |ω〉 and |ω′〉 must have

opposite statistics. The supercharges map bosons to fermions and vice versa.

Furthermore, two such states must be degenerate in mass, since [Qi
α, P

µ] = 0
and so also [Qi

α, P
2] = 0. A third consequence is that any representation of the

supersymmetric algebra will contain an equal amount of bosonic and fermionic

degrees of freedom. To see this, define the fermion number operator (−)F by

its action

(−)F |F 〉 = −|F 〉 , (−)F |B〉 = |B〉 , (1.20)

where |F 〉, |B〉 denote fermionic and bosonic states respectively. Clearly this

object anticommutes with the supercharges. Now compute the trace

Tr
(

(−)F {Qi
α, Q̄

j

β̇
}
)

= Tr
(

(−)FQi
αQ̄

j

β̇
− (−)F Q̄j

β̇
Qi

α}
)

= 0 . (1.21)

On the other hand, we know that

Tr
(

(−)F {Qi
α, Q̄

j

β̇
}
)

= Tr
(

(−)F 2 δij(σµ)αβ̇Pµ

)
,

= 2 δij(σµ)αβ̇ pµ Tr
(
(−)F

)
,

(1.22)

where pµ denotes the eigenvalues of Pµ and hence

0 = Tr
(
(−)F

)
=
∑

〈B|(−)F |B〉 +
∑

〈F |(−)F |F 〉 = NB −NF , (1.23)

where NB and NF are the total number of bosons and fermions respectively.
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Having covered some general properties of supermultiplets, we will now construct

the massless multiplet explicitly. If we restrict ourselves to massless particles,

we have P 2 = 0. In this case, we may write the generator of translations in

canonical form as

Pµ = (E, 0, 0, E) . (1.24)

This implies that

{Qi
α, Q̄

j

β̇
} = 4E δij

(
1 0
0 0

)
αβ̇

. (1.25)

From this we can see that Qi
2 must vanish. Note that this implies that the

central charges Zij = εαβ{Qi
α, Q

j
β} must also vanish, hence we observe that

they are features of massive theories only. If we define operators

αi = 1
2
√
E
Qi

1 , αi† = 1
2
√
E
Q̄i

1̇ , (1.26)

these trivialise the anticommutation relations {αi, αj†} = δij and can be

interpreted as annihilation and creation operators. Now, start from a state |ω〉
such that

αi|ω〉 = 0 , (1.27)

for all αi and suppose this state has helicity λ such that

M12|ω〉 = λ|ω〉 . (1.28)

We can construct N new states from |ω〉 by acting with αi†. The helicities of

these states can be determined from the structure relation (1.8)

M12α
i†|ω〉 =

(
αi†M12 + 1

2α
i†
)

|ω〉 =
(
λ+ 1

2

)
αi†|ω〉 . (1.29)

We can continue constructing states in this manner, taking into account that

(αi†)2 = 0. Starting from the state |ω〉 which is annihilated by all the operators

αi, we obtain the set of states listed in Table 1.1. Note that the total number

of states of a supermultiplet is given by

1 +
N∑

k=1

1
k!

k−1∏
l=0

(N − l) =
N∑

k=0

(
N
k

)
= 2N . (1.30)

In what follows, we will define the supersymmetric theories which will be the

main objects of study in this thesis.
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state helicity #(states)

|ω〉 λ 1

αi†|ω〉 λ+ 1
2 N

αj†αi†|ω〉 λ+ 1 1
2 N (N − 1)

αk†αj†αi†|ω〉 λ+ 3
2

1
6 N (N − 1)(N − 2)

...
...

...

αN †αN −1† . . . αi†|ω〉 λ+ N
2 1

Table 1.1: The structure of a generic massless supermultiplet of a N -

supersymmetric theory.

1.2. Maximally Supersymmetric Yang-Mills Theory

A priori there is no reason to believe that there should be an upper bound

on the number of supersymmetries we can put in a consistent gauge theory.

Looking at Table 1.1 however, we notice that arbitrarily high amounts of SUSY

will introduce arbitrarily high helicities to our supermultiplets. Put otherwise,

a bound on the possible helicities in a consistent quantum field theory would

imply a maximal degree of supersymmetry.

A heuristic argument for such a bound (which can be found in [17] in more

detail) is that massless particles with helicity > 1/2 must couple to conserved

quantities and these are limited by the symmetries of our system. Particles of

helicity ±1 couple to internal symmetry generators, particles of helicity ±3/2
couple to the supercharges and particles of helicity ±2 couple to the momentum

4-vector. There are no conserved quantities for higher spin fields to couple

to and hence we state that the maximal/minimal helicity for particles in a

consistent quantum field theory is ±2. This argument also implies that any

massless spin-2 field must be interpreted as a graviton, and any massless spin-3/2

field through its coupling to local supersymmetry2 must be interpreted as the

gravitino, the graviton’s superpartner.

If we restrict ourselves to global supersymmetry, the maximal helicity λmax = +1
and the minimal helicity is λmin = −1. A quick look at Table 1.1 will teach us

that the maximal degree of SUSY Nmax is given by

λmax − λmin = Nmax

2 . (1.31)

2By turning supersymmetry into a local symmetry, one must automatically gauge the

Poincaré algebra as they are joined in the same algebra. Any theory of local supersymmetry is

a theory of supersymmetric gravity or supergravity (SUGRA). For a pedagogical introduction

see [18].
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|ω〉 λ = −1

|1〉 |2〉 |3〉 |4〉 λ = − 1
2

|12〉 |13〉 |14〉 |23〉 |24〉 |34〉 λ = 0

|123〉 |134〉|124〉 |234〉 λ = 1
2

|1234〉 λ = 1

Figure 1.1: The N = 4 supermultiplet. The shorthand αa1†αa2† . . . αan†|ω〉 =
|a1a2 . . . an〉 was used for compactness and λ represents the helicities of the

states defined at the respective level of recursion.

We conclude that the maximal degree of global supersymmetry allowed in a

four-dimensional quantum field theory is N = 4. In this case, the multiplet is

entirely fixed by the high degree of symmetry.

We give a graphical representation of the multiplet in Figure 1.1. In total,

the multiplet has 16 degrees of freedom which are grouped as one vector

field Aµ, four Weyl fermions ψi
α and six real scalars Φi. We can construct a

quantum field theory by associating the vector field to a SU(Nc) gauge boson.

Such a supersymmetrized version of SU(Nc) gauge theory is referred to as

super Yang-Mills theory (SYM), in our case N = 4 super Yang-Mills theory.

Since all particles are grouped into one multiplet, all fields are in the adjoint

representation of the gauge group. The Lagrangian of the theory can be obtained

by dimensional reduction of ten-dimensional N = 1 super Yang-Mills theory on

T 6 [19] and is given by

LN =4 = Tr
(

− 1
4FµνF

µν − 1
2(DµΦi)2 + α2

4 [Φi,Φj ]2

+ i

2Ψ̄ /DΨ + α

2 Ψ̄Γi[Φi,Ψ]
)
,

(1.32)

where the Γi are gamma-matrices of the ten-dimensional Clifford algebra and

the fermionic degrees of freedom were captured by ten-dimensional Weyl spinors

Ψ. Note that we consider the theory at the origin of its moduli space where

there are no scalar vacuum expectation values.
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Due its high degree of symmetry, N = 4 SYM is a remarkable gauge theory with

many interesting properties. One these is that it is conformal [20], meaning that

there is no inherent mass scale in the theory. Any theory with only massless

fields and marginal couplings will be conformal at the classical level, but N = 4
SYM stays conformal even at the quantum level. In particular its beta function

is zero to all orders in perturbation theory. This can be readily observed at

one-loop order by plugging the particle content into the expression

β0 = − α2

2π2

11
3 Nc − 1

6
∑

i

CS
i − 2

3
∑

j

CF
j

 , (1.33)

which is valid for SU(Nc) gauge theories with coupling α and where C
S/F
i

denotes the quadratic Casimirs of the real scalars and Weyl fermions in the

theory respectively. As all particles are in the adjoint representation their

quadratic Casmirs are Nc and one readily obtains β0 = 0. To observe the

all-order vanishing, we may use the NSVZ beta function [21] which is an explicit

form for the all-order beta function for super Yang-Mills theories with added

matter multiplets. For pure super Yang-Mills theories it is given by

βSYM
NSVZ = − α2

2π2Nc

(
4 − N

) [
1 − αNc(2 − N )

2π

]−1
, (1.34)

which clearly vanishes when N = 4. In the following chapters, we will discuss

many more properties of N = 4 super Yang-Mills theory, in particular in the

context of perturbative computations.

1.3. Supersymmetric Quantum Chromodynamics

A second class of supersymmetric theories we will consider in this thesis are

supersymmetrized versions of quantum chromodynamics (QCD), by which

we mean SU(Nc) Yang-Mills theories with Nf additional fermions in the

fundamental representation of the gauge group. In the next subsections we

will introduce both the minimal and extended supersymmetric versions of this

theory.

1.3.1. N = 1 Supersymmetric QCD

N = 1 supersymmetric QCD (SQCD) is given by N = 1 super Yang-Mills

theory, which is made up of the N = 1 vector multiplet and its conjugate in the
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|ωV 〉 λ = 1
2

|1V 〉 λ = 1

|ωC〉 λ = 0

|1C〉 λ = 1
2

Figure 1.2: The N = 1 vector- and chiral multiplet respectively. The

shorthand αi†|ωI〉 = |iI〉 was used for compactness and λ represents the helicities

of the states defined at the respective level of recursion.

adjoint representation of SU(Nc), with Nf added N = 1 chiral multiplets in the

fundamental and antifundamental representation and their conjugate partners.

The relevant super-multiplets can be found in Figure 1.2. The total particle

content consists of Nc adjoint vectors and Weyl fermions, Nf (anti)fundamental

Weyl fermions and 2Nf (anti)fundamental real scalars. Plugging this into (1.33),

we obtain

βN =1 SQCD
0 = − α2

2π2 (3Nc −Nf ) . (1.35)

The one-loop beta function vanishes when Nf = 3Nc. The all-order beta

function is given by NSVZ as follows

βN =1 SQCD
NSVZ = − α2

2π2

(
3Nc +Nf (γ(α) − 1)

)(
1 −Nc

α

2π

)−1
, (1.36)

where γ(α) denotes the anomalous dimension of the matter multiplets. In [22],

it was shown that within the region 3Nc/2 < Nf < 3Nc, we can tune the

parameters of the theory such that the all-order beta function vanishes. We will

henceforth refer to this region as the conformal window of N = 1 SQCD.

1.3.2. N = 2 Supersymmetric QCD

N = 2 supersymmetric QCD (SQCD) is given by N = 2 super Yang-Mills

theory, which is made up of the N = 2 vector multiplet and its conjugate in the

adjoint representation of SU(Nc), with Nf added N = 2 hypermultiplets in the

fundamental and antifundamental representation. The relevant supermultiplets

are given in Figure 1.3. This implies a matter content of Nc adjoint vectors, 2Nc

adjoint Weyl fermions, 2Nc adjoint real scalars, Nf (anti)fundamental Weyl

fermions and 2Nf (anti)fundamental real scalars.
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|ωV 〉 λ = 0

|1V 〉 |2V 〉 λ = 1
2

|12V 〉 λ = 1

|ωH〉 λ = − 1
2

|1H〉 |2H〉 λ = 0

|12H〉 λ = 1
2

Figure 1.3: The N = 2 vector- and hypermultiplet respectively. The shorthand

αi†αj†|ωI〉 = |ijI〉 was used for compactness and λ represents the helicities of

the states defined at the respective level of recursion.

For the one-loop beta function (1.33), we obtain

βN =2 SQCD
0 = − α2

2π2 (2Nc −Nf ) . (1.37)

This tells us that the one-loop beta function vanishes when Nf = 2Nc. However,

N = 2 super Yang-Mills theories with additional matter multiplets are one-loop

exact. By this we mean that if the beta function vanishes at first order in

perturbation theory, it will vanish to all orders and the theory is conformal. We

can observe this in our case from the NSVZ beta function [23]

βN =2 SQCD
NSVZ = − α2

2π2

(
2Nc −Nf

)
,

= βN =2 SQCD
0 ,

(1.38)

which exactly equals the one-loop in (1.37). At the value Nf = 2Nc, which

we will refer to as the conformal point, the theory is refered to as N = 2
superconformal QCD (SCQCD).
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2 | Scattering Amplitudes

Our current most important experimental probes of fundamental physics

are scattering experiments. The theoretical predictions with which these

experiments aim to compare can be deduced from scattering amplitudes. These

scattering amplitudes are traditionally determined by the calculation of Feynman

diagrams. This technique, however, has its limitations. For one, the number of

diagrams which need to be computed grows dramatically with the multiplicity

of the process. Furthermore, results at higher orders in perturbation theory

involve the computation of arbitrarily complicated loop integrals for which no

straightforward algorithm exists.

To push the loop-leg frontier, many techniques have been developed in the past

decades to facilitate and compartmentalise these computations. In the context

of idealised setups such as N = 4 super Yang-Mills theory in particular, this

has led to a field of study which aims to reformulate the entire computational

scheme. In what follows, we will give a brief review of some techniques and

results from this field of study which we will invoke in later chapters.

21
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2.1. Quantum Number Management

Scattering amplitudes in gauge theory are functions of the initial and final states

of the scattering process. More precisely, this means they depend on the types

of external particles as well as their momenta, helicities and colour charges.

In order to facilitate computation, several techniques have been developed

throughout the past decades to separate these different types of functional

dependence, which we review here. For a pedagogical introduction see [24].

2.1.1. Supersymmetric Ward Identities

As we saw in the previous chapter, different particles in supersymmetric field

theories are related by action of the supercharges. Since amplitudes are given

by wedging the non-trivial part of the S-matrix with separated particle states at

infinity, there are relations amongst different amplitudes for which the external

states are in the same supermultiplet implied by the action of the supercharges.

Such relations are called supersymmetric Ward identities [25].

To see how they arise, rewrite the definition of a generic amplitude (1) such

that it is given by field operators acting on the vacuum. Consider an amplitude

with all particles outgoing and label the field operators as Oi = Oi(pi, ci, λi),
we then get

An = 〈0|O1 . . .ON |0〉 , (2.1)

where the operators act to the left. Now, if the vacuum is supersymmetric, it is

necessarily invariant under the action of the supercharges

Qi|0〉 = 0 = Q̄i|0〉 . (2.2)

From this we may deduce that

0 = 〈0|[Q̄i,O1 . . .ON ]|0〉 ,

=
n∑

i=1
(−1)

∑
j<i

F (Oj)〈0|O1 . . . [Q̄i,Oi] . . .ON |0〉 ,
(2.3)

where F (Oj) = 1 if Oj corresponds to a fermionic field and is 0 otherwise.

Taking into account the discussion in Section 1.1.3 where we studied the effect of

the supercharges on particle states, we see that (2.3) describes a linear relation of

amplitudes with different helicities and matter content. Solving the resulting set

of equations allows us to find a set of amplitudes with particular matter content

and helicities which span all other external states in the same supermultiplet, see

for example [26]. In what follows, we will restrict ourselves to gluon amplitudes.
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2.1.2. Helicity Amplitudes

An N -gluon amplitude depends on helicities, colour charges and momenta.

Amplitudes for which the helicities are specified are called helicity amplitudes.

SUSY Ward identities link amplitudes with different values for the helicities of

the external particles and constrain the set of helicity amplitudes. For example

take O(g±) and O(λ±) the field operators of the ±1 helicity gluon and ±1/2
helicity gluino1 respectively, we then see from (2.3) and (2.2) that

〈0|[Q̄i,O1(λ+)O2(g+) . . .ON (g+)]|0〉 = 0 → A [1+2+ . . . N+] = 0 , (2.4)

where A [1+2+ . . . N+] is the N -gluon amplitude with all helicities positive. A

similar argument can be used to show that the gluon amplitude where one gluon

has negative helicity vanishes

A [1+ . . . i− . . . N+] = 0 , 1 ≤ i ≤ N . (2.5)

Note that while these constraints hold to all orders for supersymmetric field

theories, this implies they must also hold for non-supersymmetric theories at

tree level. The non-zero gluon amplitude with the most uniform set of helicities

is referred to as maximally helicity violating (MHV) and is given by

A [1+ . . . i− . . . j− . . . N+] , 1 ≤ i ≤ j ≤ N . (2.6)

Flipping more helicities amounts to (next-to)k-maximally helicity violating

(NkMHV) contributions

A [1+ . . . i−1 . . . i
−
2 . . . i

−
k . . . N

+] , 1 ≤ i1 ≤ · · · ≤ ik ≤ N . (2.7)

Note that helicity configurations can also be related by parity conjugation. For

example, the parity conjugate of the MHV A [1− . . . i+ . . . j+ . . . N−] is referred

to anti-MHV.

2.1.3. Colour Ordering

Now we consider how to factor out the colour dependence [27–30] of gluon

scattering amplitudes. We consider pure SU(Nc) Yang-Mills theories. Then,

colour factors in amplitudes arise from gluon-gluon interactions through the

1The fermionic particle in the SU(Nc)-gauged vector multiplet.
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following vertices

a b

cd

∼
∑

e

fabefecd , a

b

c

∼ fabc , (2.8)

where fabc and are the structure constants of the SU(Nc) algebra. To gain

insight in the different types of colour factors which can appear in this context

it is useful to express the structure constants explicitly

fabc ∼ Tr
(
T a[T b, T c]

)
, (2.9)

to write everything in terms of generators. The colour factors in the amplitude

are (products of) traces of generators of the form Tr(. . . T a . . . ) Tr(. . . T a . . . ).
We can use the completeness relation

(T a)j
i (T a)l

k = δl
iδ

j
k − 1

Nc
δj

i δ
l
k , (2.10)

to simplify such factors. For a gluon amplitude A(`)
N with ` loops and N legs,

this leads to a decomposition in powers of Nc

A(`)
N =

∑
σ∈SN /ZN

gN−2+2` N `
c Tr(T aσ(1) . . . T aσ(N))A(`)

N ;1(σ(1), . . . , σ(N))

+ O(N `−1
c ) ,

(2.11)

where g denotes the coupling strength, SN/ZN are all non-cyclic permutations

of the N -tuple and we call A
(`)
N ;1 the colour-ordered amplitude. Colour-ordered

amplitudes are functions of the kinematics only and as their name suggests,

have a particle-ordering which is fixed by the colour structure. The subleading

terms, which appear only at loop level, carry a multi-trace colour structure and

their kinematically dependent parts are referred to as partial amplitudes.

Now that we have discussed methods to strip off the helicity and colour

information of the amplitude, we will discuss the computation of the kinematical

dependence in the next section.
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2.2. Special Functions and Transcendentality

2.2.1. Feynman Integrals

To compute the kinematical dependence of a scattering amplitude, one must

evaluate a multiple tensor integral over the loop momenta. The canonical first

approach to this problem is to rewrite the tensor integral as a leading tensorial

factor multiplying a sum of scalar integrals referred to as Feynman integrals.

The generic Feynman integral for massless theories can be written as

I({pi}, {Di}, {ai}) =
∫ ∏̀

i=0

dDli
(2π)D

n∏
j=1

1
(Dj)aj

, (2.12)

where the denominators Di are given by squares of generic linear combinations

of loop and external momenta

Di =

 n∑
j=0

αijpj +
n∑

j=0
βij lj

2

. (2.13)

We may represent these integrals pictorially by the graph which reproduces

the integral upon application of the Feynman rules. From a certain scattering

process one obtains Feynman integrals with the same set of denominators {Di}
but different exponents {ai}, referred to as an integral family.

Said Feynman integral family can be reduced to a minimal set using so-called

integration-by-parts (IBP) identities [31, 32] which rely on the fact that for any

well-behaved function f(k) in D dimension the integral is shift-independent,

meaning for an arbitrary h ∈ R and momentum k one gets∫
dDp f(p) =

∫
dDp f(p+ hk) →

∫
dDp

∂f

∂kµ
(p) = 0 . (2.14)

Applying such a relation to an integral as defined in (2.12) with a single vector

numerator vµ(pi, li) given by one of the external or loop momenta results in∫ ∏̀
i=0

dDli
(2π)D

∂

∂lµa

n∏
j=1

vµ

(Dj)aj
= 0 , (2.15)

where we decide to differentiate in one of the loop momenta la. Now note that

∂

∂lµa

n∏
j=1

vµ

(Dj)aj
= ∂vµ

∂lµa

n∏
j=1

1
(Dj)aj

+
n∑

b=1

nb

Db

∂Db

∂lµa

n∏
j=1

vµ

(Dj)aj
. (2.16)
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Clearly ∂vµ/∂lµa will be 1 if vµ = lµa and 0 if vµ equals any other momentum.

In the second term, vµ(∂Db/∂l
µ
a ) can be expressed as a linear combination of

scalar products of momenta, which in its turn can be rewritten as a polynomial

of the denominators. From this, one can see that (2.15) defines a linear relation

of Feynman integrals in the same family. These IBP identities can be used to

reduce the set of scalar integrals in a certain family to a minimal set called

master integrals. An example of this reduction from tensor integrals to a set of

masters will be considered in Section 5.1.2.

Note that the Feynman integrals in (2.12) are defined for a generic number

of dimensions D. This is done because the integral typically diverges in four

dimensions due to the unboundedness of the loop momenta over which we

integrate on the one hand, or due to internal loop momenta becoming collinear

with external momenta or external momenta becoming soft, meaning having low

energy on the other. Such divergences are called ultraviolet (UV) divergences

and infrared (IR) divergences respectively and can be regulated by setting

D = 4 − 2ε, subsequently expanding in ε and thus making the appearance

of the divergence for ε → 0 manifest. This procedure is called dimensional

regularisation. These divergences are then taken care of by the process of

renormalisation.

The evaluation of master integrals — both analytically and numerically — is an

active field of study with interest from both physics and pure mathematics. In

particular, the study of special functions which may arise from such integrations

and the properties of these function spaces has proven to be a very rich research

topic and the understanding of these structures have led to very powerful

computational techniques. In the next section we will explore one such space of

functions which we will encounter throughout this thesis, namely the space of

polygarithmic functions.

2.2.2. Multiple Polylogarithms

Polylogarithmic functions arise naturally from the computation of Feynman

integrals. The largest class of such functions is called multiple polylogarithms

(MPLs) [33,34]. It is defined by an iterated integral [35] over rational kernels

G(a1, . . . , an; z) =
∫ z

0

dt
t− an

G(a1, . . . , an−1; t) , (2.17)

where G(; z) = 1, ai ∈ C is a set of constants which define the function and z is

a complex variable. When all the ai are zero we define the function to be

G(~0n; z) = 1
n! logn(z) . (2.18)
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Many well-known functions can be expressed as MPLs, such as arbitrary powers

of logarithms through (2.18), the classical polylogarithms

Lin(z) = −G(~0n−1, 1; z) , (2.19)

as well as the harmonic polylogarithms (HPLs) [36]

H(~a; z) = (−1)pG(~a; z) , (2.20)

where ai ∈ {−1, 0,+1} and p is the number of elements in ~a which are equal

to +1. For a polylogarithm G(a1, . . . , an; z) the number of indices n, which

corresponds to the number of integrations involved in its definition, is referred

to as its weight. We refer to linear combinations of MPLs with rational numbers

as coefficients as pure functions.

The vector space of polylogarithmic functions HMPL forms multiple mathematical

structures. The first we will discuss is the shuffle algebra [37]. This structure

implies that products of polylogarithmic functions which depend on the same

variable can always be rewritten as a sum of re-shuffled polylogarithms of higher

weight. Take for example the product of two weight-one polylogarithms

G(a; z)G(b; z) = G(a, b; z) +G(b, a; z) , (2.21)

this can be easily shown by using Fubini’s theorem and splitting the resulting

integration domain into two triangles. For a generic product we write

G(~a1; z)G(~a2; z) =
∑

~a∈~a1�~a2

G(~a; z) , (2.22)

where ~a1�~a2 represents the set of shuffles of the two vectors of indices, meaning

all permutations of their union which retain the internal ordering of the vectors

~a1 and ~a2. Note that if we define the weight of a product of two polylogarithms

to be the sum of the weights of its terms, these relations preserve the weight. A

few more examples of shuffle relations are given below

G(a; z)G(b, c; z) =G(a, b, c; z) +G(b, a, c; z) +G(b, c, a; z) , (2.23)

G(a, b; z)G(c, d; z) =G(a, b, c, d; z) +G(a, c, b, d; z) +G(a, c, d, b; z) (2.24)

+G(c, a, b, d; z) +G(c, a, d, b; z) +G(c, d, a, b; z) .

The polylogarithms also form a structure known as a Hopf algebra. Such a

structure is defined by a vector space H with multiplication µ and coproduct ∆

µ : H ⊗ H → H , ∆ : H → H ⊗ H , (2.25)
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such that ∆(µ(a, b)) = µ(∆(a),∆(b)) and (I ⊗ ∆)∆ = (∆ ⊗ I)∆, and a linear

map S called the antipode which is defined by the relation

µ(S ⊗ I)∆(x) = 0 , ∀x /∈ Q . (2.26)

The antipode is an involution, S2 = I with I the identity, and it preserves the

product and the coproduct,

S(µ(a, b)) = µ(S(b), S(a)) and ∆S = (S ⊗ S)τ∆ , (2.27)

with τ(a ⊗ b) = b ⊗ a. This structure can be endowed upon the vector space

H̃MPL ≡ (HMPL mod π). In this context it is convenient to use an alternative

notation for polylogarithms, where we allow for more general lower integration

limits. Following [34], we define

I(a0; an, . . . , a1; z) =
∫ z

a0

dt
t− an

I(a0; an−1, . . . , a1; t) . (2.28)

It is easy to see that G(a1, . . . , an; z) = I(0; an, . . . , a1; z). As a shorthand,

consider the word ~a ≡ an . . . a1 and write I(0;~a; z) = I(0; an, . . . , a1; z). If ~b

and ~c are sub-words of ~a, then we denote by I~b(0;~c; z) the iterated integral

with the same integrand as I(0;~c; z), but whose integration contour encircles

the points z = bi with bi ∈ ~b in the order defined by ~b. We can always express

I~b(0;~c; z) in terms of polylogarithms:

1. If~b = ∅ is the empty word, then I∅(0;~c; z) = I(0;~c; z) is just a polylogarithm.

2. I~b(0;~c; z) = 0, unless ~b is a sub-word of ~c, because otherwise we take

residues at points where there are no singularities in the integrand.

3. I~b(0;~b; z) = (2πi)|~b|, where |~b| denotes the length of the word ~b.

4. If ~b = ci1 . . . cim is a proper sub-word of ~c = c1 . . . ck, we have

I~b(0;~c; z) = (2πi)|~b|I(0; c1, . . . , ci1−1; ci1) . . . I(cim
; cim+1, . . . , ck; z) .

Using this notation, the coproduct on polylogarithms is given by [34],

∆(I(a0;~a; z)) =
∑

∅⊆~b⊆~a

I(a0;~b; z) ⊗
[
(2πi)−|~b| I~b(a0;~a; z)

]
, (2.29)

where the sum runs over all subwords of ~a. The coproduct of the logarithm and

the classical polylogarithms are given by

∆(logn(z)) =
n∑

k=0

(
n

k

)
logk(z) ⊗ logn−k(z) , (2.30)
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and

∆(Lin(z)) = 1 ⊗ Lin(z) +
n−1∑
k=0

Lin−k(z) ⊗ logk(z)
k! . (2.31)

Note that the sum of the weights of the tensor product components one obtains

from the coproduct always equals the weight of the original function. The

coproduct can be iterated in a unique way to decompose the polylogarithm into

multiple tensor products of lower weight components.

The maximal iteration which results in a tensor product of weight one functions

is referred to as the symbol S of the polylogarithm. In this maximal iteration,

since all factors are logarithms, the explicit ‘log’ forms are often dropped and it

is written purely as a tensor product of the arguments of the logarithms. For

example,

S(Lin(z)) = −(1 − z) ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
n−1 times

. (2.32)

The possible entries of the symbol of a function is commonly referred to as

its alphabet. The symbol has proved to be an invaluable tool to the physics

community for simplifying the complicated functions which arise from loop

computations [38,39].

A particularly interesting property of the coproduct is its interaction with the

analytic properties of functions. In particular, it can be shown that for the

derivative ∂z and the discontinuity Disc across some branch cut, one gets [40]

∆Disc = (Disc ⊗ I)∆ , (2.33)

∆∂z = (I ⊗ ∂z)∆ . (2.34)

The antipode is determined recursively in the weight through the condition

µ(S ⊗ I)∆(G(~a; z))) = µ(I ⊗ S)∆(G(~a; z))) = 0 , if |~a| ≥ 1 . (2.35)

For example, if |~a| = 1, (2.35) takes the form

S(G(a; z)) +G(a; z) = 0 , (2.36)

and so the antipode of polylogarithms of weight one is uniquely determined.

Similarly, for polylogarithms of weight two (2.35) reduces to

0 =S(G(a, b; z)) + S(G(a; z))G(b; a)
+ S(G(b; z)) [G(a; z) −G(a; b)] +G(a, b; z)

=S(G(a, b; z)) −G(a; z)G(b; a)
−G(b; z) [G(a; z) −G(a; b)] +G(a, b; z) ,

(2.37)



30 2. Scattering Amplitudes

where the last step follows upon inserting the corresponding weight-one result.

We see that S(G(a, b; z)) is uniquely determined by (2.37). The action of the

antipode can be made more manifest when considering the way it acts on the

symbol. By commuting the antipode with the symbol map, we can naturally

define its action on symbols. Upon doing this, we see that

S(a1 ⊗ · · · ⊗ an) = (−1)nan ⊗ · · · ⊗ a1 , (2.38)

and so the antipode represents an inversion of the symbol, with an overall minus

sign depending on its length.

Much of the mathematical structure of multiple polylogarithms has been

implemented in the Mathematica package PolyLogTools [41], which was used

in the work described throughout this thesis.

We conclude by mentioning that MPLs are certainly not the end of the story.

Starting from two-loop integrals, functions appear which can not be classified

in this set. Though progress has been made in understanding the most generic

iterated integral which may arise from a Feynman integral [42, 43], there is

as of yet no full understanding of the largest possible function space and its

properties. A larger set of functions which has been getting a lot of attention

recently are iterated integrals which include elliptic integration kernels. These

objects are referred to as elliptic multiple polylogarithms [44] and much of their

mathematical structure is currently being uncovered [45–49]. However, the work

in this thesis is purely polylogarithmic, by which we mean that it will always

be possible to write the results of our computations in terms of MPLs.

2.2.3. Transcendental Weight

In the previous section we introduced the space of multiple polylogarithms and

the rich mathematical structure they describe. We mentioned the existence of a

scalar quantity called weight which is associated to each MPL and which was

preserved by both the shuffle relations and the action of the coproduct. This

implies that the space lends itself to be written as a direct sum of subspaces

made up of polylogarithms with a fixed weight

HMPL =
∞⊕

n=0
H(n)

MPL , H(a)
MPL · H(b)

MPL ⊂ H(a+b)
MPL ,

∆H̃(a)
MPL ⊂

a⊕
i=0

H̃(a−i)
MPL ⊗ H̃(i)

MPL ,

(2.39)

in this case the algebra is called graded. The weight is also referred to as

transcendental weight or transcendentality, which refers to the fact that MPLs
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are conjectured to be transcendental functions. Transcendental functions are

defined as functions which are not algebraic, where algebraic functions are given

by the root of a polynomial with coefficients that are rational functions in the

variables. It is also conjectured that there are no relations between MPLs of

different weights, thus separating the subspaces of fixed weight completely.

The space of MPLs implicitly defines another graded algebra, the set of multiple

zeta values (MZVs)

ζ(a1, . . . , ak) =
∑

n1>···>nk

k∏
i=1

1
nai

i

, (2.40)

which are conjectured to be transcendental numbers, meaning numbers which

aren’t roots of any polynomial with rational coefficients. The MZVs are related

to MPLs via the following equality

ζ(a1, . . . , ak) = (−1)kG(0, . . . , 0︸ ︷︷ ︸
ak−1

, 1, 0 . . . , 0︸ ︷︷ ︸
ak−1−1

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
a1−1

, 1; 1) , (2.41)

and so we can naturally associate the weight
∑k

i=1 ai to any MZV ζ(a1, . . . , ak).
It is worth mentioning that for even n the zeta function ζ(n) is proportional to

an even power of π via

ζ(2n) = (−1)n+1B2n

2(2n)! (2π)2n , (2.42)

where B2n denotes rational numbers called the Bernoulli numbers. Thus we

naturally associate weight one to π, which is a transcendental number through

the Hermite-Lindemann theorem. The shuffle product on polylogarithms

naturally implies a shuffle product of MZVs and so these numbers also define a

graded algebra. Furthermore, analogously to the MPL case, it is conjectured

that there are no relations amongst MZVs which mix the weights.

Coming back to physics, transcendental weight is of interest for the study of

scattering amplitudes. Since amplitudes can be described as sums of Feynman

integrals, when these integrals can be expressed in terms of MPLs (and MZVs)

we can study what the weights are of the functions that appear. In D = 4 − 2ε
dimensions, coefficients of εk of an `-loop amplitude are expected to contain

terms of weight at most 2`+ k. However, there is typically no lower bound on

the transcendentality of these coefficients.

There is one gauge theory for which there seems to be a lower bound, namely

N = 4 super Yang-Mills theory. For N = 4 SYM, all amplitudes which have

been computed satisfy the upper bound exactly, see e.g. [38, 50–72]. This
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property is referred to as the maximal transcendentality of N = 4 SYM. The

maximal transcendental weight property of N = 4 SYM was not only observed

for scattering amplitudes, but it was also established for certain anomalous

dimensions [73–80], form factors [81–85] and correlation functions [86–89]. As of

yet it is not understood why N = 4 SYM exhibits this property, and it has only

been shown for the MHV amplitude in a special limit [90]. Note that beyond

gauge theories, there is growing evidence that amplitudes in N = 8 SUGRA

have the same uniform weight as in N = 4 SYM [91–95].

The central topic to the work described in this thesis is to study this property

further, and to see whether it can be proven in special setups. Furthermore,

we investigate whether this constraint also manifests itself for gauge theories

which are similar to N = 4 SYM to understand better on which property of

the theory it hinges exactly.

2.3. The Planar Limit and Dual Conformal Symmetry

In this thesis we study various SU(Nc) gauge theories. It is natural to wonder

what happens when we take Nc to be very large, as this could offer a simplified

setup. Define the limit

Nc → ∞ where g2Nc ∼ O(1) , (2.43)

to be the ‘t Hooft limit. It is clear from (2.11) that in this case only the leading-

colour term contributes. However, there are even diagrammatic consequences

to taking this limit. In [96], ‘t Hooft introduced a double-line notation for

amplitudes in SU(Nc) gauge theories which allows one to determine the propor-

tionality to Nc immediately from the diagram itself. From this it can be

concluded that in the ‘t Hooft limit, only diagrams which can be represented

entirely in two dimensions or planar diagrams contribute. For this reason the

limit is also referred to as the planar limit.

The planar limit of N = 4 super Yang-Mills theory (or planar N = 4 SYM )

is a particularly interesting setup to study scattering amplitudes, due to the

extra symmetries which arise. A leading-colour N -gluon helicity amplitude

is a function of N colour-ordered momenta {pi} which we may choose to be

outgoing. Due to momentum conservation, these momenta can be arranged in a

closed N -gon. This polygon is equivalently described by specifying the vertices

xi − xi−1 = pi , (2.44)

which we henceforth refer to as dual coordinates [97].
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Figure 2.1: The relation between momenta pi and dual coordinates xi for five

particles scattering with outgoing momenta.

The dual coordinates give an alternative functional dependence for scattering

amplitudes. Upon expressing scattering amplitudes in these dual variables, it

turns out the integrand is also invariant under conformal transformations of

the xi. This is referred to as dual conformal symmetry [98–103]. It is an entire

second symmetry group which is independent of the original superconformal

symmetry. The ordinary and dual (super)conformal symmetry groups close

together into an infinite symmetry group called the Yangian [104], which hints

towards the integrability of planar N = 4 SYM [105].

Dual conformal symmetry can be made manifest by writing the amplitudes

in terms of variables which are covariant under the action of the symmetry

generators [106]. First, note that any null vector pi can be written in terms of

a negative λα and positive chirality λ̃α̇ spinor [28] such that

pαα̇
i = λα

i λ̃
α̇
i . (2.45)

This set of variables is referred to as spinor helicity variables. They naturally

define scalar invariants through the two-dimensional Levi-Civita tensor

〈λ1λ2〉 = εαβλ
α
1λ

β
2 , and [λ̃1λ̃2] = εα̇β̇λ̃

α̇
1 λ̃

β̇
2 . (2.46)

The dual coordinates can also be described in terms of spinorial quantities.

Writing

µα̇
i = xαα̇

i λi α , (2.47)

allows us to define twistor variables called momentum twistors [107]

ZI
i = (λα

i+1, µ
α̇
i+1) . (2.48)

Since the spinor helicity variables allow for arbitrary rescalings of the form

λα
i → t λα

i , λ̃α̇
i → t−1 λ̃α̇

i , (2.49)



34 2. Scattering Amplitudes

and (2.47) is homogeneous, the momentum twistors ZI
i are elements of complex

projective space2 CP3. To form invariants out of these momentum twistors, we

contract the SU(2, 2) index I with the four-dimensional Levi-Civita tensor to

get the four-bracket

〈i, j, k, l〉 ≡ εIJKLZ
I
i Z

J
j Z

K
k Z

L
l . (2.50)

Differences of dual coordinates xij = xi − xj can be expressed in terms of these

four-brackets upon choosing an arbitrary infinity twistor I which fixes the null

cone at infinity in the coordinate patch given by the dual coordinates. For cross

ratios of such differences referred to as dual conformal cross ratios, this choice

cancels out and we obtain

Uijkl ≡
x2

ijx
2
kl

x2
ikx

2
jl

= 〈i− 1, i, j − 1, j〉〈k − 1, k, l − 1, l〉
〈i− 1, i, k − 1, k〉〈j − 1, j, l − 1, l〉 , (2.51)

where indices are cyclically identified. These dual conformal cross ratios

make dual conformal symmetry manifest and are the preferred variables for

expressing amplitudes in planar N = 4 Super Yang-Mills. Since the kinematics

is determined by N momentum twistors, the configuration space is given by a

Grassmanian3 [90]

ConfN (CP3) ∼= G(4, N)/(C∗)N−1 . (2.52)

Investigating the consequences of this Grassmanian geometry has been a major

theme in the study of amplitudes in planar N = 4 Super Yang-Mills and

has led to a much deeper understanding of their mathematical structure.

One such structure associated to Grassmanian spaces are cluster algebras

[108, 109], which are commutative rings equipped with a distinguished set of

generators called cluster variables which can be constructed from an initial

cluster through a process called mutation. In [110], it was observed that the

symbol alphabet of the six- and seven-particle MHV amplitude at two loops is

described entirely by a special set of variables defined on the cluster algebra

of the corresponding Grassmanian, refered to as cluster Poisson variables or

X -coordinates. Representing the initial cluster for G(4, N) in a quiver of four-

brackets in Figure 2.2, we can readily determine these X -coordinates. The

nodes in boxes are called frozen nodes and the others are called unfrozen. For

each unfrozen node one can form X -coordinates by taking the product of all

nodes connected by incoming arrows and dividing by the product of all nodes

2Complex projective space CPn is defined as the space of complex lines through the origin

of Cn+1
3The Grassmanian Gr(k, n) over a field F is defined as the set of all k-dimensional subspaces

of Fn. We denote the complex Grassmanian by G(k, n).
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Figure 2.2: The initial quiver for G(4, N) with frozen nodes in boxes.

connected by outgoing ones. We label the X -coordinates as Xij for i = 1, 2, 3
and j = 1, . . . , N − 5 following the obvious structure of Fig. 2.2. Explicitly,

they are given by

X1j = 〈1 2 3 j + 3〉〈1 2 j + 4 j + 5〉
〈1 2 3 j + 5〉〈1 2 j + 3 j + 4〉

,

X2j = 〈1 2 3 j + 4〉〈1 2 j + 2 j + 3〉〈1 j + 3 j + 4 j + 5〉
〈1 2 3 j + 3〉〈1 2 j + 4 j + 5〉〈1 j + 2 j + 3 j + 4〉

,

X3j = 〈1 2 j + 3 j + 4〉〈1 j + 1 j + 2 j + 3〉〈j + 2 j + 3 j + 4 j + 5〉
〈1 2 j + 2 j + 3〉〈1 j + 3 j + 4 j + 5〉〈j + 1 j + 2 j + 3 j + 4〉

.

(2.53)

We may represent these coordinates in a quiver once again, as is shown in

Figure 2.3. The X -coordinates are conjectured to form a complete set of

coordinates for the kinematical dependence of the scattering amplitude. Thus,

the cluster algebra attached to the configuration space describing the kinematics

of an amplitude is related its singularities.

Figure 2.3: The X -coordinates of the initial quiver for G(4, N).
Dual conformal symmetry was observed for the integrand, but is broken

upon integration through the introduction of infrared divergences. The MHV

amplitude can be factorised into an all-order Ansatz which captures the IR

divergences, the so-called Bern-Dixon-Smirnov (BDS) Ansatz [51], and a

remainder function which is IR finite

AMHV
N = ABDS

N exp (RN ) . (2.54)
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The remainder function RN is dual conformal invariant [111, 112], and so it

can be written as a function of dual conformal cross ratios (2.51). Of these

cross ratios, only 3N − 15 are algebraically independent in four dimensions.

This can be seen straightforwardly, as there are 4N coordinates associated to

the xi, constrained by N relations x2
i,i+1 = 0 and the dual conformal group in

four dimensions, which has 15 generators. Hence we see that for the four- and

five-gluon scattering amplitudes, the only dual-conformal invariant functions are

constants, and because of this fact the BDS Ansatz is exact and the remainder

function vanishes to all loop orders, R4 = R5 = 0. This tells us that for

up to five external particles, the scattering amplitude is completely fixed by

symmetry considerations which is an incredibly strong statement. Starting from

six particles, there is a non-trivial finite remainder [112–114]. Beyond MHV the

amplitude is described by the ratio function

PNkMHV
N = ANkMHV

N

AMHV
N

, (2.55)

which is also conjectured to be a dual conformal invariant object [97].

These remainder and ratio functions have been the focus of many computational

efforts. Planar N = 4 SYM is the theory in which the loop-leg frontier can be

pushed the furthest. For example, the six-particle remainder function is known

up to seven loops in both the MHV and the NMHV configuration [38,52–58,60,

62, 64]. For seven particles the MHV amplitude is known analytically at two

loops [115] and there are symbol level results at four loops in the MHV case

and at three loops in the NMHV case [59,61]. Though these achievements are

immense indeed, there is much to be discovered in the context of the perturbative

expansion of planar N = 4 SYM. For one, there is as of yet no full understanding

of its function space and in particular, the range of transcendental weights which

can appear in a generic amplitude is not understood – though it is expected

to be maximally transcendental. To gain insight in these questions, in the

following chapter we will consider a special kinematic limit of planar N = 4
SYM. In this simplified setup, we will see that understanding the geometry

of the configuration space of amplitudes allows us to deduce their analytic

properties.
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of Planar N = 4 SYM

In this chapter we explore the high energy limit of planar N = 4 Super Yang-

Mills theory. The high energy limit was originally studied in the early days

of QCD, when it was observed that four-particle scattering1 in the Regge

limit s � |t| where the scattering process is dominated by gluon exchange in

the t-channel, exhibits a rich analytic structure. This study led to the BFKL

equation in QCD, which resums the corrections in αS log(s/|t|) ∼ O(1) to

parton-parton scattering at leading logarithmic accuracy (LLA) [116–118] and

next-to-LLA (NLLA) [119–121]. The building blocks which appear in this

resummation at LLA are gluon amplitudes in the high energy or multi-Regge

limit, where the outgoing gluons are strongly ordered in rapidity. In the BFKL

formalism, which we will turn to in Chapter 4, the gluon rapidities are integrated

out, and the BFKL equation is reduced to a two-dimensional problem in terms

of purely transverse degrees of freedom.

In planar N = 4 SYM in the Euclidean region where all Mandelstam invariants

are negative, scattering amplitudes in the multi-Regge limit factorise into

building blocks given by the effective resummed propagator in the t-channel

and a vertex describing the emission of gluons along said resummed propagator.

These building blocks can be determined to all orders from four- and five-

particle scattering and hence scattering amplitudes in the multi-Regge limit are

trivial in the Euclidean region [122–126]. Starting from six external particles,

scattering amplitudes have Regge cuts that are not captured by this factorised

form. As a consequence, amplitudes in the multi-Regge limit are no longer

trivial if this limit is taken after analytic continuation to a Mandelstam region,

already at leading logarithmic accuracy [122, 123]. The discontinuity across

the cut is described to all orders by a dispersion relation, and the integrand of

the dispersion integral factorises in Fourier-Mellin space. The building blocks

1With Mandelstam variables s = (p1 + p2)2, t = (p2 + p3)2 and u = (p1 + p3)2.

37
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describing the factorisation are closely related to the energy spectrum and the

S-matrix of the flux-tube excitations in the collinear OPE approach [127,128].

A lot of effort has gone into determining scattering amplitudes in planar N = 4
SYM in the multi-Regge limit, both at strong [129,130] and at weak coupling [54,

58,127,128,131–137]. In particular it was observed in [134] that the six-point

amplitude in the multi-Regge limit can be expressed perturbatively in terms of

single-valued polylogarithmic functions [138].

In this chapter, we will show that in the multi-Regge limit, one can completely

describe the geometry underlying the scattering for any number of external

particles, and hence classify all the iterated integrals that appear in the

amplitude. We will start by introducing the high energy limit, followed by the

study of its impact on the form of amplitudes in this theory. Then, we will

review a formalism introduced in [1] and further developed in [2, 3, 6] which

simplifies the computation of these amplitudes greatly, and which allows us to

study the function space and transcendentality of the theory to all orders in

the coupling constant [1,6].
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3.1. The Geometry of High-Energy Scattering

3.1.1. Multi-Regge Kinematics

The focus of this chapter are planar colour-ordered scattering amplitudes in

N = 4 SYM in a special region of the phase space of N -gluon scattering, the

so-called multi-Regge kinematics (MRK) [139].

To define this limit, we consider 1 + 2 → 3 + · · ·+N scattering with all particles

outgoing. We will work in lightcone coordinates

p±
k ≡ p0

k ± pz
k, pk ≡ pk⊥ = px

k + ipy
k , (3.1)

where the scalar product of two vectors p and q is given by

2 p · q = p+q− + p−q+ − pq̄ − p̄q . (3.2)

Without loss of generality, we choose the reference frame in which the momenta

of the initial-state gluons lie on the z-axis with p0
2 = pz

2, implying p+
1 = p−

2 =
p1 = p2 = 0. In this case the multi-Regge limit corresponds to the limit where

p+
3 � p+

4 � · · · � p+
N−1 � p+

N , |p3| ' · · · ' |pN | . (3.3)

The on-shell conditions p2
i = p+

i p
−
i − |pi|2 = 0 then imply

p−
3 � p−

4 � · · · � p−
N−1 � p−

N . (3.4)

We are considering planar N = 4 SYM, which exhibits dual conformal invariance.

This implies that the kinematical dependence can be expressed in terms of

conformal cross-ratios (2.51). Following [140,141], from the set of all the Uijkl

one can pick a particular algebraically independent set of 3N − 15 cross ratios

as (see Figure 3.1),

u1i =
x2

i+1,i+5x
2
i+2,i+4

x2
i+1,i+4x

2
i+2,i+5

, u2i =
x2

N,i+3x
2
1,i+2

x2
N,i+2x

2
1,i+3

, u3i =
x2

1 i+4x
2
2,i+3

x2
1,i+3x

2
2,i+4

. (3.5)

All other cross ratios can be expressed as algebraic functions in these 3N − 15
independent cross ratios.

In the multi-Regge limit, scattering is described by an effective t-channel

exchange (see Figure 3.2). To describe the kinematics accordingly, we will define

momenta qi which determine the t-channel invariants

qi = −
i+3∑
k=2

pk , ti+1 = q2
i . (3.6)
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xi+5

xi+4

xi+2 xi+1

xN

x1

xi+2xi+3

x2x1

xi+4

xi+3

Figure 3.1: The algebraically independent set of cross-ratios {u1i, u2i, u3i}.

We will also relabel the momenta of the gluons emitted along the t-channel

propagator

ki ≡ pi+3 , 1 ≤ i ≤ N − 4 . (3.7)

p2 p3

p1 pN

k1

k2

kN−5

kN−4

q0

q1

qN−5

qN−4

Figure 3.2: A diagram representing t-channel exchange, illustrating the

definitions of momenta ki and qi.
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The conformally invariant cross ratios (u1i, u2i, u3i) of (3.5) can be rewritten in

terms of these variables [140,141]. In MRK they take the form

u1i = 1 − δi
|ki + ki+1|2

|ki+1|2
+ O(δ2

i ) ,

u2i = δi
|qi−1|2

|qi|2
+ O(δ2

i ) ,

u3i = δi
|qi+1|2 |ki|2

|qi|2 |ki+1|2
+ O(δ2

i ) ,

(3.8)

where we define the ratio δi ≡ k+
i+1/k

+
i . From (3.3) it is clear that in the

multi-Regge limit δi → 0, and so we see that all the u1i tend to 1 at the same

speed as the u2i and u3i vanish. It is convenient to define the reduced cross

ratios [140,141],

ũ2i = u2i

1 − u1i
=

|qi−1|2 |ki+1|2

|qi|2 |ki + ki+1|2
+ O(δi) ,

ũ3i = u3i

1 − u1i
=

|qi+1|2 |ki|2

|qi|2 |ki + ki+1|2
+ O(δi) .

(3.9)

If we introduce dual coordinates in the transverse space CP1

qi = xi+2 − x1 , ki = xi+2 − xi+1 , (3.10)

the reduced cross ratios ũ2i and ũ3i can be written as (squares of) cross ratios

in CP1,

ũ2i ' |ξ2i|2 , ũ3i ' |ξ3i|2 , (3.11)

with

ξ2i = (x1 − xi+1) (xi+3 − xi+2)
(x1 − xi+2) (xi+3 − xi+1) , ξ3i = (x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+2) (xi+3 − xi+1) . (3.12)

These objects are not independent, ξ2i = 1−ξ3i, and we introduce the transverse

cross ratios which we will henceforth refer to as Fourier-Mellin coordinates

zi ≡ 1 − 1
ξ2i

= (x1 − xi+3) (xi+2 − xi+1)
(x1 − xi+1) (xi+2 − xi+3) = −

qi+1 ki

qi−1 ki+1
. (3.13)

Note that these cross ratios encode the full kinematical information of the

process. In the next section, we will take a closer look of the geometry of the

configuration space of scattering in the multi-Regge limit.
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3.1.2. The Moduli Space of Riemann Spheres with Marked Points

In the previous section we argued that in the multi-Regge limit, the configuration

space is described entirely by N − 2 transverse dual coordinates xi. Since planar

N = 4 SYM is dual conformal invariant, these transverse dual coordinates can

be interpreted as points on the complex projective line CP1. Such a configuration

space is equivalent to the moduli space of Riemann spheres with N − 2 marked

points

ConfN−2(CP1) ≡ M0,N−2 . (3.14)

To demonstrate this limit behaviour explicitly, one can make use of the cluster

algebra structure discussed in the previous chapter. More precisely, one can show

that the cluster algebra associated to ConfN (CP3) in full kinematics reduces to

the cluster algebra of M0,N−2 [1]. To show this, it is useful to note that the

dual conformal invariance of planar N = 4 SYM implies that the multi-Regge

limit defined in (3.3) is equivalent to the strongly-ordered multi-soft limit where

the momenta pi, 3 ≤ i ≤ N − 3, are soft, with pi softer than pi+1. The soft

limit of pi+1 corresponds to the limit where the momentum twistors Zi−1, Zi

and Zi+1 are aligned. In general, let us consider a limit where the twistor Zi

approaches the line between Zj and Zk. One may parametrise this situation as

follows

Zi → Ẑi =Zj + αi
〈j j−1 k+1 k+2〉
〈k j−1 k+1 k+2〉Zk

+ εi
〈j k k+1 k+2〉

〈j−1 k k+1 k+2〉Zj−1 − εiβi
〈j j−1 k k+2〉

〈k+1 j−1 k k+2〉Zk+1 ,
(3.15)

where the limit where Zi, Zj and Zk are aligned corresponds to the limit εi → 0
and αi and βi are scalar parameters which characterise this multi-soft limit.

One can show using this parameterisation that the multi-soft limit where we

sequentially take the momenta pi, 3 ≤ i ≤ N − 3 to be soft2 corresponds to the

multi-Regge limit. This allows us to easily compute the multi-Regge limit of

momentum twistors, and thus also of the X -coordinates.

Taking said limit, one sees that all X -coordinates as given in (2.53) of the form

X2j vanish, while the others reduce to either holomorphic or anti-holomorphic

cross ratios in CP1,

X1j = (x2 − xj+2)(xj+3 − xj+4)
(x2 − xj+4)(xj+2 − xj+3) , X3j = (x1 − xj+1)(xj+2 − xj+3)

(x1 − xj+3)(xj+1 − xj+2) . (3.16)

These MRK X -coordinates are singular when two points xi coincide, which

is precisely the singularity structure of the moduli space M0,N−2. However,

2This corresponds to taking twistor Z2 to the line (Z1Z3), then Z3 to the line (Z1Z4) and

so on.



3.1. The Geometry of High-Energy Scattering 43

we have obtained two copies of coordinate sets, a holomorphic and an anti-

holomorphic one. This can be understood from the cluster algebra in Figure 2.3,

since in the multi-Regge limit the middle line in the quiver vanishes, and so

the cluster algebra splits into two disconnected parts. Each of these two parts

is isomorphic to the cluster algebra AN−5, which is the cluster algebra that

describes the singularity structure of ConfN−2(CP1) ' M0,N−2. Hence, we

conclude that in MRK the cluster algebra of ConfN (CP3) reduces to the cluster

algebra AN−5 ×AN−5, where the two copies of AN−5 are complex conjugate to

each other.

As a consequence, we expect that planar scattering amplitudes in N = 4 SYM

in MRK can be expressed through iterated integrals with singularities precisely

when the X -coordinates in (3.16) are singular, i.e., iterated integrals made out

of the one-forms d log(xi − xj) (and their complex conjugates). Note that the

cluster algebra in MRK is of finite type, independently of the number of external

particles. The cluster algebras associated to the six and seven-point amplitudes

in full kinematics are of finite type, but starting from eight-particle scattering,

the cluster algebra is infinite [110, 142]. Remarkably, we conclude that the

cluster algebra in full kinematics must always reduce to a cluster algebra of

finite type in the multi-Regge limit.

The space M0,N−2 exhibits a SL(2,C) symmetry, related to the action of the

conformal group on the transverse plane. Since dimC SL(2,C) = 3 we see

dimC M0,N−2 = N − 5 . (3.17)

This implies that the kinematics is equally well parameterised by N − 5
coordinates upon exploiting the symmetry to fix three coordinates to certain

values. Such an example is given by the simplicial coordinates, obtained by

fixing three of the N − 2 points to 0, 1, and ∞. A particularly useful set of

simplicial coordinates for our purposes is named simplicial MRK coordinates

(x1, . . . ,xN−2) → (1, 0, ρ1, . . . , ρN−5,∞) . (3.18)

They are related to the Fourier-Mellin coordinates by

zi = (1 − ρi+1)(ρi − ρi−1)
(1 − ρi−1)(ρi − ρi+1) , ρ0 = 0 , ρN−4 = ∞ . (3.19)

There is another class of simplicial coordinates which will be very useful in what

follows. Let us start from the Fourier-Mellin coordinates, and single out zi.

Then there is always a set of simplicial coordinates (t(i)
1 , . . . , t

(i)
N−5) such that

t
(i)
i = zi. Indeed, from (3.13) we see that we can define these coordinates by

(x1, . . . ,xN−2) → (∞, t
(i)
1 , . . . , t

(i)
i , 0, 1, . . . , t(i)

N−5) . (3.20)

We will refer to these coordinates as simplicial coordinates based at zi.
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3.1.3. Single-Valued Multiple Polylogarithms

We have determined that scattering amplitudes in the multi-Regge limit of

planar N = 4 SYM must be built up out of iterated integrals on M0,N−2,

which can be written in terms of multiple polylogarithms [143]. Note, however,

that physics imposes additional constraints on our amplitudes, since massless

scattering amplitudes can have branch points at most when a Mandelstam

invariant vanishes or becomes infinite. This requirement puts strong constraints

on the first entry of the symbol of the polylogarithms which may appear [144].

Dual conformal invariance implies that the first entry must be built up of cross

ratios Uijkl. In a Mandelstam region where some of the external particles have

negative energies, the branch points are determined by products of cross ratios

that become equal to 0, 1 or ∞. In other words, in a Mandelstam region the

first entry is either a cross ratio Uijkl or (1 −
∏

ijkl U
aijkl

ijkl ) with some aijkl ∈ Z.

From the kinematical considerations in Section 3.1.1 one can show that in

the multi-Regge limit such entries become absolute values squared of cross

ratios in CP1 [1]. To start, we note that there are N(N − 5)/2 multiplicatively

independent cross ratios, which we may choose as

u1i , u2i , u3i , 1 ≤ i ≤ N − 5 ,
Uij , 2 ≤ i ≤ j − 4 ≤ N − 5 , (3.21)

where the uij have been defined in (3.5) and

Uij ≡ Ui,j+1,j,i+1 . (3.22)

The multi-Regge limit of (u1i, u2i, u3i) was analysed in Section 3.1.1. The Uij

tend to 1 in the multi-Regge limit. We introduce new reduced cross ratios which

have a finite multi-Regge limit,

Ũij ≡ 1 − Uij∏j−4
k=i−1(1 − u1k)

→

∣∣∣∣∣xi − xj−1

xi − xi+2

j−3∏
k=i+1

xk − xk+1

xk − xk+2

∣∣∣∣∣
2

. (3.23)

Recall the equivalence between the multi-Regge and multi-soft limits. The

multi-soft limit is approached sequentially according to ε2 � ε3 � . . . � εN−4,

where εi are the small parameters introduced in (3.15). We see from (3.15)

that the cross ratios u1i = 1 + O(εi+1), whereas Uij = 1 + O(εi . . . εj−4), and

so all the Uij approach 1 at a different speed. Let us now first look at the

case where the first entry is Uijkl. It is sufficient to analyse the multiplicatively

independent cross ratios in (3.21). They all tend to 1, except for u2i and u3i,

which we may exchange for the corresponding reduced cross ratios ũ2i and ũ3i.

The latter reduce to absolute values squared of cross ratios in CP1, see (3.11).
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Next, let us analyse the case of an entry of the type (1 −
∏

ijkl U
aijkl

ijkl ). It is

sufficient to assume that the factors in the product are taken from (3.21). If

one of the factors goes to zero in MRK, then the claim is true, because we have

for example,

log(1 − ua
2i U) →

{
a log u2i + logU , if a < 0 ,
0 , if a > 0 , (3.24)

where U is any product of cross ratios that tend to 1 in MRK. If all the factors in

the product
∏

ijkl U
aijkl

ijkl tend to 1, then we know that one of the factors tends to

one much slower than the others. Hence, up to terms that are power-suppressed

in MRK, we only need to keep this factor. The claim then follows from (3.23).

As the first entries describe the branch points of the function (2.33) and we find

these entries to be positive for all values of xi, we conclude that the resulting

function should be single-valued.

Since above we show that our results are required to be single-valued and we wish

to write them in a way which is manifestly single-valued, we will consider linear

combinations of multiple polylogarithms such that their branch cuts cancel.

More specifically, we can associate to every multiple polylogarithm3 Ga1,...,an
(z)

a so-called single-valued multiple polylogarithm (SVMPL) Ga1,...,an
(z). The

SVMPL is a linear combination of multiple polylogarithms in the variable z

and its complex conjugate z̄ such that it is single-valued and it obeys the same

holomorphic differential equation as the original multiple polylogarithm

∂zGa1,...,an(z) = 1
z − a1

Ga2,...,an(z) . (3.25)

One can show [145,146] that there is a one-to-one map which sends each MPL

to its single-valued analogue

s (Ga1,...,an
(z)) ≡ Ga1,...,an

(z) . (3.26)

This map is given by

s = µ(S̃ ⊗ I)∆ , (3.27)

where S̃ is defined as a modified antipode

S̃(G~a(z)) ≡ (−1)|~a| S(G~a(z)) , (3.28)

with S the complex conjugate of the antipode. This purely combinatoric map

can be used to construct SVMPLs in a straightforward way. Its action on

3In what follows, we use the shorthand Ga1,...,an (z) ≡ G(a1, . . . , an; z).
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weight-one and -two multiple polylogarithms is given by

s (Ga(z)) = Ga(z) = Ga(z) +Gā(z̄) , (3.29)

s (Ga,b(z)) = Ga,b(z) = Ga,b(z) +Gb̄,ā(z̄) +Gb(a)Gā(z̄) +Gb̄(ā)Gā(z̄)

−Ga(b)Gb̄(z̄) +Ga(z)Gb̄(z̄) −Gā(b̄)Gb̄(z̄) . (3.30)

As an example, let us have a closer look at the weight-one case

Ga(z) = Ga(z) +Gā(z̄) = log
(

1 − z

a

)
+ log

(
1 − z̄

ā

)
= log

∣∣∣1 − z

a

∣∣∣2 . (3.31)

Since the argument of the logarithm on the right-hand side is positive-definite,

we see explicitly that the function is single-valued. The proof that G~a(z) is

single-valued now proceeds by induction in the weight. Let us now assume that

all functions G are single-valued up to a certain weight n, and let us show that

a function G~a(z) of weight n + 1 is still single-valued. First let us mention -

using once again the notation defined in (2.28) - that the coproduct and the

single-valuedness map compose in the following way

∆s(I(a0;~a; z)) =
∑

∅⊆~c⊆~b⊆~a

s(I~c(a0;~b; z)) ⊗
[
S̃(I(a0;~c; z)) I~b(a0;~a; z)

]
, (3.32)

which can be shown from (3.27) explicitly as was done in [1]. Crucially, we see

that the first factors of the coproduct are given by SVMPLs. Now we apply

the coproduct to the discontinuity of a generic G~a(z) of weight n+ 1. Since the

discontinuity operator only acts in the first factor of the coproduct (2.33) and

we claim all lower-weight SVMPLs to be single-valued, only the term with the

weight-(n+ 1) function in the first factor may contribute and we get

∆Disc(G~a(z)) = (Disc ⊗ I)∆(G~a(z)) = Disc(G~a(z)) ⊗ 1 . (3.33)

From (2.35) we obtain

0 = µ(I ⊗ S)∆Disc(G~a(z)) = Disc(G~a(z)) · S(1) = Disc(G~a(z)) , (3.34)

and so G~a(z) is single-valued.

Single-valued multiple polylogarithms inherit many of the properties of ordinary

MPLs. In particular, SVMPLs form a shuffle algebra and satisfy the same

functional relations as their multi-valued analogues. Note that we have managed

to define the function space of our scattering amplitudes purely by kinematical

considerations.

Now that we have explored the consequences of the high-energy limit on

kinematics the underlying geometry, we will turn to dynamics. In what follows,

we will consider the representation of amplitudes in MRK in N = 4 SYM.
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3.2. Amplitudes in the Multi-Regge Limit

3.2.1. Large Logarithms and Resummation

As was stated in the introduction to this chapter, in the multi-Regge limit the

appearance of large logarithms forces us to resum the perturbative expansion.

Thus, in the multi-Regge limit we consider logarithmic accuracies. The leading

logarithmic accuracy (LLA) is defined as the sum of all terms with the highest

powers of the large logarithm at their respective perturbative orders. The sum

of all terms with the second highest powers is referred to as the next-to-leading

logarithmic accuracy (NLLA), and so on.

What does such a resummation look like? Consider the example of 2 → 2
scattering in pure Yang-Mills theory. In the high-energy limit, the tree level

amplitude will be dominated by a t-channel exchange shown in Figure 3.3.

p2 p3

p1 p4

Figure 3.3: The dominant tree-level amplitude in multi-Regge kimenatics.

At one-loop, the dominant diagrams are given by Figure 3.4

p2 p3

p1 p4

p2 p3

p1 p4

Figure 3.4: The dominant one-loop amplitudes in multi-Regge kimenatics.

which through Cutkosky rules [147] can be associated to the tree-level amplitude

by putting propagators on-shell

=A(1)
4 (s, t) =

∫
d4k

(2π)2 δ((p1 − k)2)δ((p2 + k)2)

× A(0)
4 (s, k2)A(0)

4 (s, (k − q)2) ,
(3.35)

as shown in Figure 3.5. For the one-loop result to leading logarithmic accuracy,

one obtains

A(1)
4 ' A(0)

4 log
(
s

|t|

)
α(t) , (3.36)



48 3. The High-Energy Limit of Planar N = 4 SYM

p2 p3

p1 p4

k ↓ ↑ k− q

Figure 3.5: The cut one-loop gives the diagram shown in Figure 3.3.

where

α(t) = −αSNc

4π

∫
−q2 d2k

k2(k − q)2 , (3.37)

is called the leading order gluon Regge trajectory. Continuing this pattern to

higher orders, one obtains similar diagrams which can be cut to be described in

terms of their lower-loop constituents. Studying the first few orders, a pattern

emerges and one sees that the leading logarithmic contribution is given by

ALLA
4 ∼ A(0)

4

(
s

|t|

)α(t)
. (3.38)

This can be interpreted as the exchange of an effective, resummed propagator

in the t-channel as represented in Figure 3.6.

p2 p3

p1 p4

Figure 3.6: The effective resummed diagram at leading logarithmic order in

the multi-Regge limit.

The resummed propagator defined above captures virtual corrections of the cut

diagrams. However, to consider real corrections, one must consider emissions of

gluons from this resummed propagator. To this end, via a similar procedure a

resummed vertex can be introduced which is called the Lipatov vertex as shown

in Figure 3.7. The resummed t-channel propagator, along with the Lipatov

vertex, can be combined into a ladder-shape to form an object governing the

leading corrections to 2 → 2 scattering called the LLA BFKL ladder, which
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can be shown to obey an integral equation called the BFKL equation [116–118]

and which will appear in Chapter 4 in the context of the parton-parton cross

section.

p2

p1

k1

k2

k1 − k2

Figure 3.7: An extra real emission from the resummed propagator.

In the planar limit of N = 4 SYM, the BDS Ansatz defined in (2.54) determines

four and five-particle scattering to all orders. Taking the multi-Regge limit of

said Ansatz, one can identify a similar factorisation to what was described above,

and thus analogous building blocks - a resummed propagator associated to an

effective particle called the Reggeon and vertices governing its interaction with

gluons - can be extracted. For scattering of six or more particles, these building

blocks are also sufficient to describe the amplitude to all orders in the Euclidean

region where the energies of all produced particles are positive [122–126]. In

other kinematic regions, additional contributions appear [122, 123]. For the

remainder of this chapter, these contributions will be our main focus.

3.2.2. The MRK Ratio Function

We now turn to our representation of amplitudes in MRK in N = 4 SYM.

Helicity must be conserved among the gluons going very forward, so that we

only distinguish between different helicity configurations (h1, . . . hN−4) of the

gluons emitted along the t-channel propagator, also referred to as the ladder.

We define the MRK ratio

eiΦh1,...,hN−4 Rh1,...,hN−4 ≡
[
AN (−,+, h1, . . . , hN−4,+,−)

ABDS
N (−,+, . . . ,+,−)

]
|MRK

, (3.39)

where AN (−,+, h1, . . . , hN−4,+,−) is the (colour-ordered) amplitude for the

production of N − 4 gluons emitted along the ladder, and ABDS
N (−,+, . . . ,+,−)

is the corresponding BDS amplitude. The finite term Rh1,...,hN−4 is related

to the well-known remainder and ratio functions as defined in the previous

chapter (2.54)-(2.55). For example, note that the MHV and MHV ratios are
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equal to each other, and are also alternatively described by their logarithm, the

remainder function,

R+ . . .+︸ ︷︷ ︸
N−4

= R− . . .−︸ ︷︷ ︸
N−4

≡ eRN . (3.40)

The factor eiΦh1,...,hN−4 is a phase factor such that in the Euclidian region

where all external particles have positive energies we have Rh1,...,hN−4 = 1.

When performing an analytic continuation to a Mandelstam region where some

particle energies can be negative, Rh1,...,hN−4 picks up contributions called

Regge cuts [122,123,131–133,141,148–150]. In the Mandelstam region where

the energy components of all produced particles are negative, it can be written

as a dispersion integral of a product of building blocks. In what follows, we will

discuss the form of this dispersion integral and its perturbative expansion.

3.2.3. The Dispersion Integral

In [6], it was conjectured that in the Mandelstam region where all produced

particles have negative energies, RN ≡ Rh1,...,hN−4 is given by the relation

RNe
iδN =1 + aiπFN−5

[(
N−5∏
k=1

e−Lkωk

)
χh1

1

(
N−5∏
k=2

Chk

k−1,k

)
χ

−hN−4
N−5

]
, (3.41)

where Fm denotes the m-fold inverse Fourier-Mellin transform,

Fm

[
f({νi, ni})

]
≡

m∏
k=1

+∞∑
nk=−∞

(
zk

z̄k

)nk/2 ∫ +∞

−∞

dνk

2π |zk|2iνkf({νi, ni}) . (3.42)

The dependence on the variables τi and zi, 1 ≤ i ≤ N − 5, is kept implicit

on the left hand side of (3.41). Furthermore, we denote the large logarithms

Lk = log τk + iπ, τk ≡ √
u2ku3k −−−→

MRK
0 where the uij were defined in (3.8), a

is the ’t Hooft coupling, and

ω(νi, ni) ≡ ωi = −a(Ei + aE
(1)
i + O(a2)), (3.43)

χ±(νi, ni) ≡ χ±
i = χ±

0,i(1 + aκ±
1 + O(a2)), (3.44)

C±(νi, ni, νj , nj) ≡ C±
i,j = C±

0,i,j(1 + ac±
1,i,j + O(a2)), (3.45)

are the all-order BFKL eigenvalue, the all-order impact factor and the all-order

central emission block respectively. We shall collectively refer to these objects as

the BFKL building blocks. The BFKL eigenvalue and impact factor are known

to all orders from [127]. The all-order central emission block is presented in [6].

Their explicit form up to NLO can be found in Appendix A.
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The BDS phase δN is given by

δN = πΓ log
∣∣∣∣x32x(N−2)1x(N−3)(N−2)x21

x31x(N−2)2x(N−3)1x2(N−2)

∣∣∣∣2 ,
= πΓ log

∣∣∣∣ ρ1

(ρ1 − 1)(ρN−5 − 1)

∣∣∣∣2 ,
(3.46)

the factor Γ = γK/8 is proportional to the all-order cusp anomalous dimension

determined in [78] and given to second order by

γK = 4a− 4ζ2a
2 + O(a3) . (3.47)

Note that this conjectural dispersion integral reproduces the known Fourier-

Mellin representation of the six-point MHV and NMHV amplitudes in MRK to

LLA [122,123,148], and also of the seven-point MHV amplitude to LLA [148].

p2 p3

p1 pN

p4

p5

pN−2

pN−1

ω1 τ1

ωN−5 τN−5

χ1

χN−5

C1,2

CN−4,N−5

z1

zN−5

Figure 3.8: The structure of the N -point amplitude in MRK.
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At this point we should comment on some discrete symmetries of the MRK ratio.

The first such symmetry is parity P which corresponds to spatial reflection.

This transformation reverses particle helicities, and acts on the Fourier-Mellin

variables as follows

P : z ↔ z̄ . (3.48)

This implies that, for the MRK ratio

PRh1,...,hN−4(τ1, z1, . . . ,τN−5, zN−5) =
R−h1,...,−hN−4(τ1, z1, . . . , τN−5, zN−5) .

(3.49)

From (3.40) we can see that the MHV ratio is invariant under parity trans-

formation. The second discrete symmetry we should consider is target-projectile

symmetry F . This amounts to exchanging the two initial-state gluons and

reversing their orientation. More generally it is given by pi → −pN+3−i where

indices are cyclically identified pi ' pi+N . At the level of the variables on which

the MRK ratio depends, this translates to

F :
{
τi ↔ τN−4−i ,

zi ↔ 1/zN−4−i .
(3.50)

The reversal of orientation also flips helicities. From this we conclude that

FRh1,...,hN−4(τ1, z1, . . . ,τN−5, zN−5) =
R−hN−4,...,−h1(τ1, z1, . . . , τN−5, zN−5) .

(3.51)

To uniquely define (3.41), we must comment on the contours of integration

implicitly defined in this equation. In [1, 2, 6], it was shown that this contour is

fixed by demanding the MRK ratio Rh1,...,hN−4 to have the correct soft behaviour.

Under soft limits, amplitudes reduce to lower-point results multiplying so-called

universal soft factors, schematically

lim
pi→0

MN (p1, . . . , pN ) ≡ MN−1(p1, . . . , pi−1, pi+1, . . . , pN ) × (Soft)i . (3.52)

Since the soft behaviour is captured by the BDS Ansatz, the soft limit of the

MRK ratio is given by a lower-point MRK ratio.

Due to the strong ordering imposed by the multi-Regge limit, there are no

collinear singularities or soft singularities associated with the two final-state

particles at the ends of the ladder. Hence, an amplitude in MRK has singularities

only in the limits where one of the momenta ki, 1 ≤ i ≤ N − 4, vanishes. The

vanishing of ki implies that in particular its transverse component ki goes to

zero. The limit ki → 0 corresponds to the limit where some of the cross ratios

zk take a special value, as can be seen explicitly from relation (3.13). There are

three distinct cases to consider:
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1. If k1 → 0, z1 → 0, and all other cross ratios remain finite.

2. If kN−4 → 0, zN−5 → ∞, and all other cross ratios remain finite.

3. If ki → 0, for 2 ≤ i ≤ N − 5, zi → 0 and zi−1 → ∞, but the product

zi−1zi remains finite. All other cross ratios remain finite.

Let us study the implications of these soft limits on the integration contour case

by case in number of particles, starting with the simplest example of six-particle

scattering.

We restrict ourselves to the MHV case. For six external particles, (3.41) reduces

to

R++e
iδ6 =1 + a iπF

[
χ+e−Lωχ−] , (3.53)

with soft limits given by

lim
z→0

R6e
iδ6 = |z|2πiΓ ,

lim
z→∞

R6e
iδ6 = |z|−2πiΓ ,

(3.54)

stemming purely from the soft limits of the BDS phase (3.46), since the MRK

ratio is trivial for five external particles. From these limits, we can conclude

that the integrand of (3.53) should have simple poles at ν = ±πΓ when n = 0
(terms where n 6= 0 are suppressed in the soft limit). Furthermore, the residues

are given by

Resν=±πΓ
(
χ+e−Lωχ−) = ± 1

aπ
, (3.55)

which matches what is known from the exact bootstrap conditions [151]

ω(±πΓ, 0) = 0 , Resν=±πΓ
(
Φ̃(ν, 0)

)
= ± 1

aπ
, (3.56)

where Φ̃(ν, n) = χ+(ν, n)χ−(ν, n). Now let us turn to the definition of the

integration contour. The integral (3.53) diverges if the poles are located on the

integration contour and so we deform said contour to avoid the poles on the real

axis. Given the form of the Fourier-Mellin transform (3.42) we need to close

the contour on the lower (upper) half-plane in ν for z small (large), so it is also

clear that the integration contour should run above the pole at πΓ and below

the pole at −πΓ. This contour is depicted in Figure 3.9.

For seven external particles, (3.41) reduces to

R+++e
iδ7 =1 + a iπF2

[
e−L1ω1e−L2ω2χ+

1 C
+
1,2χ

−
2
]
, (3.57)
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<(ν)

=(ν)

πΓ−πΓ

Figure 3.9: The integration contour for six-particle scattering in MRK. In

this and all following images only poles on the real axis are plotted.

with soft limits given by

lim
z1→0

R7e
iδ7 = |z1|2πiΓ (R6e

iδ6
)

(z2) , (3.58)

lim
z2→0,z1z2 fixed

R7e
iδ7 =

(
R6e

iδ6
)

(−z1z2) , (3.59)

lim
z2→∞

R7e
iδ7 = |z2|−2πiΓ (R6e

iδ6
)

(z1) , (3.60)

as can be inferred from (3.52). From the behavior in the soft limits and taking

into account the six-point case considered above, we can determine that the

r.h.s. of (3.57) has a pole ν1 = πΓ − i0 for the n1 = 0 term in the sum, a pole

at ν2 = −πΓ + i0 for n2 = 0, as well as at ν1 = ν2 + i0 (or equivalently at

ν2 = ν1 − i0) for n1 = n2. This fixes the integration contours to be as given in

Figure 3.10. Furthermore, the residues are given by

Res
ν1=πΓ

(
χ+(ν1, 0)C+(ν1, 0, ν2, n2)χ−(ν2, n2)

)
= iχ+

2 χ
−
2 , (3.61)

Res
ν2=−πΓ

(
χ+(ν1, n1)C+(ν1, n1, ν2, 0)χ−(ν2, 0)

)
= −iχ+

1 χ
−
1 , (3.62)

Res
ν1=ν2

(
χ+(ν1, n2)C+(ν1, n2, ν2, n2)χ−(ν2, n2)

)
= −i(−1)n2eiπω2χ+

2 χ
−
2 , (3.63)

where (3.56) was taken into account. We now define

C̃h(ν1, n1, ν2, n2) = Ch(ν1, n1, ν2, n2)
χ−(ν1, n1)χ+(ν2, n2) , (3.64)

and

Ih(ν, n) ≡ χh(ν, n)
χ+(ν, n) =

{
1, h = +
H(ν, n), h = −

, (3.65)
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where

H(ν, n) ≡ χ−(ν, n)
χ+(ν, n) , (3.66)

is the helicity flip kernel in Fourier-Mellin space [127]. Now note that C̃h must

be regular at n1 = 0, ν1 = πΓ and n2 = 0, ν2 = −πΓ for the soft limits to hold

(e.g. a pole would lead to additional log zi dependence that is incompatible with

these limits). From this, we can conclude that

C̃+(πΓ, 0, ν2, n2) = iπa I+(ν2, n2) , (3.67)

C̃+(ν1, n1,−πΓ, 0) = −iπa Ī+(ν1, n1) , (3.68)

Res
ν1=ν2

C̃+(ν1, n2, ν2, n2) = −i(−1)n2eiπω(ν2,n2)

Φ̃(ν2, n2)
, (3.69)

with analogous relations for opposite helicities following from (3.40) which

implies

C̃−(ν1, n1, ν2, n2) = H(ν1, n1)C+(ν1, n1, ν2, n2)H(ν2, n2) . (3.70)

Note furthermore, that the regularity of the entire integrand at n1 = 0, ν1 = −πΓ
and n2 = 0, ν1 = πΓ implies

Ch(−πΓ, 0, ν2, n2) = Ch(ν1, n1, πΓ, 0) = 0 . (3.71)

<(ν2)

=(ν2)

ν1−πΓ
<(ν1)

=(ν1)

πΓν2

Figure 3.10: The integration contours for seven-particle scattering in MRK.

Having now studied the six- and seven-particle cases, we turn to a generic

number of particles. In this case the soft limits are given by

lim
z1→0

RNe
iδN = |z1|2πiΓ (RN−1e

iδN−1
)

(z2, . . . ) , (3.72)

lim
zi→0,zi−1zi fixed

RNe
iδN =

(
RN−1e

iδN−1
)

(. . . , zi−2,−zi−1zi, zi+1, . . . ) , (3.73)

lim
zN−5→∞

RNe
iδN = |zN−5|−2πiΓ (RN−1e

iδN−1
)

(. . . , zN−6) . (3.74)
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We can infer that the integrand of (3.41) has poles at ν1 = πΓ − i0 for n1 = 0,

at νi = νi−1 + i0 for ni−1 = ni, and at νN−5 = −πΓ + i0 for nN−5 = 0 and for

2 ≤ i ≤ N − 5. The resulting integration contours are given in Figure 3.11.

<(νN−5)

=(νN−5)

νN−6−πΓ

<(νi)

=(νi)

νi−1νi+1

<(ν1)

=(ν1)

πΓν2

Figure 3.11: The integration contours for N -particle scattering in MRK.

3.2.4. Perturbative Expansion

In this section we will discuss the perturbative expansion of (3.41). Before

performing this expansion however, we must first comment on the results of

the previous section. Recall that for six-particle scattering as described in

Figure 3.9, for n = 0 the integration contour in the ν-plane passes in between

two poles at ν = ±πΓ. Since Γ = O(a), in the weak coupling limit the contour

will become pinched between the two poles on the real line and the integral will

diverge. Note however, that this pinching need not be a problem for all terms

in the integrand. As an example, let’s once again consider the six-point MRK

ratio given in (3.53). The `-loop MHV leading logarithmic contributions will be

of the form
∞∑

n=0

(z
z̄

)n
2
∫ +∞

−∞

dν
2π |z|2iνχ+

0 E
`−1χ−

0 . (3.75)

Since pinching occurs at n = 0 we are concerned with∫ +∞

−∞

dν
2π |z|2iνχ+

0 (ν, 0)E`−1(ν, 0)χ−
0 (ν, 0) . (3.76)

To make the divergence stemming from the pinching manifest, we will define

the integral (3.76) with a contour running along the real axis in the ν-plane

and introduce an ε-perscription to shift the poles from the real axis as follows

χ+
0 (ν, 0) = 1

iν − ε
, χ−

0 (ν, 0) = 1
iν + ε

. (3.77)

In this perscription, it is clear that for ` = 1,∫ +∞

−∞

dν
2π |z|2iνχ+

0 (ν, 0)χ−
0 (ν, 0) ∼ i

2ε , (3.78)
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and thus the divergence in the limit ε → 0 is made manifest. Note, however,

that when ` > 1 the divergence is regulated by the presence of the LO BFKL

eigenvalue, since we see from the explicit form in Appendix A that

E(iε, 0) = O(ε2) . (3.79)

So at leading logarithmic accuracy, whenever the integrand contains an insertion

of a LO BFKL eigenvalue, there is no pinch singularity and no contour

deformation is needed. This condition is satisfied by all leading logarithmic

terms at two loops or higher. Beyond leading logarithmic accuracy, additional

treatment is needed to have a consistent weak coupling limit.

To have a consistent weak-coupling Fourier-Mellin description of the ratio for

terms in which pinching may arise, we will now illustrate how to subtract

residues from (3.41) so the contour is deformed in such a way as to avoid

pinching. To facilitate this subtraction, one may rewrite the combination of

impact factors and central emission block as

χh1
1

[
N−5∏
k=2

Chk

k−1,k

]
χ

−hN−4
N−5 = Ih1

1 Φ̃1

[
N−5∏
k=2

C̃hk

k−1,kΦ̃k

]
Ī

hN−4
N−5 , (3.80)

where Īh
i is the conjugate of Ih

i defined in (3.65). The poles at νi = ±πΓ for

2 ≤ i ≤ N − 6 and the poles at ν1 = −πΓ and at νN−5 = πΓ that are seemingly

introduced by the Φ̃ in between the pairs of C’s are spurious, as the central

emission block vanishes for these values via (3.71). The poles on the real line

are given by the ordered list

ν1 = πΓ , ν1 = ν2 , . . . νN−6 = νN−5 , νN−5 = −πΓ , (3.81)

The behaviour of the building blocks in our dispersion integral at these poles

has been discussed in the previous section in (3.56), (3.67)-(3.71). One can now

perform the necessary contour deformations by adding/subtracting residues of

alternating poles in (3.81) starting with the pole at ν1 = πΓ, thus pushing the

contour above/below said poles. We will refer to this choice of contour as the

unpinched contour. From the form of the residues, one can see that the terms

which arise from this deformation will typically correspond to MRK ratios for

lower numbers of particles. For example, for seven external particles we get [2]

Rh1h2h3e
iδ7 = |z1|2πiΓRh2h3(z2)eiδ6(z2) + |z2|−2πiΓRh1h2(z1)eiδ6(z1)

− |z1|2πiΓ

|z2|2πiΓ + 2πifh1h2h3 ,
(3.82)
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where

fh1h2h3 = a

2

[ 2∏
k=1

+∞∑
nk=−∞

(
zk

z̄k

)nk
2
∫ +∞

−∞

dνk

2π |zk|2iνk

]

×

[ 2∏
k=1

e−Lkωk

]
Ih1

1 Φ̃1C̃
h2
1,2Φ̃2 Ī

h3
2 ,

(3.83)

is integrated over the unpinched contours shown in Figure 3.12. The case of

eight external particles can be found in [3], a generic algorithm for any number

of particles is presented in [6].

<(ν2)

=(ν2)

ν1−πΓ
<(ν1)

=(ν1)

πΓν2

Figure 3.12: The unpinched integration contours for seven-particle scattering.

Now that we have found a consistent way to expand the MRK ratio given in

(3.41) perturbatively, we will turn our attention to the perturbative coefficients

g̃
(`;i1,...,iN−5)
h1,...,hN−4

and h̃
(`;i1,...,iN−5)
h1,...,hN−4

, defined by expanding the MRK ratio in the

coupling and large logarithms

Rh1,...,hN−4 ({zi, τi}) = 1 + 2πi
∞∑

`=1

`−1∑
i1,...,iN−5=0

a`

(
N−5∏
k=1

1
ik! logik τk

)

×
(
g̃

(`;i1,...,iN−5)
h1,...,hN−4

({zi}) + 2πi h̃(`;i1,...,iN−5)
h1,...,hN−4

({zi})
)
.

(3.84)

3.3. Amplitudes through Fourier-Mellin Convolutions

3.3.1. Perturbative Coefficients at Leading Logarithmic Accuracy

In this section we will study the perturbative coefficients defined in (3.84) at

leading logarithmic accuracy
∑N−5

k=1 ik = `− 1. More specifically, we will discuss
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a method developed in [1] through which these coefficients can be computed

efficiently. We will see that the study of the geometry undertaken in Section 3.1

plays a crucial role in this method, and that the understanding of this mechanism

in its turn leads to a further understanding of the structure of amplitudes in

MRK at LLA.

First, note that the LLA remainder function is purely imaginary and hence

N−5∑
k=1

ik = `− 1 → h̃
(`;i1,...,iN−5)
h1,...,hN−4

= 0 . (3.85)

We need only concern ourselves with the imaginary contributions. In what

follows, we introduce a notation for the product of leading order impact factors

and central emission blocks, which we call the vacuum ladder

$N ≡ $
h1...hN−4
N = χh1

0,1

N−6∏
j=1

C
hj+1
0,j,j+1

χ
−hN−4
0,N−5 , (3.86)

and where we will often drop explicit dependence on the helicities. Comparing

the expansion (3.84) to the Fourier-Mellin integral which describes the MRK

ratio (3.41), we see that they are given by

g̃
(`;i1,...,iN−5)
h1,...,hN−4

= −1
2FN−5

[(
N−5∏
k=1

Eik

k

)
$N

]
. (3.87)

In the following sections we will discuss how to obtain analytic expressions for

the coefficients given in (3.87).

3.3.1.1. MHV Amplitudes in MRK

To study the computation of perturbative coefficients at LLA in MRK, we

will once again turn to the test case of six-particle scattering for the MHV

configuration. In this case, the `-loop perturbative coefficients are given by

g̃
(`;`−1)
++ = −1

2F
[
E`−1$++

6
]
. (3.88)

Immediately we see that the coefficients at different loop orders only differ by

additional insertions of a LO BFKL eigenvalue into the integrand. Now note

that the Fourier-Mellin transformation maps products into convolutions, so that

for F [F ] = f and F [G] = g we have

F [F ·G] = F [F ] ∗ F [G] = f ∗ g , (3.89)
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where the convolution is given by

(f ∗ g)(z) = 1
π

∫ d2w

|w|2
f(w) g

( z
w

)
. (3.90)

This implies that

g̃
(`;`−1)
++ = g̃

(`−1;`−2)
++ ∗ F [E] . (3.91)

We see that increasing the number of loops is equivalent to convoluting the

lower loop result with the Fourier-Mellin transform of the BFKL eigenvalue.

Using this method, we could compute the perturbative coefficients recursively.

Let’s investigate (3.91) in more detail for a low-loop example. In order to do

this, we need to know g̃
(`;`−1)
++ analytically for some value of `. This can easily

be achieved by performing explicitly the Fourier-Mellin transform for ` = 1 or

` = 2, cf., e.g., [134],

F
[
$++

6
]

= G1(z) − 1
2 G0(z) ,

F
[
Eνn $

++
6
]

= 1
2G0,1(z) + 1

2G1,0(z) − G1,1(z) ,
(3.92)

We also need the Fourier-Mellin transform of the LO BFKL eigenvalue, which can

easily be obtained by noting that the functions χ±
0 (ν, n) defined in Appendix A

are related to derivatives in z-space,

z ∂zF
[
χ+

0 (ν, n)F (ν, n)
]

= F [F (ν, n)] . (3.93)

A similar relation holds when replacing z by z̄ and χ+
0 by χ−

0 . From (3.92), we

see the Fourier-Mellin transform of the LO BFKL eigenvalue is then given by

E(z) ≡ F [Eνn] = z z̄ ∂z ∂̄zF
[
Eνn $

++
6
]

= − z + z̄

2 |1 − z|2
. (3.94)

The only remaining piece of the puzzle is how to evaluate the convolution

integral given in (3.91). Note that our starting point is written in terms of

single-valued multiple polylogarithms. In [146] it was shown that convolution

integrals of this type can be computed using residues. To see how this works,

consider a function f(z) that consists of single-valued hyperlogarithms and

rational functions with singularities at z = ai and z = ∞. Close to any of these

singularities, f can be expanded into a series of the form

f(z) =
∑

k,m,n

cai

k,m,n logk

∣∣∣∣1 − z

ai

∣∣∣∣2 (z − ai)m (z̄ − āi)n , z → ai ,

f(z) =
∑

k,m,n

c∞
k,m,n logk 1

|z|2
1
zm

1
z̄n

, z → ∞ .

(3.95)
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The holomorphic residue of f at the point z = a is then defined as the coefficient

of the simple holomorphic pole without logarithmic singularities,

Resz=af(z) ≡ ca
0,−1,0 . (3.96)

The integral of f over the whole complex plane, if it exists, can be computed in

terms of its holomorphic residues [146]. More precisely, if F is a single-valued

anti-holomorphic primitive of f , ∂̄zF = f , then∫ d2z

π
f(z) = Resz=∞F (z) −

∑
i

Resz=ai
F (z) . (3.97)

This result is essentially an application of Stokes’ theorem to the punctured

complex plane. Note that the anti-holomorphic primitive is only defined up

to an arbitrary holomorphic function. It was shown in [145] that every single-

valued polylogarithm has a single-valued primitive, and the sum of residues is

independent on the choice of the primitive [146]. It is clear that we can repeat the

previous argument by reversing the roles of holomorphic and anti-holomorphic

functions.

Now we apply this method to the results given in (3.92). Our starting point is

F [Eνn $
++
6 ] = F

[
$++

6
]

∗ E(z)

=
∫ d2w

π

[
1
2 G0(w) − G1(w)

]
w̄z + wz̄

2 |w|2 |w − z|2︸ ︷︷ ︸
=f(w)

. (3.98)

First, we need to compute the anti-holomorphic primitive

F (w) =
∫

dw̄ f(w) . (3.99)

Since4

G0(w) = G0(w̄) and G1(w) = G1(w̄) , (3.100)

and single-valued hyperlogarithms satisfy the same (holomorphic) differential

equations as their non-single-valued analogues, we obtain

F (w) = 1
2w (w − z)

∫
dw̄
[

1
2 G0(w̄) − G1(w̄)

]
w̄z + wz̄

w̄ (w̄ − z̄)

= 1
4(w − z) [2G0,z(w) − 4G1,z(w) − G0,0(w) + 2G1,0(w)

−4G1(w)G0(z) + 4G1(w)G1(z) + 2G0(z)Gz(w) − 4G1(z)Gz(w)]

+ 1
4w [−G0,z(w) + 2G1,z(w) + 2G1(w)G0(z) − 2G1(w)G1(z)

−G0(z)Gz(w) + 2G1(z)Gz(w)] .

(3.101)

4Note that for higher weights the relation between G~a(w) and G~a(w̄) will not be so

straighforward.
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We see that F (w) has potential poles at w = 0, w = z and w = ∞. The residue

at w = 0 vanishes. The residue at w = z is given by

Resw=zF (w) = −1
4G0,0(z) − G0,1(z) − 1

2G1,0(z) + 2G1,1(z) − G1,z(z)

= −1
4G0,0(z) − 1

2G1,0(z) + G1,1(z) ,
(3.102)

where the last step follows from the identity

G1,z(z) = G1,1(z) − G0,1(z) . (3.103)

Finally, the residue at infinity is obtained by letting w = 1/u (and including

the corresponding Jacobian) and expanding the result around u = 0. We find

Resw=∞F (w) = 1
2G0,1(z) − 1

4G0,0(z) . (3.104)

Hence,

F
[
Eνn $

++
6
]

= Resw=∞F (w) − Resw=zF (w)

= 1
2G0,1(z) + 1

2G1,0(z) − G1,1(z) ,
(3.105)

which is indeed the correct result, as we see from (3.92). Using this method

recursively, we can build from the result given above to compute the three-loop

coefficient and so on. Thus, we have a method to compute MHV coefficients at

LLA at arbitrarily high loop orders, bypassing the evaluation of the Fourier-

Mellin integrals entirely.

This six-point example can straightforwardly be extended to an arbitrary number

of particles through

g̃
(`;i1,...,ik+1,...,iN−5)
+...+ = E(zk) ∗ g̃(`;i1,...,iN−5)

+...+ . (3.106)

The starting point of this recursion is the two-loop MHV remainder function

in MRK, which is known at LLA for an arbitrary number N of external

legs [148,152]

g
(2;0,...,0,1,0,...,0)
+...+ (ρ1, . . . , ρN−5) = 1

4 log |1 − ρk|2 log
∣∣∣∣1 − 1

ρk

∣∣∣∣2 . (3.107)

While for many external particles a direct evaluation of the Fourier-Mellin

transform in terms of multiple sums of residues becomes prohibitive because the

number of sums increases with the number of external legs, the recursion (3.106)

requires the evaluation of a single convolution integral at every loop order,

independently of the number of external legs. This is one of the key properties

why the convolution integral combined with Stokes’ theorem gives rise to an

efficient algorithm to compute scattering amplitudes in MRK.
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3.3.1.2. Beyond MHV

So far we have only considered MHV amplitudes. In this section we show how

the convolution method can be applied to also obtain results beyond MHV. Let

us start by analysing what happens if we start from an MHV amplitude and we

flip the helicity on an impact factor. In Fourier-Mellin space, this amounts to

replacing χ+
0 (ν, n) by χ−

0 (ν, n),

F [χ+
0 (ν, n)F (ν, n)] −→ F

[
χ−

0 (ν, n)F (ν, n)
]

= F
[
χ−

0 (ν, n)
χ+

0 (ν, n)

]
∗ F

[
χ+

0 (ν, n)F (ν, n)
]

= F
[
iν + n

2
iν − n

2

]
∗ F

[
χ+

0 (ν, n)F (ν, n)
]
.

(3.108)

We see that flipping the helicity on a LO impact factor amounts to convoluting

with the evaluated leading order helicity-flip kernel (3.66)

H0(z) = F [H0] = F
[
χ−

0 (ν, n)
χ+

0 (ν, n)

]
= F

[
iν + n

2
iν − n

2

]
. (3.109)

The functional form of H0(z) can easily be obtained by performing explicitly

the Fourier-Mellin transform. The integrand has only a simple pole at iν = n/2,

and so we find

H0(z) = H0(1/z) = − z

(1 − z)2 . (3.110)

Note that flipping helicities represents an involution - flipping a negative helicity

to a postive one and then flipping that helicity back should give the same result

- and so

H0(z) ∗ H0(z̄) = F [1] = π δ(2)(1 − z) . (3.111)

If we flip the helicity on one of the leading order central emission blocks,

using (3.70)
C−

0 (ν1, n1, ν2, n2)
C+

0 (ν1, n1, ν2, n2)
= χ+

0 (ν1, n1)χ−
0 (ν2,m2)

χ−
0 (ν1, n1)χ+

0 (ν2, n2)
, (3.112)

we obtain

F
[
C+

0 (ν1, n1, ν2, n2)F (ν1, n1, ν2, n2)
]

−→ F
[
C−

0 (ν1, n1, ν2, n2)F (ν1, n1, ν2, n2)
]

= F
[
C−

0 (ν1, n1, ν2, n2)
C+

0 (ν1, n1, ν2, n2)

]
∗ F

[
C+

0 (ν1, n1, ν2, n2)F (ν1, n1, ν2, n2)
]

= H0(z̄1) ∗ H0(z2) ∗ F
[
C+

0 (ν1, n1, ν2, n2)F (ν1, n1, ν2, n2)
]
.

(3.113)
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We see that the flipping of the helicity on a leading order central emission block

is controlled by the same kernels as for the impact factor.

Thus, by convoluting with the helicity flip kernel we can obtain any helicity

configuration from the `-loop results obtained recursively in the previous section.

The combination of convolutions with E and H0 give us an algorithm to obtain

any perturbative coefficient at LLA for an arbitrary number of particles from

the known two-loop result. The computation of the MRK ratio at a certain loop

order at LLA, however, can be made even more efficient. In the next section

we will discuss a result which allows us to relate perturbative coefficients for

different numbers of external particles.

3.3.2. The Factorisation of Perturbative Coefficients at LLA

In [1], beyond the convolution formalism we have discussed above, a factorisation

of perturbative coefficients was presented which greatly simplifies the algorithm

to compute all perturbative coefficients at LLA for a certain number of loops

and legs. We will present the factorisation and its consequences here and review

its proof in Appendix B.

In order to state the factorisation theorem, it is useful to introduce the graphical

representation for the perturbative coefficients in Figure 3.13. We work with

hN−4

hN−5

h2

h1

i1

iN−5

ρ1

ρN−5

g
(`;i1,...,iN−5)
h1...hN−4

=

Figure 3.13: The graphical representation of LLA perturbative coefficients.

the simplicial MRK coordinates ρk defined in Section 3.1.2. Every outgoing line

is labeled by its helicity hk. In addition, to every face we do not only associate

its coordinate ρk but also the index ik.

Using this graphical representation of the perturbative coefficients the factorisation

theorem takes the simple form given in Figure 3.14. In other words, whenever

the graph representing a perturbative coefficient contains a face with index



3.3. Amplitudes through Fourier-Mellin Convolutions 65

→

hj+2

h

h

hj−1

ij+1

0

ij−1

ρj+1

ρj

ρj−1

hj+2

h

hj−1

ij+1

ij−1

ρj+1

ρj−1

Figure 3.14: The factorisation of LLA perturbative coefficients. Faces with

vanishing indices and matching neighbouring helicities can be deleted.

ib = 0 and the lines adjacent to this face have the same helicity, then this

perturbative coefficient is equal to the coefficient where this face has been

deleted. We stress that the factorisation theorem holds for arbitrary helicity

configurations and is not restricted to MHV amplitudes. In the MHV case, the

factorisation theorem implies that we can drop all the faces labeled by a zero,

g
(`;0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak

,0,...,0)
+...+ (ρ1, . . . , ρN−5) =

g
(`;ia1 ,ia2 ,...,iak

)
+...+ (ρia1

, ρia2
, . . . , ρiak

) .
(3.114)

Since the sum of all indices is related to the loop number, we see that for a fixed

number of loops there is a maximal number of non-zero indices, and so there is

only a finite number of different perturbative coefficients at every loop order.

This generalises the factorisation observed for the two-loop MHV amplitude

in MRK to LLA [148, 152, 153]. Indeed, if all indices are zero except for one,

say ia, then (3.114) reduces to

g
(`;0,...,0,ia,0,...,0)
+...+ (ρ1, . . . , ρN−5) = g

(`;ia)
++ (ρa) , (3.115)

and so at two loops the amplitude completely factorises, in agreement with [148,

152,153],

R(2)
+...+

∣∣∣∣
LLA

=
∑

1≤i≤N−5
log τi g

(2;1)
++ (ρi) . (3.116)

As anticipated in [148], the amplitude no longer factorises completely beyond

two loops. However, we find that at every loop order only a finite number of

different functions appear. For example, at three-loop order at most two indices
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are non-zero, and so we have

R(3)
+...+

∣∣∣∣
LLA

= 1
2

∑
1≤i≤N−5

log2 τi g
(3;2)
++ (ρi)

+
∑

1≤i<j≤N−5
log τi log τj g

(3;1,1)
+++ (ρi, ρj) .

(3.117)

The only new function appearing at three loops that is not determined by the

six-point amplitude is g
(1,1)
++ , which is determined by the three-loop seven-point

MHV amplitude. At four loops we have

R(4)
+...+

∣∣∣∣
LLA

= 1
6

∑
1≤i≤N−5

log3 τi g
(4;3)
++ (ρi)

+ 1
2

∑
1≤i<j≤N−5

[
log2 τi log τj g

(4;2,1)
+++ (ρi, ρj)

+ log τi log2 τj g
(4;1,2)
+++ (ρi, ρj)

]
+

∑
1≤i<j<k≤N−5

log τi log τj log τk g
(4;1,1,1)
++++ (ρi, ρj , ρk) .

(3.118)

The four-loop answer is determined for any number of external legs by the six,

seven and eight-point amplitudes through four loops. Similar equations can be

obtained for higher-loop amplitudes. In general, at L loops the LLA MHV MRK

ratio is determined for any number of legs by the MHV amplitudes involving

up to (L+ 4) external legs.

Beyond MHV, the factorisation is less straightforward. Indeed, only vanishing

indices where the neighbouring helicities are equal can be deleted. Consider the

seven-point two-loop NMHV amplitude R(2)
−++. We can write

R(2)
−++

∣∣∣∣
LLA

= H0(z1) ∗ R(2)
+++

∣∣∣∣
LLA

= log τ1 H(z1) ∗ g(2;1)
++ (ρ1) + log τ2 H(z1) ∗ g(2;1)

++ (ρ2) .
(3.119)

It is easy to check that the first term behaves as expected,

H0(z1) ∗ g
(2;1)
++ (ρ1) = g

(2;1)
−+ (ρ1) . (3.120)

The second term, however, also depends on ρ2, and we would expect that this

term should be a function of both ρ1 and ρ2. By explicit computation, one

establishes that this is indeed the case, and so we obtain a new non-MHV

building block with a vanishing index,

R(2)
−++

∣∣∣∣
LLA

= log τ1 g
(2;1)
−+ (ρ1) + log τ2 g

(2;0,1)
−++ (ρ1, ρ2) . (3.121)
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As a consequence of these terms with vanishing indices, unlike for MHV

amplitudes, the number of building blocks is no longer finite at each loop

order in the non-MHV case.

As (3.114) is no longer valid for non-MHV amplitudes, the number of different

coefficients is no longer bounded. In particular, there should be an infinite tower

of different non-MHV coefficients already at two loops, because the factorisation

theorem does not allow us to reduce the coefficients corresponding to alternating

helicities to simpler functions.

In [1], the methods described above allowed for the computation of the LLA

MHV amplitude for any number of particles to five loops, the LLA amplitude

for eight or less particles for any helicity configuration up to four loops. The

methods described here are not limited to LLA however, and in the following

section we will turn to the application of convolution products to NLLA.

3.3.3. Beyond Leading Logarithmic Accuracy

So far we have focussed on perturbative coefficients at leading logarithmic

accuracy. Let us now consider the next logarithmic order. Recall from the

discussion in Section 3.2.4 that when there is no insertion of an LO BFKL

eigenvalue into the integrand, a pinching singularity may appear which needs

to be regulated. At NLLA, two-loop terms contain no LO BFKL eigenvalue

and thus require additional treatment. To this end, we introduce a regularised

Fourier-Mellin transform. At two loops NLLA we define

FN−5

[
I(2)
NLLA

]
= FReg

N−5

[
I(2)
NLLA

]
=

3∏
k=1

+∞∑
nk=−∞

(
zk

z̄k

)nk
2
∫ +∞

−∞

dνk

2π |zk|2iνk I(2)
NLLA

+ P
(2;0,...,0)
h1...hN−4

+ 2πiQ(2;0,...,0)
h1...hN−4

,

(3.122)

where the contours of integration on the r.h.s. correspond to the unpinched

contour, I(2)
NLLA is the two-loop NLLA contribution to the integrand of (3.41)

and where P
(2;0,...,0)
h1...hN−4

and Q
(2;0,...,0)
h1...hN−4

are the two-loop contributions of the lower-

point amplitudes arising from the contour deformation discussed in Section 3.2.4,

see e.g. (3.82). Their exact forms for seven and eight particles can be found in [2]

and [3] respectively. Now that we have a consistent Fourier-Mellin description

at NLLA, let us turn to the form of the perturbative coefficients. For ease of

use, we will introduce some additional notation.
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At NLLA, (i.e. for
∑N−5

k=1 ik = `− 2), we write

g̃
(`;i1,...,iN−5)
h1...hN−4

=
N=5∑
j=1

ij g̃
j;(`;i1,...,iN−5)
h1...hN−4

+ g̃
(`;i1,...,iN−5)
$;h1...hN−4

,

h̃
(`;i1,...,iN−5)
h1...hN−4

=
N−5∑
j=1

h̃
j;(`;i1,...,iN−5)
h1...hN−4

+ h̃
(`;i1,...,iN−5)
$;h1...hN−4

,

(3.123)

where the perturbative coefficients with extra indices are called corrected

perturbative coefficients. Perturbative coefficients with an additional upper

index correspond to insertions of the NLO corrections to the BFKL eigenvalue

and perturbative coefficients with an additional lower index correspond to the

insertion of the corrections to the vacuum ladder. This implies

g̃
j;(`;i1,...,iN−5)
h1...hN−4

= 1
2 FN−5

[
$N E

(1)
j

N−5∏
k=1

E
ik−δkj

k

]
, (3.124)

g̃
(`;i1,...,iN−5)
$;h1...hN−4

= 1
2 FN−5

[
$N

(
κh1

1,1 +
N−6∑
i=1

<
(
c

hi+1
1,i,i+1

)
+ κ

−hN−4
1,N−5

)
N−5∏
k=1

Eik

k

]
,

for the imaginary contributions and

h̃
j;(`;i1,...,iN−5)
h1...hN−4

= − 1
4 FN−5

[
$N Ej

N−5∏
k=1

Eik

k

]
,

h̃
(`;i1,...,iN−5)
$;h1...hN−4

= 1
4π FN−5

[
$N

(
N−6∑
i=1

=
(
c

hi+1
1,i,i+1

)) N−5∏
k=1

Eik

k

]
,

(3.125)

for the real contributions, where < and = denote the real and imaginary parts,

respectively. As an example of how the convolution method can be applied here,

let’s examine the case of seven external particles.

Our starting points are the corrected perturbative coefficients at two loops,

g
(2;0,0)
$;+++ and h

(2;0,0)
$;+++ which can be obtained from the two-loop MHV ratio at

NLLA R(2)
N

∣∣
NLLA

known for any number of particles [2, 153]:

g̃
(2;0,0)
+++ = 1

2πi

(
R(2)

7
∣∣
NLLA

− iδ
(2)
7

)
= g̃

(2;0,0)
$;+++ , (3.126)

h̃
(2;0,0)
+++ = (iδ(1)

7 )2

2(2πi)2 =
3∑

j=1
h̃

j;(2;0,0)
+++ + h̃

(2;0,0)
$;+++ . (3.127)

The aim is to lift these objects to three loops by convoluting with the integration

kernels Ek. Note however that due to the regularisation procedure in (3.122),

we must be careful performing the convolution. The regularised Fourier-Mellin
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integral at two loops consists of a combination of an integral transform with

a modified contour and lower point terms that originate from the contour

deformation. As only the former naturally obeys the convolution structure,

we need to subtract these lower point contributions from the perturbative

coefficients before inserting additional building blocks via convolutions. Since

performing this convolution preserves the contour of the original integral

transform, the resulting expression with the inserted building block will have the

same, deformed contour as the two-loop integral transform we started out from.

This contour, however is not the same as the one in the Fourier-Mellin transform

prescribed by F2 at three loops. In order to obtain the desired building block

we must add the corresponding three-loop lower point contributions to restore

the integration contour. Concretely, the relations between the two- and three

loop corrected perturbative coefficients are given by

g̃
(3;δk,1,δk,2)
$;+++ = E(zk) ∗

(
g̃

(2;0,0)
$;+++ − P

(2;0,0)
+++

)
+ P

(3;δk,1,δk,2)
+++ ,

h̃
(3;δk,1,δk,2)
$;+++ = E(zk) ∗

(
h̃

(2;0,0)
$;+++ −Q

(2;0,0)
+++

)
+Q

(3;δk,1,δk,2)
+++ ,

(3.128)

where the P
(3;δk,1,δk,2)
+++ and Q

(3;δk,1,δk,2)
+++ indicate the three-loop lower-point terms

needed to restore the original contour. Studying these terms in more detail, we

find that

P
(3;δk,1,δk,2)
+++ = E(zk) ∗ P (2;0,0)

+++ , (3.129)

Q
(3;δk,1,δk,2)
+++ = E(zk) ∗

(
Q

(2;0,0)
+++ − 1

32G0(zk)2
)
, (3.130)

so that, in practice, we need only subtract lower point contributions for the real

part. Thus we see that, taking special care in going from two to three loops, the

convolution method also works at NLLA. The remaining terms at three loops

g̃
k;(3;δk,1,δk,2,δk,3)
++++ (ρ1, ρ2, ρ3) = g̃

1;(3;1)
++ (ρk), (3.131)

correspond to six-point corrected perturbative coefficients through an extension

of the factorisation beyond LLA [6] and can thus be obtained from known

six-particle NLLA results [134].

Now that we have observed how to obtain the three-loop MHV NLLA seven-

point MRK ratio from the two-loop result by convolutions, let us move beyond

MHV and see how the helicity flip formalism works beyond the LLA. In this

context, we will expand the all-order helicity flip kernel (3.66)

H(z) = F
[
χ−

i

χ+
i

]
= H(0)(zi) + aH(1)(zi) + O(a2) , (3.132)
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with

H(1)(zi) = 1
4

(
G1(zi) + zi

(1 − zi)
G0(zi) + zi

(1 − zi)2 G0,0(zi)
)
. (3.133)

When flipping the helicity of an all-order impact factor, we then find

F
[
χ+(ν, n)F (ν, n)

]
−→ F

[
χ−(ν, n)F (ν, n)

]
= F

[
χ−(ν, n)
χ+(ν, n)

]
∗ F

[
χ+(ν, n)F (ν, n)

]
= H(z) ∗ F

[
χ+(ν, n)F (ν, n)

]
.

(3.134)

The same kernel can also be used to flip the helicity of one of the central emission

blocks, as can be seen from (3.70), which leads to

F
[
C+(ν1, n1, ν2, n2)F (ν1, n1, ν2, n2)

]
−→ F

[
C−(ν1, n1, ν2, n2)F (ν1, n1, ν2, n2)

]
= H(z̄1) ∗ H(z2) ∗ F

[
C+(ν1, n1, ν2, n2)F (ν1, n1, ν2, n2)

]
.

(3.135)

At NLLA the helicity flip kernel contributes up to NLO and thus the computation

consists of two types of contributions: a leading-order helicity flip kernel H(0)

of the NLLA perturbative coefficient and a next-to-leading order helicity flip

kernel H(1) of a LLA perturbative coefficient. Flipping the helicity of the first

radiated gluon for example we get

g̃
(3;δk,1,δ2,k)
−+++ (ρ1, ρ2) = g̃

(3;δk,1,δ2,k)
++++ (ρ1, ρ2) ∗ H(0)(z1)

+ g̃
(2;δk,1,δ2,k)
++++ (ρ1, ρ2) ∗ H(1)(z1) ,

(3.136)

for k ∈ {1, 2}. Thus we see that the helicity flip formalism can also be

applied beyond LLA. These methods have been applied to compute the seven-

point amplitude at NLLA through four loops for the MHV case, and through

three loops for the NMHV helicity configurations [2]. Subsequently, the eight-

point NLLA amplitude for any helicity configuration up to three loops was

computed [3].

3.4. The Function Space and Transcendentality

3.4.1. Maximal Transcendentality at LLA

In this chapter we have explored the multi-Regge limit of planar N = 4 SYM.

We have found that a thorough understanding of the geometry and function
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space which arises from the scattering amplitudes in this setup has allowed us to

develop very powerful computational techniques. Since we have an algorithmic

way of computing higher-order results, we can turn to the central topic of this

thesis. It is natural to wonder if we can show the maximal transcendentality

of planar N = 4 SYM in this limit using the methods developed here. In this

section we show that the recursive structure of LLA scattering amplitudes in the

multi-Regge limit implies that they can always be expressed in terms of single-

valued multiple polylogarithms of maximal and uniform weight, independently

of the loop number and helicity configuration.

We first consider the MHV case. The factorisation at LLA allows us to state

that any MHV perturbative coefficient can be computed from a low-loop low-leg

starting point using two operations: adding particles and convolution with E(z1).
Clearly, factorisation implies that adding particles can not change the weight

or functional form of the perturbative coefficient, so it suffices to show that

convolution with E(z1) has the same property. The proof proceeds by induction.

Assume that g
(`;i1,...,ik)
+...+ is a pure function of uniform weight ω = 1+ i1 + . . .+ ik,

and let us show that g
(`;i1+1,...,ik)
+...+ = E(z1) ∗ g(`;i1,...,ik)

+...+ is a pure function of

uniform weight ω + 1. We have, in terms of simplicial coordinates based at z1,

E(z1) ∗ g(`;i1,...,iN−5)
+···+ (ρ1, . . . , ρN−5)

= −
∫ d2w

2π g
(i1,...,iN−5)
+···+ (w, t2, . . . , tN−5) w̄t1 + wt̄1

|w|2|w − t1|2

= −
∫ d2w

2π g
(i1,...,iN−5)
+···+ (w, t2, . . . , tN−5) 1

w(w − t1)

(
w + t1
w̄ − t̄1

− w

w̄

)
.

(3.137)

We evaluate the integral in terms of residues. As g
(`;i1,...,iN−5)
+···+ is assumed pure

by the induction hypothesis and all the denominators are linear in w̄, the anti-

holomorphic primitive is a pure function (seen as a function of w̄) of uniform

weight ω + 1. The convolution in (3.137) can then be written in the form

E(z1) ∗ g(`;i1,...,iN−5)
+···+ (ρ1, . . . , ρN−5)

= −
∫ dw

2π

[
1
w
F1(w, t2, . . . , tN−5) + 1

w − t1
F2(w, t2, . . . , tN−5)

]
,

(3.138)

where F1 and F2 are pure single-valued polylogarithmic functions of weight ω+1.

As all the poles are simple, the holomorphic residues can be computed by simply

evaluating the pure functions of weight ω + 1 at w = 0, w = t1 and w = ∞
(and dropping all logarithmically divergent terms). Hence, E(z1) ∗ g(i1,...,iN−5)

+···+
is a pure polylogarithmic function of weight ω + 1.

To extend this argument beyond MHV, we must first note that non-MHV

amplitudes are in general not pure but contain rational prefactors. The form
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of these rational prefactors, however can be derived and classified from the

convolution algorithm [1]. The aim is to show that beyond MHV, the pure

functions multiplying the rational prefactors are always pure polylogarithmic

functions of uniform weight ω = 1 + i1 + . . . + ik. To show this, analogously

to the MHV case it suffices to show that the claim remains true when doing

three operations: adding particles, convoluting with E(z1) and flipping the

first helicity. Once again, factorisation guarantees that we may always add

particles with equal neighbouring helicities. Let us then show that also in the

non-MHV case a convolution with E(z1) will increase the weight by one unit.

From the classification of rational prefactors in [1] we know that all poles in

z1 are simple and either holomorphic or anti-holomorphic. In the following

we discuss the anti-holomorphic case, the extension to the holomorphic case is

trivial. The integrand of the convolution integral in the non-MHV case may

have additional poles in w̄ at points where rational prefactors become singular.

However, none of these additional poles are located at w̄ = 0 or w̄ = z1, causing

no interplay between the poles of the integration kernel and the poles of the

rational prefactors and so all the anti-holomorphic poles entering the convolution

integral are simple. We can thus repeat the same argument as in the MHV

case, and the anti-holomorphic primitive will be a pure polylogarithmic function

of weight ω + 1. Moreover, there are no additional holomorphic poles in w

introduced by the rational prefactors, and so we can compute all the holomorphic

residues by evaluating the pure functions of weight ω + 1 at w ∈ {0, t1,∞}.

Hence, a convolution with E(z1) produces pure polylogarithmic functions of

weight ω + 1 also in the non-MHV case. To complete the argument, we need

to show that flipping the leftmost helicity does not change the weight of the

functions. For this, we can make use of an alternative method to compute the

leftmost helicity flip.

Flipping the first helicity on an MHV LLA coefficient

g̃
(`;i1,...,iN−5)
−+...+ = H(z1) ∗ g̃(`;i1,...,iN−5)

+...+

= −
∫ d2w

π

z1

w̄(w − z1)2 g̃
(`;i1,...,iN−5)
+...+ (w, z2 . . . , zN−5) .

(3.139)

We can evaluate (3.139) in terms of residues. Let us denote by F the anti-

holomorphic primitive,

F (w, z2 . . . , zN−5) ≡
∫ dw̄

w̄
g̃

(`;i1,...,iN−5)
+...+ (w, z2 . . . , zN−5) . (3.140)

Then the result is obtained by summing over all the holomorphic residues of F .

As MHV amplitudes are pure functions, they have no poles, and so F has no

poles either. Furthermore, it is easy to check that there is no pole at infinity,
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and so the only residue we need to take into account comes from the double

pole at w = z1 in (3.139),

g̃
(`;i1,...,iN−5)
−+...+ = Resw=z1

z1 F (w, z2 . . . , zN−5)
(w − z1)2

= z1 ∂z1F (z1, z2 . . . , zN−5)

= z1∂z1

∫ dw̄
w̄
g̃

(`;i1,...,iN−5)
+...+ (w, z2 . . . , zN−5) .

(3.141)

Now, the statement that for the rational prefactors all poles in z1 are simple

and either holomorphic or anti-holomorphic implies that we can in fact use this

method on any helicity configuration, taking the (anti)holomorphic primitive

if poles are (anti)holomorphic. Since all poles are simple, the integration will

increase the weight by one unit. This effect is compensated by the differentiation,

so that the total weight of the functions remains unchanged. We find that

our algorithmic method to compute scattering amplitudes in the multi-Regge

limit has allowed us to show that to LLA, they can always be expressed in

terms of single-valued multiple polylogarithms of maximal and uniform weight,

independently of the loop number and helicity configuration.

3.4.2. Beyond Leading Logarithmic Accuracy

3.4.2.1. The Transcendentality of MHV Amplitudes

Now let us see what can be said about transcendentality beyond leading

logarithmic accuracy. From the all-order conjecture for the MRK ratio given

in (3.41) and the form of the all-order building blocks [6,127], one can deduce

that MHV amplitudes are made up of terms of the form

F [A$N ] (3.142)

where A is an arbitrary product of elementary building blocks5 {E, V,N,M}
defined in Appendix A and (repeated) derivatives Dn

ν thereof. Let us examine

these terms more carefully.

Terms of the form (3.142) can be computed by starting from the Fourier-Mellin

transform of the MHV vacuum ladder (3.86) given by

F [$N ] = 1
4 (G0(ρ1) − G1(ρ1) − G1(ρN−5)) , (3.143)

5These elementary building blocks are the objects out of which the BFKL building blocks

of (3.41) are built to all orders.
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and acting upon this object by repeated convolutions with the Fourier-Mellin

transforms of the elementary building blocks and their (higher) derivatives.

Now, noting that (3.94) and

V(z, z̄) ≡ F [V (ν, n)] = 2 − z − z̄

2|1 − z|2
, (3.144)

N (z, z̄) ≡ F [N(ν, n)] = z − z̄

|1 − z|2
, (3.145)

have the form described in Lemma C.2 in Appendix C, we can see that

convolution of a pure function with such objects will result in a pure function

of one weight higher. For derivatives of such kernels, we may use the property

that for a generic Fourier-Mellin transform,

F [DνX] = −G0(z)F [X] . (3.146)

This implies that for φ(z, z̄), a generic pure function of SVMPLs with uniform

transcendental weight n,

F [DνX](z, z̄) ∗ φ(z, z̄) = −
∫

d2w

|w|2
G0(w/z)F [X]

(
w

z
,
w̄

z̄

)
φ(w, w̄) ,

=
∫

d2w

|w|2
F [X]

(
w

z
,
w̄

z̄

)(
G0(z) − G0(w)

)
φ(w, w̄) ,

(3.147)

which is the convolution of F [X] with a pure function of SVMPLs with uniform

transcendental weight n+ 1. From this we may conclude that for convolutions

with (higher) derivatives of building blocks which obey the form of Lemma C.2

the result can always be written as a pure combination of SVMPLs with uniform

weight, and that the weight is raised by one for every derivative. Thus, we

can remove all building blocks from the Fourier-Mellin transform except for

M and its derivatives and we know that reinserting them via convolutions will

preserve the function space and will raise the weight uniformly. This leaves us

to determine what effect the remaining building block M and its derivatives

have.

In order to study the effect of insertions of M into the Fourier-Mellin integrand

it is useful to rewrite it as

M(νk, nk, νl, nl) = Dνk
C+

0 (νk, nk, νl, nl)
C+

0 (νk, nk, νl, nl)
+ F (νk, nk) (3.148)

= −Dνl
C+

0 (νk, nk, νl, nl)
C+

0 (νk, nk, νl, nl)
+ F (νl,−nl) −N(νl, nl) . (3.149)

Where F (ν, n) is a new building block defined as

F (ν, n) = −2ψ(1) + ψ
(

1 + iν − n

2

)
+ ψ

(
1 − iν − n

2

)
. (3.150)
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Inserting the decomposition of M into the Fourier-Mellin transform we have

F [$NM(νk, nk, νk+1, nk+1)] = F
[
$N

DkC
+
0 (νk, nk, νk+1, nk+1)

C+
0 (νk, nk, νk+1, nk+1)

]
+ F [$NF (νk, nk)] .

(3.151)

Now note that the first term can be rewritten using partial integration, which

for k > 1 gives us

F
[
$N

DkC
+
0 (νk, nk, νk+1, nk+1)

C+
0 (νk, nk, νk+1, nk+1)

]
= − G0(zk)F [$N ]

+ F [$NM(νk−1, nk−1, νk, nk)]
+ F [$NN(νk, nk)]
− F [$NF (νk,−nk)] .

(3.152)

From (3.151) and (3.152), using F [F (ν, n)] = F [F (ν,−n)] we can conclude that

F [$NM(νk, nk, νk+1, nk+1)] = F [$NM(νk−1, nk−1, νk, nk)]
+ F [$NN(νk, nk)] − G0(zk)F [$N ] ,

(3.153)

and so we can recursively shift the building block M to the first set of Fourier-

Mellin variables. The end point of the recursion is

F [$NM(ν1, n1, ν2, n2)] = F
[
$N

D1C
+
0 (ν1, n1, ν2, n2)

C+
0 (ν1, n1, ν2, n2)

]
+ F [$NF (ν1, n1)] .

(3.154)

Using partial integration for the first term on the r.h.s., we obtain

F
[
$N

D1C
+
0 (ν1, n1, ν2, n2)

C+
0 (ν1, n1, ν2, n2)

]
= F [D1$N ] − F

[
$N

D1χ
+
0 (ν1, n1)

χ+
0 (ν1, n1)

]
,

= F [D1$N ] + iF
[
$Nχ

+
0 (ν1, n1)

]
.

(3.155)

Since iχ+
0 (νi, ni) = V (νi, ni) − 1

2N(νi, ni), this means

F
[
$N

D1C
+
0 (ν1, n1, ν2, n2)

C+
0 (ν1, n1, ν2, n2)

]
= G0(z1)F [$N ] + F [$NV (ν1, n1)]

− 1
2F [$NN(ν1, n1)] .

(3.156)

Since

F [F (ν, n)] = |z|2

|z + 1|2
, (3.157)

obeys the form dictated by Lemma C.2, the extra terms we introduce are pure

combinations of SVMPLs of uniform weight. Our discussion has shown that
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the Fourier-Mellin transform of the building block M multiplied by the vacuum

ladder can be rewritten into a linear combination of Fourier-Mellin transforms

known to resolve to pure functions one step higher in weight by shifting the

variable dependence of M to the left and resolving it in the first Fourier-Mellin

variables. For multiple insertions of M in the Fourier-Mellin transform, we can

build on this result. Note that we managed to replace the insertion of M in the

Fourier-Mellin integrand by two types of terms:

F [$NXi] and G0(zi)F [$N ] , (3.158)

with Xi ∈ {Fi, Ni, Vi}. Let us consider the effect of adding another M to the

Fourier-Mellin integrand of these terms, to know how products of M can be

resolved. We introduce the shorthand Mij = M(νi, ni, νj , nj). The first term

can be treated using the commutativity and associativity of the convolution

product

F [$NXi] ∗ F [Mkl] = F [$N ] ∗ F [Xi] ∗ F [Mkl] ,
= (F [$N ] ∗ F [Mkl]) ∗ F [Xi] ,

(3.159)

the term in brackets in (3.159) can then be treated as was described above. In

the second case defined by

(G0(zi)F [$N ]) ∗ F [Mkl] (3.160)

the situation is a bit trickier. For i 6= k and i 6= l the logarithm is immaterial

from the point of view of the convolution integral and we can treat M as before.

For i = k or i = l, we can use

(G0(z)F [X]) ∗ F [Y ] = G0(z)(F [X] ∗ F [Y ]) + F [X] ∗ F [DνY ] (3.161)

where we have used (3.146). We therefore have

(G0(zk)F [$N ]) ∗ F [Mkl] = G0(zk)(F [$N ] ∗ F [Mkl])
+ F [$N ] ∗ F [DkMkl],

(G0(zl)F [$N ]) ∗ F [Mkl] = G0(zl)(F [$N ] ∗ F [Mkl])
+ F [$N ] ∗ F [DlMkl],

(3.162)

and are left with a term which can be treated as before and an insertion of a

derivative of M into the vacuum ladder.

This leads us to the final ingredient we need to describe MHV amplitudes,

namely derivatives of the building block M . To deal with such terms, we may

once again use integration by parts. Take the term

Dn
kM(νk, nk, νl, nl) (3.163)
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as the result for Dn
l is completely analogous. We may then recursively reduce

the power of Dk by using

F [$ND
n
kMkl] = F [Dk

(
$ND

n−1
k Mkl

)
] − F [(Dk$N )Dn−1

k Mkl]
= G0(zk)F [$ND

n−1
k Mkl]

− F

[
$N

DkC
+
0,jk

C+
0,jk

]
∗ F [Dn−1

k Mkl]

+ F

[
$N

DkC
+
0,kl

C+
0,kl

]
∗ F [Dn−1

k Mkl] ,

(3.164)

where we have identified j = k − 1 and l = k + 1 for compactness. The final

two terms on the r.h.s. of (3.164) can be rewritten using (3.152). Using (3.164)

we may recursively eliminate all appearances of derivatives of M . The extra

terms generated in each step of this recursion all preserve the function space

and raise the weight by one, as does the multiplication by G0(zk), so we can

conclude that insertions of derivatives Dn
kMkl of M raise the weight by n+ 1.

To summarize: MHV amplitudes are made up of terms of the form F [A$N ]
where A is an arbitrary product of elementary building blocks and their

derivatives. To determine such terms, we can make use of the convolution

product to introduce each factor in the product A to the integrand one by

one. First, however, we will make use of (3.164) to eliminate all derivatives

acting on M , resulting in a sum of terms of the form F [A′ $N ] with prefactors

that may contain SVMPLs G0(zi), where the A′
i are again arbitrary products

of elementary building blocks and their (repeated) derivatives Dn
ν , but the

derivative never acts on M . Note that from (3.164) we see that for every power

of G0(zi) in the prefactor, the total number of factors in A′ is reduced by one.

Now, we use the convolution structure to introduce each factor in A′. We

start by introducing factors of M , for which the above discussion shows that

we obtain a pure function of uniform weight, where the weight is raised by

one for each factor of M which is introduced. Introducing all other building

blocks X ∈ {E, V,N} and their derivatives Dn
i X is guaranteed to result in pure

functions of uniform weight by the result of Lemma C.2, and will raise the

weight by one and n+ 1, respectively.

In conclusion, F [A$N ] evaluates to a pure function of uniform transcendental

weight, the weight of which is determined by the total number of factors

(also counting derivates) in A. From (3.41) and an analysis of the all-order

BFKL building blocks, one may then conclude that MHV amplitudes in the

multi-Regge limit of planar N = 4 SYM must be pure functions of uniform

transcendental weight to all orders in the large logarithm and all orders in the

coupling constant [6].
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3.4.2.2. The All-Order Helicity Flip

Let us now turn our attention beyond MHV. As we have discussed before, the

only new ingredient is the all-order helicity flip kernel. After expanding the

helicity flip kernel (3.66)

H(ν, n) = H(0)(ν, n) + aH(1)(ν, n) + a2H(2)(ν, n) + . . . (3.165)

= H(0)(ν, n)
(

1 + ah(1)(ν, n) + a2h(2)(ν, n) + . . .
)
, (3.166)

from the form of the all-order impact factor, we can see that all corrections h(k),

k > 1 consist of combinations of the elementary building blocks E,N, V and their

derivatives. Therefore, from Lemma C.2 we again see that the convolution of any

pure function of uniform weight with F [h(k)(ν, n)] will again be a pure function

of uniform weight. The perturbative coefficients in any helicity configuration

can be obtained by repeated convolutions with all-order helicity flip kernels.

Due to commutativity of the convolution we have

F [X] ∗ H(`i1 )
i1

∗ H(`i2 )
i2

∗ · · · = F [Xh(`i1 )
i1

h
(`i2 )
i2

. . . ] ∗ H(0)
i1

∗ H(0)
i2

∗ . . . , (3.167)

such that any non-MHV amplitude can be expressed as a series of leading order

helicity flips of a pure function of uniform weight. Furthermore, note that

h(k)(ν, n) raises the weight by 2k, such that all-order helicity flips lead to results

of uniform transcendental weight at fixed orders. For example, if we consider

the expansion at NLLA for seven particles in (3.136), the NLO component of

the helicity flip kernel will increase the weight by two. We see that this pattern

holds to all orders.

We have shown that amplitudes beyond MHV in multi-Regge kinematics can be

computed by applying the leading-order helicity flip kernel to a pure function of

uniform weight. From our discussion at LLA, we know that the LO helicity flip

does not change the transcendental weight upon convolution, and so we may

conclude by stating the following theorem [6].

Theorem 3.1. In the multi-Regge limit of planar N = 4 super Yang-Mills

theory at NkLLA in the Mandelstam region where the energy components of

all produced particles are negative, the `-loop N-point MRK ratio is given by

linear combinations of cross ratios multiplying pure combinations of SVMPLs

and powers of 2πi of uniform weight k + ` + 1. The form of the cross ratios

multiplying the pure functions is fixed by the helicity configuration. In particular,

the `-loop MHV MRK ratio at NkLLA is given by pure combinations of SVMPLs

of weight k + `+ 1.



3.4. The Function Space and Transcendentality 79

In this chapter, we have seen that knowledge of the geometry of the configuration

space, along with an all-order form for the amplitude in terms of an integral

transform allowed us to gain tremendous insight on the functions which may

appear and their analytic properties, in particular with regard to the transcen-

dental weight. We have seen that our recursive way of computing higher order

corrections offers a unique handle on transcendental weight and allows us to

show results to all orders. Note, however, that we have been working in a highly

symmetric theory with very special properties. In the following chapter, we

will move beyond this theory and consider the possibility of less-than-maximal

supersymmetry. We will aim to apply the formalism developed here to an object

defined in the high-energy limit for gauge theories with generic matter content,

and see what connection can be made between the matter content on the one

hand and the analytic properties of the result on the other.
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4 | The High-Energy Limit

for Generic Gauge Theories

Having explored the high-energy limit of planar N = 4 SYM, we now aim to

apply the developed techniques to a more general setting to study transcen-

dentality in the multi-Regge regime in a generic sense. In particular, we wish to

understand if the maximal transcendentality that was observed in the previous

chapter is an artefact of the special theory which was considered, or if we may

find it in the high energy limit for a larger set of theories. As a starting point,

we will consider the high-energy limit of parton scattering in QCD. It is known

from the BFKL formalism that in this case the total cross section factorises into

impact factors which couple to the external partons and an effective propagator

called the BFKL ladder. This object will be the central topic of this chapter,

reviewing the work done in [7]. Using the techniques developed in the previous

chapter, we will compute this BFKL ladder to NLLA, first in QCD but then

turning our attention to theories with generic matter content, in order to study

how the matter content can be tuned to enforce maximal transcendentality of

our result.

In this chapter, we start with quick overview of the BFKL formalism. After

reviewing the BFKL equation in QCD and its solutions in terms of the BFKL

ladder, we recap its well-known LLA part. Turning to NLLA, we first discuss

the procedure to extract the BFKL ladder at this order and then show its

perturbative expansion. After discussing the methods by which this perturbative

expansion can be computed, we generalise our discussion to generic gauge

theories and study the relation between the matter content and transcendentality

of the BFKL ladder at NLLA.

81
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4.1. The BFKL Formalism

4.1.1. The BFKL Equation

As can be seen from the optical theorem

σtot ∼ Disc(iM(s, t = 0)) , (4.1)

where M is the forward amplitude summed over final colour and helicities and

averaged over initial ones, and the factorisation of amplitudes in the high-energy

limit, the total cross section for parton scattering in the high-energy limit

factorises,

σ(s) '
∫ d2q1 d2q2

(2π)2 q2
1 q

2
2

ΦA(q1) ΦB(q2) f(q1, q2, log(s/s0)) , (4.2)

where s is the center-of-mass energy and

s0 ≡
√
q2

1 q
2
2 (4.3)

is the geometric mean of the two transverse momenta, ΦA/B denote the impact

factors and f is the BFKL ladder. The BFKL ladder given here is related to

the t-channel exchange of a colour singlet state. A schematic representation

of (4.2) can be found in Figure 4.1.

The BFKL ladder can be written as,

f(q1, q2, y) =
∫

C

dω
2πi e

y ω fω(q1, q2) , (4.4)

where y denotes the large logarithm, the integration contour C is a straight

vertical line such that all poles in ω are to the right of the contour and fω is a

solution to the BFKL equation,

ω fω(q1, q2) = 1
2 δ

(2)(q1 − q2) + (K ? fω)(q1, q2) , (4.5)

with the convolution defined by

(K ? fω)(q1, q2) ≡
∫

d2kK(q1, k) fω(k, q2) , (4.6)

and K(q1, q2) the BFKL kernel. This kernel is real and symmetric, K(q1, q2) =
K(q2, q1), and so the integral operator K is hermitian and its eigenvalues are

real.
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q1

q2

ΦA

ΦB

f

Figure 4.1: A graphical representation of the factorised cross section in the

high-energy limit in terms of impact factors and the BFKL ladder.

To solve (4.5), we find a complete and orthonormal set of eigenfunctions of the

BFKL integral operator

(K ? Φνn)(q) = ωνn Φνn(q) . (4.7)

The eigenvalue ωνn is referred to as the singlet BFKL eigenvalue and is

distinct from the eigenvalue introduced in the previous chapter in (3.41). The

eigenfunctions are labeled by (ν, n), where ν is a real number and n an integer.

As they are orthonormal and complete, they satisfy

2
∫

d2qΦνn(q) Φ∗
ν′n′(q) =

∫ ∞

0
dq2

∫ 2π

0
dθΦνn(q) Φ∗

ν′n′(q)

= δ(ν − ν′) δnn′ ,

(4.8)

and

+∞∑
n=−∞

∫ +∞

−∞
dν Φνn(q) Φ∗

νn(q′) = 1
2 δ

(2)(q − q′) . (4.9)
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We can then solve the BFKL equation by stating

fω(q1, q2) =
+∞∑

n=−∞

∫ +∞

−∞
dν 1

ω − ωνn
Φνn(q1) Φ∗

νn(q2) . (4.10)

Indeed, we have

(K ? fω)(q1, q2) =
+∞∑

n=−∞

∫ +∞

−∞
dν 1

ω − ωνn
(K ? Φνn)(q1) Φ∗

νn(q2)

=
+∞∑

n=−∞

∫ +∞

−∞
dν ωνn

ω − ωνn
Φνn(q1) Φ∗

νn(q2)

= −1
2δ

(2)(q1 − q2) + ω fω(q1, q2) ,

(4.11)

where in the last step we used the completeness of the eigenfunctions. Finally,

inserting (4.10) into (4.4), we find

f(q1, q2, y) =
+∞∑

n=−∞

∫ +∞

−∞
dν Φνn(q1) Φ∗

νn(q2) ey ωνn . (4.12)

In the following we are interested in the perturbative expansion of the BFKL

ladder. The kernel of the integral equation admits the expansion,

K(q1, q2) = αµ

∞∑
l=0

αl
µ K

(l)(q1, q2) , (4.13)

where αµ = Nc αS(µ2)/π is the renormalised strong coupling constant evaluated

at an arbitrary scale µ2. The leading order (LO) BFKL kernel [116–118,154],

K(0)(q1, q2) = 1
π

1
(q1 − q2)2 , (4.14)

leads to the resummation of the terms of O ((αµy)n), i.e., terms at LLA, and

the NLO kernel K(1) [119,121] resums the terms at NLLA, i.e. of O (αµ(αµy)n),
and so forth. The BFKL singlet eigenvalue and eigenfunctions also admit an

expansion in the strong coupling,

ωνn = αµ

∞∑
l=0

αl
µ ω

(l)
νn and Φνn(q) =

∞∑
l=0

αl
µ Φ(l)

νn(q) . (4.15)

The truncated eigenvalue and eigenfunctions,

ωNkLO
νn = αµ

k∑
l=0

αl
µ ω

(l)
νn and ΦNkLO

νn (q) =
k∑

l=0
αl

µ Φ(l)
νn(q) , (4.16)
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are eigenvalues and eigenfunctions of the truncated BFKL integral operator,(
KNkLO ? ΦNkLO

νn

)
(q) = ωNkLO

νn ΦNkLO
νn (q) + O(αk+1

µ ) ,

with KNkLO = αµ

k∑
l=0

αl
µ K(l) .

(4.17)

In the remainder of this chapter we consider the first two terms in the expansion

of the BFKL ladder,

f(q1, q2, y) = fLL(q1, q2, ηµ) + αµ f
NLL(q1, q2, ηµ) + . . . . (4.18)

Note that fNkLL is defined as an expansion in ηµ = αµ y , implying they are

expressions of fixed logarithmic order. The LO term fLL(q1, q2, ηµ) is the BFKL

ladder at LLA, and the NLO term fNLL(q1, q2, ηµ) is the ladder at NLLA. We

will focus on the LLA ladder for the remainder of this section, before turning

our attention to NLLA subsequently.

4.1.2. The BFKL Ladder at LLA

The LO eigenfunctions are given by

ΦLO
νn (q) ≡ ϕνn(q) = 1

2π (q2)−1/2+iν einθ . (4.19)

The LO singlet eigenvalue is given by [117,118]

ω(0)
νn ≡ χνn = −2γE − ψ

(
|n| + 1

2 + iν

)
− ψ

(
|n| + 1

2 − iν

)
, (4.20)

where γE = −Γ′(1) is the Euler-Mascheroni constant and ψ(z) = d
dz log Γ(z) is

the digamma function. We thus have

(KLO ? ϕνn)(q) = χνn ϕνn(q) . (4.21)

The LO eigenvalue is symmetric under ν → −ν. Using these expressions of the

eigenvalue and eigenfunctions, we can determine the BFKL ladder at LLA

fLL(q1, q2, ηµ) =
+∞∑

n=−∞

∫ +∞

−∞
dν eηµ χνn ϕνn(q1)ϕ∗

νn(q2) . (4.22)

The dependence of the strong coupling on the renormalisation scale µ2 in (4.22)

is immaterial, since the effect of changing the scale contributes at NLLA. We

expand fLL in powers of ηµ,

fLL(q1, q2, ηµ) = 1
2δ

(2)(q1 − q2) + 1
2π
√
q2

1 q
2
2

∞∑
k=1

ηk
µ

k! f
LL
k (z) . (4.23)
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The coefficients of the expansion depend on a single complex variable z defined

by

z ≡ q̃1

q̃2
, with q̃k ≡ qx

k + iqy
k . (4.24)

These coefficients can then be cast in the form of a Fourier-Mellin transform,

fLL
k (z) = F

[
χk

νn

]
≡

+∞∑
n=−∞

(z
z̄

)n/2 ∫ +∞

−∞

dν
2π |z|2iν χk

νn . (4.25)

In [134] it was shown that the natural space of functions to which Fourier-Mellin

transforms of this type evaluate are the single-valued multiple polylogarithms

introduced in Section 3.1.2. In [155] a (conjectural) generating functional of the

BFKL ladder was given that allows one to express each coefficient fLL
k (z) as a

linear combination of SVMPLs with singularities at z = 0 and z = 1. Writing

fLL
k (z) = |z|

2π |1 − z|2
Fk(z) , (4.26)

we can express the first few coefficients as [155],

F1(z) = 1 ,
F2(z) = 2 G1(z) − G0(z) ,
F3(z) = 6 G1,1(z) − 3 G0,1(z) − 3 G1,0(z) + G0,0,0(z) ,
F4(z) = 24 G1,1,1(z) + 4 G0,0,1(z) + 6 G0,1,0(z) − 12 G0,1,1(z)

+ 4 G1,0,0(z) − 12 G1,0,1(z) − 12 G1,1,0(z) − G0,0,0(z) + 8 ζ3 .

(4.27)

The conjecture of [155] implies that the functions Fk have a particularly simple

form: at any loop order, they are pure [156]. More precisely, the Fk are pure

combinations of SVHPLs1 of uniform weight (k−1) with singularities at most at

z = 0 or z = 1. This claim follows from Lemma C.1, the proof of which can be

found in Appendix C. Note that this proof does not make use of the conjectural

generating function, but is based on the observation that the coefficients of the

leading logarithmic BFKL ladder at different orders are related by convolutions

fLL
k (z) = F

[
χk

νn

]
= F [χνn]∗k

, (4.28)

and thus can be constructed recursively. An inductive argument then shows

that Fk has uniform weight.

Thus, we see that also in this setup, the convolution formalism allows us to

study transcendentality in a profound way using a recursive argument. At LLA

however, only the LO BFKL kernel which is conformally-invariant contributes

1And the multiple zeta values associated to them [157].
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and the result does not depend on the matter content of the theory. In what

follows, we will move to NLLA, where the matter content does play a role. We

will use the convolution formalism to compute high-loop expressions for the

BFKL ladder and then study how their transcendentality relates to the chosen

matter content. As a first case, however, we will consider the NLLA BFKL

ladder in QCD.

4.2. The BFKL Ladder to NLLA

4.2.1. The Chirilli-Kovchekov Procedure

At NLLA, we must take into account the NLO corrections to the BFKL kernel.

These were obtained in QCD in [119]. The corresponding NLO corrections to

the BFKL singlet eigenvalue were computed in [119] for n = 0 and in [74,158]

for arbitrary n, albeit in the approximation that the NLO eigenfunctions are

identical to the LO eigenfunctions given in (4.19). In other words, the NLO

corrections δνn to the BFKL eigenvalue of [74, 158] are defined by the equation,

(KNLO ? ϕνn)(q) ≡ αS(q2)
(
χνn + αS(q2)δνn

4

)
ϕνn(q) + O(α3

S(q2)) . (4.29)

The NLO corrections to the eigenvalue δνn in QCD are given in this approximation

by [74,119,158],

δνn = 6ζ3 − 1
2β0 χ

2
νn + 4γ(2)

K χνn + i

2β0 ∂νχνn + ∂2
νχνn

− 2Φ(n, γ) − 2Φ(n, 1 − γ) − Γ(γ)Γ(1 − γ)
2iν [ψ (γ) − ψ (1 − γ)]

×
[
δn0

(
3 +

(
1 + Nf

N3
c

)
2 + 3γ(1 − γ)

(3 − 2γ)(1 + 2γ)

)
− δ|n|2

((
1 + Nf

N3
c

)
γ(1 − γ)

2(3 − 2γ)(1 + 2γ)

)]
,

(4.30)

with γ = 1/2 + iν, β0 the one-loop beta function and γ
(2)
K the two-loop cusp

anomalous dimension for QCD in the dimensional reduction scheme,

β0 = 11
3 − 2Nf

3Nc
, γ

(2)
K = 1

4

(
64
9 − 10Nf

9Nc

)
− ζ2

2 . (4.31)
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The function Φ(n, γ) is defined as,

Φ(n, γ) =
∞∑

k=0

(−1)k+1

k + γ + |n|/2

{
ψ′(k + |n| + 1) − ψ′(k + 1)

+ (−1)k+1[β′(k + |n| + 1) + β′(k + 1)]

− 1
k + γ + |n|/2 [ψ(k + |n| + 1) − ψ(k + 1)]

}
,

(4.32)

with

β′(z) = 1
4

[
ψ′
(

1 + z

2

)
− ψ′

(z
2

)]
. (4.33)

While the NLO eigenvalue in (4.30) was derived under the assumption that the

eigenfunctions are the same at LO and NLO, we do not expect this to hold for

a generic theory. In fact, since it is the eigenvalue of a hermitian operator, the

true NLO eigenvalue must be real and independent of q2. The δνn fails to meet

either criterion: the right-hand side of (4.29) depends on q2 through the strong

coupling constant and (4.30) contains the term iβ0 ∂νχνn, which is imaginary.

In [119], it was hinted that one could get rid of the undesired properties of δνn

by using a different set of eigenfunctions. This was made explicit by Chirilli

and Kovchegov [159,160]. In the remainder of this section we shall review the

Chirilli-Kovchegov procedure, and construct the NLO eigenfunctions and the

corresponding NLO eigenvalue for any value of n. Our goal is to construct

functions ω
(1)
νn and Φ(1)

νn (q) such that[
KNLO ?

(
ϕνn + αµΦ(1)

νn

)]
=
(
αµχνn + α2

µω
(1)
νn

) [
ϕνn(q) + αµΦ(1)

νn (q)
]

+ O(α3
µ) .

(4.34)

We parametrise the NLO eigenvalue ω
(1)
νn in terms of δνn and an unknown

function cνn as

ω(1)
νn = δνn

4 + cνn = i
β0

8 ∂νχνn + ∆νn + cνn , (4.35)

where ∆νn collects all the terms in (4.30) that are symmetric under ν → −ν,

which is a symmetry we expect of the function ω
(1)
νn . Inserting the parametrisation

in (4.35) into (4.34) and using (4.29) and the running of the strong coupling,

αS(q2) = αµ

[
1 − αµ

β0

4 ln q2

µ2 + O(α2
µ)
]
, (4.36)

we obtain(
KLO ? Φ(1)

νn

)
(q) =

(
cνn + β0

4 χνn log q
2

µ2

)
ϕνn(q) + χνn Φ(1)

νn (q) . (4.37)
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Following Chirilli and Kovchegov [159,160], since (4.37) must be satisfied for

arbitrary values of q, we must take Φ(1)
νn proportional to ϕνn. We therefore make

the following Ansatz,

Φ(1)
νn (q) =

(
a0 + a1 ln q2

µ2 + a2 ln2 q
2

µ2

)
ϕνn(q) , (4.38)

where aj for j = 0, 1, 2 are arbitrary complex coefficients which depend on ν

and n. Inserting (4.38) into (4.37), one finds

a2 = i
β0

8
χνn

∂νχνn
,

cνn = −i a1 ∂νχνn + i
β0

8
χνn ∂

2
νχνn

∂νχνn
.

(4.39)

The expressions in (4.39) only hold for ν 6= 0, because the denominator has a

simple pole for ν = 0, ∂νχνn|ν=0 = 0. To regulate this singularity, we can make

use of the principal value prescription∫ +∞

−∞
dν
(
P

1
ν

)
f(ν) ≡ lim

ε→0

(∫ −ε

−∞

dν
ν
f(ν) +

∫ +∞

ε

dν
ν
f(ν)

)
. (4.40)

Upon imposing this prescription, the solutions in (4.39) for arbitrary ν are given

by

a2 = i
β0

8 P
χνn

∂νχνn
,

cνn = −i a1 ∂νχνn + i
β0

8 P
χνn ∂

2
νχνn

∂νχνn
.

(4.41)

With these solutions at hand the eigenfunctions can be written as

Φνn(q) = ϕνn(q)
[
1 + αµ

(
a0 + a1 ln q2

µ2 + i
β0

8 P
χνn

∂νχνn
ln2 q

2

µ2

)]
, (4.42)

with the coefficients a0 and a1 still to be determined. Note that we require the

eigenfunctions to form a complete and orthonormal set. This places additional

constraints on (4.42). Imposing the completeness relation (4.9), the NLO

eigenfunction can be written as,

Φνn(q) = ϕνn(q)
[

1 + αµ

(
1
2 ∂ν=[a1] + i=[a0] + i=[a1] ln q2

µ2

+ β0

8 ln q2

µ2 ∂νP
χνn

∂νχνn
+ i

β0

8 ln2 q
2

µ2 P
χνn

∂νχνn

)]
.

(4.43)
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The orthogonality condition in (4.8) is now automatically fulfilled through

NLO and does not add any new constraints. The NLO eigenfunctions are

now determined up to two unknown real parameters, =[a0] and =[a1]. These

parameters can be absorbed into the phase of the eigenfunctions and by using the

translation invariance of the ν integral, respectively. This implies the following

result for the NLO eigenfunctions,

Φνn(q) = ϕνn(q)
[
1 + αµ

β0

8 ln q2

µ2

(
∂νP

χνn

∂νχνn
+ i ln q2

µ2 P
χνn

∂νχνn

)]
, (4.44)

in agreement with [160]. With this choice of eigenfunctions, the NLO eigenvalue

becomes

ω(1)
νn = ∆νn = δνn

4 − i
β0

8 ∂νχνn , (4.45)

where δνn is given in (4.30). The new eigenvalue is indeed real and independent of

q2, as we would expect. Now that we have defined appropriate NLO eigenvalues

and -functions, let us turn to the BFKL ladder.

4.2.2. The BFKL Ladder at NLLA

To determine the BFKL ladder through NLLA according to our newly found

eigenvalue and -functions, we start by expanding the product of two eigenfunctions

through NLO. We have

Φνn(q1) Φ∗
νn(q2) =ϕνn(q1)ϕ∗

νn(q2)
[
1 + αµ

β0

4 ln s0

µ2 Xνn

(
q2

1
q2

2

)]
, (4.46)

where we defined

Xνn(x) = ∂νP
χνn

∂νχνn
+ i ln xP χνn

∂νχνn
. (4.47)

From (4.12), we can conclude

f(q1, q2, y) =
+∞∑

n=−∞

∫ +∞

−∞
dν ey ωνn ϕνn(q1)ϕ∗

νn(q2)

×
(

1 + αµ
β0

4 ln s0

µ2 Xνn(q2
1/q

2
2) + O(α2

µ)
)
.

(4.48)

The term involving Xνn can be simplified using integration by parts, giving

f(q1, q2, y) =
+∞∑

n=−∞

∫ +∞

−∞
dν ey ωνn ϕνn(q1)ϕ∗

νn(q2)

×
(

1 − α2
µ

β0

4 ln s0

µ2 y χνn + O(α3
µ)
)
.

(4.49)
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Now note that the term involving the beta function can be absorbed by

writing (4.49) in terms of the renormalised coupling with renormalisation scale

s0, see

exp y
[
αS(s0)χνn + αS(s0)2 ∆νn + O(α3

S)
]

= exp y
[
αµ

(
1 − αµ

β0

4 log s0

µ2

)
χνn + α2

µ ∆νn + O(α3
µ)
]

= ey ωνn

(
1 − α2

µ

β0

4 log s0

µ2 y χνn + O(α3
µ)
)
.

(4.50)

Through NLLA, this means we can cast (4.49) in the equivalent form,

f(q1, q2, y)
∣∣
NLLA

=
+∞∑

n=−∞

∫ +∞

−∞
dν ϕνn(q1)ϕ∗

νn(q2)

× ey αS(s0)[χνn+αS(s0)∆νn] .

(4.51)

Thus, if we choose the scale of the strong coupling to be the geometric mean of

the transverse momenta, µ2 = s0 =
√
q2

1q
2
2 , we can use the LO eigenfunctions

instead of the NLO ones. This is a very valuable trick, as it will allow us to

recycle parts of the analysis done at LLA.

4.2.3. The Fourier-Mellin Representation

Having determined the NLLA BFKL ladder, we now turn to its perturbative

expansion. We set the renormalisation scale to the geometric mean of the two

transverse momenta. Define

fNLL(q1, q2, ηs0) = 1
2π
√
q2

1q
2
2

∞∑
k=1

ηk
s0

k! f
NLL
k+1 (z) , (4.52)

with ηs0 = y αS(s0). The perturbative coefficients are given by the Fourier-

Mellin transform,

fNLL
k (z) = F

[
∆νn χ

k−2
νn

]
=

+∞∑
n=−∞

(z
z̄

)n/2 ∫ +∞

−∞

dν
2π |z|2iν ∆νn χ

k−2
νn . (4.53)

Our aim is to compute these perturbative coefficients to high orders. In order

to facilitate our discussion, it will be useful to split the NLO eigenvalue ∆νn

into a sum of terms,

∆νn = 1
4 δ

(1)
νn + 1

4 δ
(2)
νn + 1

4 δ
(3)
νn + 3

2 ζ3 + γ
(2)
K χνn − 1

8β0χ
2
νn , (4.54)
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where we singled out terms proportional to powers of the LO eigenvalue, because

their Fourier-Mellin transform at any order will evaluate to the known coefficients

appearing in the expansion of the BFKL ladder at LLA, cf. (4.25). In QCD,

the remaining terms are given by

δ(1)
νn = ∂2

νχνn , (4.55)

δ(2)
νn = − 2Φ(n, γ) − 2Φ(n, 1 − γ) , (4.56)

δ(3)
νn = − Γ(γ)Γ(1 − γ)

2iν [ψ (γ) − ψ (1 − γ)] (4.57)

×
[
δn0

(
3 +A

2 + 3γ(1 − γ)
(3 − 2γ)(1 + 2γ)

)
− δ|n|2

(
A

γ(1 − γ)
2(3 − 2γ)(1 + 2γ)

)]
,

with

A =
(

1 + Nf

N3
c

)
. (4.58)

The coefficients in (4.53) can then be written as

fNLL
k (z) =1

4 C
(1)
k (z) + 1

4 C
(2)
k (z) + 1

4 C
(3)
k (z)

+ 3
2 ζ3 f

LL
k−2(z) + γ

(2)
K fLL

k−1(z) − 1
8 β0 f

LL
k (z) ,

(4.59)

where we set fLL
0 (z) = F [1] = π δ(2)(1 − z). The only unknowns in (4.59) are

the functions C
(i)
k , which are defined by

C
(i)
k (z) = F

[
δ(i)

νn χ
k−2
νn

]
, (4.60)

with k ≥ 2. In the remainder of this section we discuss the computation of each

of these quantities in turn.

4.2.4. The Contribution from δ(1)

We first turn our attention to the contributions C
(1)
k (z). Note that inspired by

the results of Section 3.3.1.1, we aim to compute it to high orders using a loop

recursion

C
(1)
k+1(z) =

(
X ∗ C(1)

k

)
(z) , (4.61)

with k ≥ 2, and where we defined

X (z) ≡ F [χνn] = fLL
1 (z) = |z|

2π |1 − z|2
. (4.62)
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The starting point of the recursion is the two-loop coefficient. In order to

compute it, we make use of the following trick

F [∂νAνn] = −iF [Aνn] log |z|2 = −iF [Aνn] G0(z) . (4.63)

Hence, we find

C
(1)
2 (z) = F

[
∂2

νχνn

]
= −X (x) log2 |z|2 = − |z|

π |1 − z|2
G0,0(z) . (4.64)

Since X and C
(1)
2 only have isolated singularities at z = 0 and z = 1, the

formalism developed in Section 3.3.1.1 straightforwardly applies. In [7], this

was applied to compute the functions C
(1)
k (z) up to k ≤ 5. Furthermore, up to

a rational prefactor, the terms C
(1)
k are pure functions of weight k. This can

be shown to all orders from the convolution integral and is a straightforward

application of Lemma C.1 in Appendix C.

4.2.5. The Contribution from δ(2)

We now turn our attention to the contributions C
(2)
k (z). Once again, we aim to

use the recursion

C
(2)
k+1(z) =

(
X ∗ C(2)

k

)
(z) . (4.65)

Unlike in the previous case, the two-loop coefficient can not be obtained

straightforwardly from known LLA results. This means that to obtain the

two-loop contribution, one must compute the Fourier-Mellin integral. This

is done by closing the integration contour in the ν-plane and summing over

residues. The resulting multiple sums can then be associated to polylogarithms.

In this way, one obtains

C
(2)
2 (z) = F

[
δ(2)

νn

]
= C

(2,1)
2 (z) + C

(2,2)
2 (z) , (4.66)

with

C
(2,1)
2 (z) = |z| (z − z̄)

2π |1 + z|2|1 − z|2
[G1,0(z) − G0,1(z)] ,

C
(2,2)
2 (z) = |z| (1 − |z|2)

2π |1 + z|2|1 − z|2
[
G1,0(z) + G0,1(z) −G−1,0

(
|z|2
)

− ζ2
]
.

(4.67)

We see that unlike C
(1)
2 (z), C(2)

2 (z) is not a pure function up to a rational

prefactor, but it can be separated into two expressions C
(2,1)
2 (z), C(2,2)

2 (z) for

which this statement does hold. Furthermore, the function content for C
(2)
2 (z) is

more involved, while C
(2,1)
2 is a linear combination of SVMPLs with singularities
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at most at z = 0 and z = 1, C
(2,2)
2 is expressed in terms of both SVMPLs

and ordinary HPLs evaluated at |z|2. Though C
(2,2)
2 can not be written in

terms of SVMPLs, it is still single-valued, as the argument of G−1,0
(
|z|2
)

is

positive-definite and the function has no branch cut on the positive real axis.

To use the convolution formalism, we must first have a detailed understanding of

such functions and their properties. In particular, to apply Stokes’ theorem (3.97)

we must be able to compute the single-valued primitive of these objects. To

this end, we consider a larger class of functions which envelops the studied

SVMPLs. In [161] Schnetz defined a more general class of single-valued multiple

polylogarithms in one complex variable with singularities at

z = α z̄ + β

γ z̄ + δ
, α, β, γ, δ ∈ C . (4.68)

These functions reduce to the SVMPLs of Section 3.1.2 in the case where the

singularities are at constant locations. Since the two-loop result (4.66) has a

singularity at z = −1/z̄, we expect that the coefficients C(2,1)
k and C(2,2)

k can be

expressed in terms of Schnetz’ generalised SVMPLs (gSVMPLs). Let us review

the definition of these objects. Consider a set of functions G (a1, . . . , an; z)
defined by the following conditions,

1. The functions G (a1, . . . , an; z) are single-valued.

2. They form a shuffle algebra.

3. They satisfy the holomorphic differential equation,

∂zG (a1, . . . , an; z) = 1
z − a1

G (a2, . . . , an; z) . (4.69)

4. They vanish for z = 0, except if all ai are 0, in which case we have

G (0, . . . , 0︸ ︷︷ ︸
n times

; z) = 1
n! logn |z|2 . (4.70)

5. The singularities in (4.69) are antiholomorphic functions of z of the form,

ai = α z̄ + β

γ z̄ + δ
, for some α, β, γ, δ ∈ C . (4.71)

Every linear combination f of such functions with singularities at most for

z = ai, with ai defined in (4.71), has both a single-valued holomorphic and

antiholomorphic primitive [161], which allows us to perform the convolution

integral. For the purpose of computing C
(2)
k (z) we need only consider gSVMPLs
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with ai ∈ {−1, 0, 1,−1/z̄}. These functions can be constructed recursively in

weight [161] as was done in [7] up to weight five. Note that the algebra generated

by these gSVMPLs contains two natural subalgebras,

1. If ai 6= −1/z̄, the gSVMPL reduces to an ordinary SVMPL,

G (a1, . . . , an; z) = G(a1, . . . , an; z) , if ai ∈ {−1, 0, 1} . (4.72)

2. If ai 6= ±1, the gSVMPL reduces to an ordinary HPL evaluated at |z|2,

G (a1, . . . , an; z) = G(z̄ a1, . . . , z̄ an; |z|2) , if ai ∈ {0,−1/z̄} . (4.73)

These subalgebras cover the class of functions encountered in (4.67). An example

of a function that cannot be reduced to these two subalgebras is given by

G−1/z̄,1(z) =G1(z̄)G−1/z̄(z) +G−1/z̄,1(z)
−G−1,1(z̄) + log(2)G−1(z̄) − log(2)G1(z̄) .

(4.74)

Since Schnetz’ formalism allows us to compute the single-valued antiholomorphic

primitive, we are able to compute the convolution integral in (4.65) using (3.97).

In [7], this was applied to compute the functions C
(2)
k (z) up to k ≤ 5. The

results can be written in the form,

C
(2)
k (z) = |z| (z − z̄)

2π |1 + z|2|1 − z|2
C(2,1)

k + |z| (1 − |z|2)
2π |1 + z|2|1 − z|2

C(2,2)
k , (4.75)

where the functions C(2,i)
k are pure and have uniform weight k. Once again it

follows from Lemma C.1 in Appendix C that this structure holds at any loop

order. Finally, it is interesting to note that at two and three loops, the results

can be expressed in terms of SVHPLs and ordinary HPLs evaluated at |z|2.

Starting from four loops, one obtains genuine gSVMPLs that can no longer be

expressed in terms of HPLs.

4.2.6. The Contribution from δ(3)

The final contributions left to consider are those coming from δ(3). We separate

these contribution as follows

C
(3)
k = C

(3,0)
k (z) + C

(3,2)
k (z) , (4.76)

where C
(3,i)
k (z) is due to the terms proportional to δ|n|i. Since the dependence

of δ
(3)
νn on n is only through Kronecker deltas, the Fourier-Mellin transform
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reduces to an ordinary Mellin integral,

C
(3)
k (z) = −

∫ +∞

−∞

dν
2π |z|2iν Γ(γ)Γ(1 − γ)

2iν [ψ (γ) − ψ (1 − γ)]

×
[
χk−2

ν0 A0(ν) +
(
z

z
+ z

z

)
χk−2

ν2 A2(ν)
]
,

(4.77)

with

A0(ν) = 3 +A
2 + 3γ(1 − γ)

(3 − 2γ)(1 + 2γ) , (4.78)

A2(ν) = −A γ(1 − γ)
2(3 − 2γ)(1 + 2γ) . (4.79)

This integral can be evaluated by closing the contour in the upper half-plane

and summing up the residues at ν = i
( 1

2 +m
)
, m ∈ N. The sum of residues

can be performed using the techniques of [162–164], expressing the result in

terms of MPLs of the type G(a1, . . . , an; |z|), with ak ∈ {−i, 0, i}. This was

done in [7] up to k ≤ 5. Clearly these functions are single-valued functions of

the complex variable z, because they have no branch cut on the positive real

axis.

Complex conjugation acts in a simple and natural way on this class of functions:

it leaves |z| invariant and exchanges the purely imaginary arguments. It is then

natural to decompose the functions into real and imaginary parts. For example,

we can write

G(0, i; |z|) ±G(0,−i; |z|) =
{ 1

2G(0,−1, |z|2) ,
2iTi2(|z|) , (4.80)

where Tin(z) are the inverse tangent integrals,

Tin(z) = =(Lin(i z)) = =(G(~0n−1, i; z)) . (4.81)

The results for generic C
(3)
k can be written in terms of the gSVMPLs of the

previous section, and generalised inverse tangent integrals,

Tim1,...,mk
(|z|) = =(Lim1,...,mk

(σ1, . . . , σk−1, i σk |z|)) , (4.82)

where σj = sign(mj) and Lim1,...,mk
denotes the sum representation of MPLs,

Lim1,...,mk
(z1, . . . , zk) =

∑
0<n1<n2<···<nk

zn1
1 . . . znk

k

nm1
1 . . . nmk

k

= (−1)kG
(

0, . . . , 0︸ ︷︷ ︸
mk−1

,
1
zk
, . . . , 0, . . . , 0︸ ︷︷ ︸

m1−1

,
1

z1 . . . zk
; 1
)
.

(4.83)

Neither of the functions C
(3,i)
k is uniform in transcendental weight, but both

C
(3,0)
k and C

(3,2)
k involve functions of weight 0 ≤ w ≤ k.
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4.3. From Particle Content to Transcendentality

4.3.1. The NLLA BFKL Ladder in QCD

In the previous section we have discussed computational methods which may be

invoked to compute the BFKL ladder in QCD at NLLA. In [7], these methods

were used to compute the various contributions through five loops. Furthermore,

we have discussed the analytic properties of said contributions. In particular,

we have observed that the full result is polylogarithmic and involves terms of

various transcendental weight. As expected, the QCD result is not a maximal

weight function. Let us analyse the weights of the various contributions in (4.59)

for QCD.

We classify the contributions which give rise to functions of weight k in

momentum space. Using the result of Appendix C, we can show that the

functions fLL
k and C

(i)
k for i ∈ {1, 2} have uniform weight k−1 and k respectively.

Hence, we see that terms of weight strictly less than k in (4.59) arise from the

following places.

1. The term β0 f
LL
k (z) involving the beta function has weight k − 1, and so

it is always of lower weight.

2. Because the cusp anomalous dimension in QCD is not of maximal weight,

γ
(2)
K fLL

k−1(z), involves a mixture of weights k − 2 ≤ w ≤ k.

3. Using the explicit results through five loops of [7], we see that in QCD

the functions C
(3)
k involve terms of weight 0 ≤ w ≤ k.

It is instructive to compare this to the corresponding result in N = 4 SYM,

which we do expect to have uniform weight. First of all, for N = 4 SYM

the beta function vanishes and the cusp anomalous dimension has uniform

weight. From [158] it can be seen that N = 4 SYM has no contribution C
(3)
k

to the NLLA BFKL ladder. Thus we can conclude that indeed the maximal

transcendentality-violating terms do not appear for N = 4 SYM. Note however

that C
(3)
k also has terms of maximal weight, and so the maximal weight part

of QCD does not correspond to the N = 4 SYM result. In what follows, we

will rewrite (4.59) for a generic gauge theory, and see what constraints maximal

transcendentality places on the matter content.
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4.3.2. Generic Gauge Theories

We study the transcendental weight properties of the BFKL ladder at NLLA

in a generic SU(Nc) gauge theory with scalar or fermionic matter in arbitrary

representations. Our starting point is the singlet BFKL eigenvalue at NLO in a

generic theory [158]. This object depends solely on the matter content of the

theory. To match our discussion of QCD (4.59), we write the BFKL eigenvalue

in a generic theory as

∆νn =1
4δ

(1)
νn + 1

4δ
(2)
νn + 1

4δ
(3)
νn (Ñf , Ñs)

+ 3
2ζ3 + γ(2)(ñf , ñs)χνn − 1

8β0(ñf , ñs)χ2
νn .

(4.84)

The quantities δ
(1)
νn and δ

(2)
νn are independent of the theory under consideration,

and so they are the same as in QCD [158], given by (4.55) and (4.56). The

one-loop beta function and the two-loop cusp anomalous dimension in the

dimensional reduction scheme are given by

β0(ñf , ñs) = 11
3 − 2ñf

3Nc
− ñs

6Nc
,

γ(2)(ñf , ñs) = 1
4

(
64
9 − 10 ñf

9Nc
− 4 ñs

9Nc

)
− ζ2

2 ,

(4.85)

where we defined

ñf =
∑

R

NR
f TR and ñs =

∑
R

NR
s TR , (4.86)

where the sum runs over all irreducible representations R of SU(Nc), and NR
f

and NR
s denote the number of Weyl fermions and real scalars transforming in

the representation R. The index TR of the representation is defined through

Tr(T a
RT

b
R) = TR δ

ab, with T a
R the infinitesimal generators of the representation

R. We fix the normalisation of the structure constants of SU(Nc) such that

for the fundamental representation TF = 1/2. The contribution from δ
(3)
νn is

determined entirely by the matter content of the theory [158]. We find

δ(3)
νn (Ñf , Ñs) = δ(3,1)

νn (Ñf , Ñs) + δ(3,2)
νn (Ñf , Ñs) , (4.87)

with

Ñx = 1
2
∑

R

NR
x TR (2CR −Nc) , x = f, s , (4.88)
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and CR = T a
RTR a is the quadratic Casimir of the representation R. The

functions δ
(3,i)
νn are given by

δ(3,1)
νn (Ñf , Ñs) =f(γ)

8
[
δn0
(
2Ñs + 12Ñf − 30N2

c

)
+ δ|n|2

(
N2

c − 2Ñf + Ñs

)]
,

δ(3,2)
νn (Ñf , Ñs) =f(γ)

8

[ (3δ|n|2 − 2δn0)(2γ − 1)
2(2γ − 3)(2γ + 1)

(
N2

c − 2Ñf + Ñs

)]
,

(4.89)

with

f(γ) = 1
4π2(1 − 2γ)Γ(1 − γ)Γ(γ)

[
ψ(1 − γ) − ψ(γ)

]
. (4.90)

In [7] it was checked explicitly through five loops and conjectured to all orders

that Fourier-Mellin transforms of the type F
[
δ

(3,1)
νn χk

νn

]
give rise to functions

of uniform weight k + 2, while the remaining contributions from δ
(3,2)
νn only

produce lower weight terms.

Using the above analysis, we can define a set of necessary and sufficient conditions

for a theory to have a BFKL ladder at NLLA of uniform transcendental weight.

Since the NLO singlet BFKL eigenvalue depends only on the matter content of

the theory, we obtain constraints only in terms of these parameters. They are

given below.

1. The one-loop beta function vanishes,

11
3 − 2ñf

3Nc
− ñs

6Nc
= 0 . (4.91)

2. The two-loop cusp anomalous dimension is proportional to ζ2,

16
9 − 5 ñf

18Nc
− ñs

9Nc
= 0 . (4.92)

3. The contribution from δ
(3,2)
νn vanishes, which implies

2Ñf = N2
c + Ñs . (4.93)

In the next section we will restrict ourselves to a limited set of matter representations

in order to classify the solutions to these constraints. In particular, we will

consider only matter in the adjoint and fundamental representation of the gauge

group. Note, however, that just by studying these constraints we can make an

important observation. If (4.93) is satisfied, the term proportional to δ|n|2 is

absent from δ
(3,1)
νn ,

δ(3,1)
νn (Ñf , 2Ñf −N2

c ) = 2f(γ) δn0
(
Ñf − 2N2

c

)
. (4.94)
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The Fourier-Mellin integral of this missing term has maximal weight, and so

by requiring all non-maximal weight terms to vanish, we will force some of the

maximal terms to vanish as well. This implies that there is no theory such that

the BFKL ladder at NLLA has uniform and maximal weight and agrees with

the maximal weight terms in QCD.

4.3.3. Adjoint and Fundamental Matter Content

In this section we restrict ourselves to the case of theories with matter in the

fundamental and adjoint representations. The indices and Casimir operators of

the adjoint and fundamental representations are

TA = CA = Nc and CF = TF
N2

c − 1
Nc

. (4.95)

We can then write

ñx = TAN
A
x + TF N

F
x ,

Ñx = 1
2TA (2CA −Nc)NA

x + 1
2 TF (2CF −Nc)NF

x ,
(4.96)

where x = s, f . We aim to keep the number of colours arbitrary and thus will

solve (4.91)-(4.93) for generic Nc. Inserting (4.96) into (4.93), we find

TF (2CF −Nc)NF
f +N2

c N
A
f = N2

c + 1
2N

2
c N

A
s + 1

2 TF (2CF −Nc)NF
s . (4.97)

Since we are looking for solutions that are valid for an arbitrary number of

colours, this implies

2NF
f = NF

s and 2NA
f = 2 +NA

s . (4.98)

Now recall that we are counting in terms of Weyl fermions and real scalars.

This means that (4.98) implies that the number of bosonic degrees of freedom

equals the number of fermionic ones. We learned in Section 1.1.3 that this is

one of the key features of supersymmetric theories. Thus, in what follows, we

can represent the solutions of (4.98) in terms of supersymmetric field theories.

Note that we do not claim that any theory solving (4.98) must have a certain

degree of supersymmetry, but only that their matter content corresponds to

that of a supersymmetric one.

We parameterise the matter content in terms of a gauge multiplet with N
supersymmetries andNF ≡ NF

f chiral multiplets2 in the fundamental representation

2We consider chiral multiplets in N = 1 supersymmetry, consisting of a Weyl fermion and

two real scalar degrees of freedom, see Figure 1.2.
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and NA ≡ NA
f − N chiral multiplets in the adjoint representation. In terms of

the parameters N , NF and NA, the matter content is then cast in the form,

NA
f = N +NA ,

NF
f = NF ,

NA
s = 2(N − 1) + 2NA ,

NF
s = 2NF ,

(4.99)

which is consistent with (4.98). Inserting these reparameterisations of the matter

content into (4.91) and (4.92), they both reduce to the equation,

NA + NF

2Nc
+ N = 4 . (4.100)

This equation has only four positive integer solutions which are shown in

Table 4.1. For these theories, the BFKL eigenvalue at NLO takes the form,

∆νn = 1
4δ

(1)
νn + 1

4δ
(2)
νn + 3

2ζ3 + ζ2

2 χνn + f(γ) (N2
c + 1) (NA

f − 4) δn0 . (4.101)

N 4 2 1 1

NA 0 0 0 2

NF 0 4Nc 6Nc 2Nc

Table 4.1: The four solutions to (4.100)

Let us have a look at these solutions in detail. The first solution is given by

(N , NA, NF ) = (4, 0, 0) and thus has the same field content as N = 4 SYM. It

is unsurprising that we find this solution, as N = 4 SYM is conjectured to be

maximally transcendental and we had already discussed the vanishing of lower

weight terms for its BFKL ladder in the previous section.

Of more interest are the other solutions. The solution (N , NA, NF ) = (2, 0, 4Nc)
has the field content of N = 2 SQCD at the conformal point3, introduced in

Section 1.3.2 and also refered to as N = 2 SCQCD. The solution (N , NA, NF ) =
(1, 0, 6Nc) corresponds to N = 1 SQCD for Nf = 3, implying a vanishing one-

loop beta function. Put otherwise, it corresponds to N = 1 SQCD at the lower

end of the conformal window. The final solution (N , NA, NF ) = (1, 2, 2Nc)
can be interpreted as the naive4 matter content of an “N = 3 gauge multiplet”

3Note that for our discussion here, we need not differentiate between fundamental and

anti-fundamental matter, leading to the apparent “mismatch” in field content w.r.t. Sections

1.3.1 and 1.3.2.
4The N = 3 multiplet in 4 dimensions must naturally be enlarged to an N = 4 multiplet

to be consistent with CPT invariance.
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with added fundamental matter to enforce the vanishing of the one-loop beta

function.

In conclusion, we find that demanding maximal transcendentality for the BFKL

ladder at NLLA leads us to consider supersymmetric theories with vanishing

one-loop beta functions. As further logarithmic orders will involve higher

orders of the beta function, this hints towards a connection between maximal

transcendentality and superconformal symmetry. A natural question to ask

at this point, is whether this connection only holds in this specific kinematic

regime. In the next chapter, we will study the transcendentality of an amplitude

in N = 2 S(C)QCD in full kinematics to see whether this connection holds in a

testing case beyond the Regge limit.



5 | Half-maximal SUSY

in General Kinematics

In this chapter we study a scattering amplitude in full kinematics in N =
2 SQCD. This theory has several ingredients which make it a valuable testing

ground. As a theory with extended supersymmetry, one hopes part of the

simplicity observed for N = 4 SYM would survive. On the other hand, it

contains fundamental matter and this tuneable matter content implies that the

theory is only superconformal for a certain choice of Nf , see (1.38). In this

sense, N = 2 SQCD interpolates QCD and N = 4 SYM and it is interesting to

see how many properties of N = 4 SYM survive for this Goldilocks theory. In

particular, with regard to the discussion of the previous chapter, we would like

to see whether the maximal transcendentality manifested by the BFKL ladder

of the conformal limit of this theory at NLLA breaks down when going beyond

the high-energy regime. In previous work, the leading-colour contributions

to one-loop N -gluon scattering in N = 2 SCQCD were computed [165] and

shown to have maximal transcendental weight. At two-loop order however, the

four-gluon amplitude was found to break maximal transcendentality through

the presence of a single MZV of lower weight [166,167]. We wish to investigate

this peculiar structure beyond leading-colour and beyond the conformal point.

To this end, we study the full-colour two-loop four-gluon amplitude in N = 2
SQCD, which was computed in [8] starting from the integrand derived in [168].

We review the structure of said integrand, before describing the integration

procedure used to obtain the final result. Then we investigate the ultraviolet and

infrared structure of the integrated amplitude, before turning to a study of the

transcendentality of the result, at first for generic Nc and Nf and consequently

in the conformal point.

103
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5.1. Four-Gluon Scattering in N = 2 SQCD

5.1.1. The Colour-Dual Integrand

Consider the N -gluon amplitude in N = 2 SQCD. Prior to renormalisation, we

perturbatively expand N -point amplitudes in terms of the bare coupling α0
S ,

AN = (4πα0
S)

N−2
2

∞∑
L=0

(
α0

SSε

4π

)L

A(L)
N , (5.1)

where Sε = (4π)εe−εγ anticipates dimensional regularisation in D = 4 − 2ε
dimensions. In what follows we restrict ourselves to multiplicity four, and will

always use kinematics defined by s > 0; t, u < 0, where we recall s = (p1 + p2)2,

t = (p2 + p3)2, u = (p1 + p3)2, with s+ t+ u = 0, and all momenta outgoing.

Recall, furthermore, that our discussion of the supersymmetric Ward identities

in Section 2.1.1 implies we need only consider the MHV contribution.

We are interested in computing the four-gluon two-loop amplitude A(2)
4 . Our

starting point is the two-loop integrand computed in [168]. Let us review some of

the important properties of the integrand before turning to the integration itself.

The integrand of [168] consists of nineteen independent numerator contributions.

Of these only ten give rise to non-vanishing integrals. Each of these numerators

can be represented by a diagram, and they are shown in Figure 5.1.
2

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

FIG. 1: Ten cubic diagrams that describe the four-gluon two-loop amplitude of N = 2 SQCD. At the conformal point,
Nf = 2Nc, diagrams (d), (e), (i), and (j) manifestly cancel out from the integrand.

THE COLOR-DUAL INTEGRAND

N = 2 SQCD has a running coupling constant αS(µ2
R),

and loop amplitudes need to be renormalized to remove
ultraviolet (UV) divergences. Prior to renormalization,
we may perturbatively expand n-point amplitudes in
terms of the bare coupling α0

S ,

Mn = (4πα0
S)

n−2
2

∞∑

L=0

(
α0
SSϵ

4π

)L

M(L)
n , (1)

where Sϵ = (4π)ϵe−ϵγ anticipates dimensional regular-
ization in D = 4 − 2ϵ dimensions. At multiplicity four,
we will always use kinematics defined by s > 0; t, u < 0,
where s = (p1+ p2)2, t = (p2+ p3)2, u = (p1+ p3)2, with
s+ t+ u = 0, and all momenta are outgoing.
The two-loop integrand of Ref. [34] was constructed

to make manifest separations at the diagrammatic level
between distinct gauge-invariant contributions. For ex-
ample, it manifests the difference between N = 4 SYM
and the N = 2 superconformal theory (SCQCD), with
Nf = 2Nc, as a combination of simple diagrams that are
manifestly UV finite. The diagrammatic separation will
allow us to have a clear partition of the integrated answer
into terms with distinct physical interpretation.
The integrand of Ref. [34] consists of 19 cubic dia-

grams. Of these only ten, shown in Fig. 1, give rise to
non-vanishing integrals. Using these ten diagrams (a–j)
the N = 2 SQCD amplitude is assembled, with an S4

permutation sum over external particle labels, as

iM(2)
4 = e2ϵγ

∑

S4

∑

i∈{a,...,j}

∫
d2Dℓ

(iπD/2)2
(Nf )|i|

Si

nici
Di

, (2)

where d2Dℓ ≡ dDℓ1dDℓ2 is the two-loop integration mea-
sure and |i| is the number of matter loops in the given
diagram. Diagrams are described by kinematic numera-
tor factors ni, color factors ci, symmetry factors Si, and
propagator denominators Di [34, 37].
Color-kinematics duality requires that the kinematic

numerators ni satisfy the same general Lie algebra re-
lations as the color factors ci [35]. Through these rela-
tions the numerators of diagrams (e–j) were completely
determined by the four planar diagrams (a–d). The in-
tegrand was constructed through an Ansatz constrained
to satisfy (D ≤ 6)-dimensional unitarity cuts. The upper

bound corresponds to the D = 6, N = (1, 0) SQCD the-
ory, which is the unique supersymmetric maximal uplift
of the four-dimensional N = 2 SQCD theory.
For later convenience we quote the relevant numerator

contributions to diagram (b) for different gluon helicities,

n

(
1−

2−3+

4+

↓ℓ1ℓ2 ↓

)

= −κ12µ12 , (3a)

n

(
1−

2+3−

4+

↓ℓ1ℓ2 ↓

)

=
κ13

u2
tr−(1ℓ124ℓ23) , (3b)

n

(
1−

2+3+

4−

↓ℓ1ℓ2 ↓

)

=
κ14

t2
tr−(1ℓ123ℓ24) , (3c)

where κij is proportional to the color-stripped tree ampli-
tude — for instance, in the purely gluonic case we have

κ12 = istM (0)
(−−++), and M (0)

(−−++) = −i⟨12⟩2[34]2/st.
The tr± are chirally projected Dirac traces taken strictly
over the four-dimensional parts of the momenta, and

µij = −ℓ[−2ϵ]
i · ℓ[−2ϵ]

j contain the extra-dimensional loop
momenta. Numerators of the other diagrams are of com-
parable simplicity, see Refs. [34, 37]. Note that four-gluon
amplitudes with helicity (±+++) exactly vanish in su-
persymmetric theories due to Ward identities, so we need
not consider them. Without loss of generality we focus on
gluon amplitudes with helicity configurations (−−++)
and (−+−+); the general vector multiplet cases are ob-
tained from these by supersymmetric Ward identities.
In general, we note that any gluon amplitude in N = 2

SQCD can be decomposed into three independent blocks
that have different characteristics after integration,

M(L)
n = M(L)[N=4]

n +R(L)
n + (CA −Nf )S

(L)
n . (4)

CA is the quadratic Casimir; for SU(Nc) we normalize it
as CA = 2Nc. The decomposition involves three terms:

M(L)[N=4]
n is a gluon amplitude in N = 4 SYM, R(L)

n is a
remainder function that survives at the conformal point

Nf = 2Nc, and S(L)
n is a term that contributes away from

the conformal point. By definition the first term will have
the same (uniform) weight property as N = 4 SYM, and
the first two terms will be free of UV divergences. The
two-loop integrand of Eq. (2) is particularly well suited
to this decomposition: only four diagrams (b,c,g,h) con-

tribute to R(2)
4 , and six diagrams (b,c,e,g,h,j) contribute

2

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

FIG. 1: Ten cubic diagrams that describe the four-gluon two-loop amplitude of N = 2 SQCD. At the conformal point,
Nf = 2Nc, diagrams (d), (e), (i), and (j) manifestly cancel out from the integrand.

THE COLOR-DUAL INTEGRAND

N = 2 SQCD has a running coupling constant αS(µ2
R),

and loop amplitudes need to be renormalized to remove
ultraviolet (UV) divergences. Prior to renormalization,
we may perturbatively expand n-point amplitudes in
terms of the bare coupling α0

S ,

Mn = (4πα0
S)

n−2
2

∞∑

L=0

(
α0
SSϵ

4π

)L

M(L)
n , (1)

where Sϵ = (4π)ϵe−ϵγ anticipates dimensional regular-
ization in D = 4 − 2ϵ dimensions. At multiplicity four,
we will always use kinematics defined by s > 0; t, u < 0,
where s = (p1+ p2)2, t = (p2+ p3)2, u = (p1+ p3)2, with
s+ t+ u = 0, and all momenta are outgoing.
The two-loop integrand of Ref. [34] was constructed

to make manifest separations at the diagrammatic level
between distinct gauge-invariant contributions. For ex-
ample, it manifests the difference between N = 4 SYM
and the N = 2 superconformal theory (SCQCD), with
Nf = 2Nc, as a combination of simple diagrams that are
manifestly UV finite. The diagrammatic separation will
allow us to have a clear partition of the integrated answer
into terms with distinct physical interpretation.
The integrand of Ref. [34] consists of 19 cubic dia-

grams. Of these only ten, shown in Fig. 1, give rise to
non-vanishing integrals. Using these ten diagrams (a–j)
the N = 2 SQCD amplitude is assembled, with an S4

permutation sum over external particle labels, as

iM(2)
4 = e2ϵγ

∑

S4

∑

i∈{a,...,j}

∫
d2Dℓ

(iπD/2)2
(Nf )|i|

Si

nici
Di

, (2)

where d2Dℓ ≡ dDℓ1dDℓ2 is the two-loop integration mea-
sure and |i| is the number of matter loops in the given
diagram. Diagrams are described by kinematic numera-
tor factors ni, color factors ci, symmetry factors Si, and
propagator denominators Di [34, 37].
Color-kinematics duality requires that the kinematic

numerators ni satisfy the same general Lie algebra re-
lations as the color factors ci [35]. Through these rela-
tions the numerators of diagrams (e–j) were completely
determined by the four planar diagrams (a–d). The in-
tegrand was constructed through an Ansatz constrained
to satisfy (D ≤ 6)-dimensional unitarity cuts. The upper

bound corresponds to the D = 6, N = (1, 0) SQCD the-
ory, which is the unique supersymmetric maximal uplift
of the four-dimensional N = 2 SQCD theory.
For later convenience we quote the relevant numerator

contributions to diagram (b) for different gluon helicities,

n

(
1−

2−3+

4+

↓ℓ1ℓ2 ↓

)

= −κ12µ12 , (3a)

n

(
1−

2+3−

4+

↓ℓ1ℓ2 ↓

)

=
κ13

u2
tr−(1ℓ124ℓ23) , (3b)

n

(
1−

2+3+

4−

↓ℓ1ℓ2 ↓

)

=
κ14

t2
tr−(1ℓ123ℓ24) , (3c)

where κij is proportional to the color-stripped tree ampli-
tude — for instance, in the purely gluonic case we have

κ12 = istM (0)
(−−++), and M (0)

(−−++) = −i⟨12⟩2[34]2/st.
The tr± are chirally projected Dirac traces taken strictly
over the four-dimensional parts of the momenta, and

µij = −ℓ[−2ϵ]
i · ℓ[−2ϵ]

j contain the extra-dimensional loop
momenta. Numerators of the other diagrams are of com-
parable simplicity, see Refs. [34, 37]. Note that four-gluon
amplitudes with helicity (±+++) exactly vanish in su-
persymmetric theories due to Ward identities, so we need
not consider them. Without loss of generality we focus on
gluon amplitudes with helicity configurations (−−++)
and (−+−+); the general vector multiplet cases are ob-
tained from these by supersymmetric Ward identities.
In general, we note that any gluon amplitude in N = 2

SQCD can be decomposed into three independent blocks
that have different characteristics after integration,

M(L)
n = M(L)[N=4]

n +R(L)
n + (CA −Nf )S

(L)
n . (4)

CA is the quadratic Casimir; for SU(Nc) we normalize it
as CA = 2Nc. The decomposition involves three terms:

M(L)[N=4]
n is a gluon amplitude in N = 4 SYM, R(L)

n is a
remainder function that survives at the conformal point

Nf = 2Nc, and S(L)
n is a term that contributes away from

the conformal point. By definition the first term will have
the same (uniform) weight property as N = 4 SYM, and
the first two terms will be free of UV divergences. The
two-loop integrand of Eq. (2) is particularly well suited
to this decomposition: only four diagrams (b,c,g,h) con-

tribute to R(2)
4 , and six diagrams (b,c,e,g,h,j) contribute

Figure 5.1: The ten cubic diagrams that describe the four-gluon two-loop

amplitude in N = 2 SQCD.

Using these ten diagrams (a–j) the N = 2 SQCD amplitude is assembled, with

an S4 permutation sum over external particle labels, as

iA(2)
4 = e2εγ

∑
S4

∑
i∈{a,...,j}

∫ d2Dl

(iπD/2)2
(Nf )|i|

Si

nici

Di
, (5.2)
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where d2Dl ≡ dDl1dDl2 is the two-loop integration measure and |i| is the number

of matter loops in the given diagram.

The integrand implicitly defined in (5.2) was constructed to be colour-dual,

which means that it satisfies colour-kinematics duality [169–171]. Note that the

colour factors ci are naturally related by linear relations due to the algebraic

structure of the gauge group SU(Nc). Exploiting commutation relations, we

expect to find identities of the form

ci = cj − ck , (5.3)

as can be readily observed from the colour factor for tree level scattering of four

gluons

fa1a2bf ba3a4 = fa4a1bf ba2a3 − fa2a4bf ba3a1 ,

ci should also be satisfied by the kinematic numerators ni, which we refer to as

color-dual. Such relationships include commutation relations

f̃ ba3a4T b
i1 ı̄2 = T a3

i1 |̄T
a4
jı̄2 � T a4

i1 |̄T
a3
jı̄2 = [T a3 , T a4 ]i1 ı̄2 ,

c

✓
1

23

4

◆
= c

✓
1

23

4

◆
� c

✓
1

24

3

◆
,

(2.17)

and their adjoint-representation counterparts — the Jacobi identities

f̃a1a2bf̃ ba3a4 = f̃a4a1bf̃ ba2a3 � f̃a2a4bf̃ ba3a1 ,

c

✓
1

23

4

◆
= c

✓
1

23

4

◆
� c

✓
1

24

3

◆
.

(2.18)

Color-kinematics duality requires that

ci = cj � ck , ni = nj � nk , (2.19)

The usual motivation for finding so-called color-dual representations is to en-

able use of the double copy [61, 62], which allows supergravity amplitudes to be

obtained by replacing the color factors ci with a second copy of the kinematic nu-

merators ni in the amplitude (2.15). Fundamental-representation hypers play an

important role when dealing with N < 4 supergravities, for example as they allow

unwanted additional vector multiplets to be subtracted from the resulting supergrav-

ity multiplet [65]. For instance, refs. [65, 66] described how pure N = 4 supergravity

amplitudes could be obtained from a double copy of N = 2 SYM with itself, the

hypermultiplets being used internally to remove unwanted N = 4 SYM multiplets

from the supergravity theory.

There are, however, considerable advantages to finding color-dual representations

even if the goal is merely e�cient computation of gauge-theory amplitudes. First,

such representations are cubic, so the assignment of color factors to diagrams is

trivial (for alternative non-cubic constructions of full-color integrands from unitarity

cuts see e.g. refs. [47, 92, 93]). Moreover, the kinematic numerators being inter-

linked by commutation and Jacobi relations implies that only a limited subset of

the numerators need to be calculated directly. The corresponding graphs, which are

referred to as masters, are chosen to ensure that the numerators of all other graphs

can be obtained using commutation and Jacobi identities. For instance, using the

commutation relation (2.17) implies

n

✓
1

23

4
◆

= n

 
1

23

4
!

� n

 
2

13

4
!
. (2.20)

In this case, the triangle is uniquely determined by the two boxes; these, in turn, are

related by a symmetry through the horizontal axis (after relabeling p3 $ p4). The

– 8 –

(5.4)

If the integrand is colour-dual, the kinematic numerators ni are expected to

obey the same relations as the colour factors

ci = cj − ck ⇐⇒ ni = nj − nk . (5.5)

Through these relations it was shown in [168] that the numerators of diagrams

(e–j) are completely determined by the four planar diagrams (a–d). The

independent numerators were computed by fixing an Ansatz through graph

symmetries and (D ≤ 6)-dimensional unitarity cuts, along with various sym-

metries related to properties of the N = 2 theory such as the similarity of

the fundamental and anti-fundamental hypermultiplet and the relation of

N = 2 SQCD to N = 4 SYM. Using higher-dimensional cuts is required

to be consistent with dimensional regularisation D = 4 − 2ε upon integration.

The external momenta are restricted to a four-dimensional subspace, whereas

the extra-dimensional components of the loop momenta are interpreted as scalar

parameters of the solution.
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As an example we show numerator contributions to diagram (b)

n

(

1
−

2
−

3
+

4
+

↓ l1l2 ↓

)

= −κ12µ12 ,

n

(

1
−

2
+

3
−

4
+

↓ l1l2 ↓

)

=
κ13

u2
tr−(1l124l23) ,

n

(

1
−

2
+

3
+

4
−

↓ l1l2 ↓

)

=
κ14

t2
tr−(1l123l24) .

(5.6)

The factor κij is proportional to the colour-stripped gluon tree level amplitude

and captures the helicities of the external particles. For example

κ12 = istA
(0)
(−−++) , (5.7)

where, employing the spinor-helicity invariants defined in (2.46), the tree level

amplitude for the (− − ++) helicity configuration is given by

A
(0)
(−−++) = −i

st
〈12〉2[34]2 . (5.8)

The tr± are chirally projected Dirac traces taken strictly over the four-dimensional

parts of the momenta

tr±(i1i2 . . . ik) = 1
2 tr((1 ± γ5)i1i2 . . . ik) , (5.9)

where γ5 = iγ0γ1γ2γ3 is the usual antisymmetric element of the Dirac algebra.

The scalar products µij = −l[−2ε]
i · l[−2ε]

j absorb the degrees of freedom of the

extra-dimensional loop momenta. Numerators of the other diagrams are of

comparable simplicity, see [168,172].

5.1.2. The Integration Procedure

Let us now review the steps taken in [8] to promote the integrand (5.2) to a fully

integrated two-loop amplitude. First, all contributions were reduced to scalar

Feynman integrals using Schwinger parameterisation. In this parameterisation,

we write the denominators of the original tensor integral as

1
Da1

1 . . . Dan
n

=
∫

Dx exp
(

n∑
i=1

xiDi

)
, (5.10)
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with ∫
Dx =

n∏
i=1

(−1)a
i

Γ(ai)

∫ ∞

0
dxix

ai−1
i . (5.11)

After reparameterising the loop momenta such that the exponential in (5.10)

diagonalises, we have a polynomial in the Schwinger parameters and the loop

momenta li in the numerator. The diagonalised exponential then leads to

Gaussian integrals ∫
dDy exp

(
−ay2) =

(π
a

)D
2
. (5.12)

This allows one to factor out the tensorial numerator, rewriting the integral as

a tensor structure composed of metric tensors multiplying scalar integrals with

added factors of xi or l2i in the numerator. Factors of xi can be interpreted as

raising the powers of their associated denominators via (5.11), whereas factors

of l2i raise the dimension of the scalar integral. The same method can be applied

to resolve the extra-dimensional loop integration and resolve factors of µij . For

example, for an arbitrary function f we get∫ dDli
πD/2 l

µ
i l

ν
j f(l2i ) = −1

2g
µν

∫ dD+2li
iπ(D+2)/2 f(l2i ) , (5.13)

∫ dDli
πD/2µijf(l2i ) = ε

∫ dD+2li
iπ(D+2)/2 f(l2i ) . (5.14)

For a more detailed overview of this technique see e.g. [173,174].

Thus, all contributions were reduced to scalar-type integrals in shifted dimensions.

Next, the higher-dimensional scalar integrals were reduced to D dimensions

using dimensional recurrence relations [50, 175–179]. These relations offer a

straightforward way to write a scalar integral in D + 2 dimensions in terms of

scalar integrals of the same family in D dimensions and are implemented in the

Mathematica package LiteRed [180]. The resulting integrals were reduced to a

basis of master integrals using integration-by-parts (IBP) relations (2.15), for

which we again used LiteRed, which handles such relations algorithmically. We

have chosen the basis displayed in Figure 5.2.

These master integrals are known analytically [178, 181–183] to the required

orders in ε in D = 4 − 2ε dimensions, and their insertion yields the final

result. Manipulation of the master integrals expressed in terms of harmonic

polylogarithms (2.20) was done using the Mathematica package HPL [184].

Several checks were performed on this result. First, an alternative representation

of the integrand — given also in [168] — was integrated, non-trivially obtaining

the same result. Second, the result reproduces the high-energy behaviour

expected from the known two-loop Regge trajectory for supersymmetric gauge
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Figure 5.2: Our chosen set of scalar master integrals. Momenta are ordered

anticlockwise with the top left external leg associated to p1. Dotted propagators

are doubled, dashed lines indicate numerators.

theories [158]. Finally, the amplitude is divergent, and it was checked that the

amplitude has the correct IR-pole structure after UV renormalisation. We will

now discuss this structure in more detail.

5.2. Infrared and Ultraviolet Structure

Let us study the singularity structure of the amplitude presented in [8]. Ultraviolet

divergences are captured by the beta function. From (1.38) it can be seen that

the beta function of N = 2 SQCD is one-loop exact. In this chapter we will use

the form

β(αS(µ2)) = −αS(µ2)
(

2ε+ β0
αS(µ2)

2π

)
, (5.15)

where an ε-dependence was introduced anticipating dimensional regularisation,

β0 = CA −TRNf with CA = 2Nc and we take TR = 1 to match the conventions

used in [168]. Note that this differs from the normalisation used in the previous

chapter. Renormalised amplitudes Ã(L)
N are defined as in (5.1), except with

the bare coupling α0
SSε replaced by the renormalised coupling αS(µ2) which

depends on the renormalisation scale µ. In the MS scheme the renormalised
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and bare couplings are related by

α0
SSε = αS(µ2)µ2ε

∞∑
L=0

(
−β0

ε

αS(µ2)
4π

)L

. (5.16)

At four points, this implies that for the one- and two-loop amplitudes

Ã(1)
4 = µ2εA(1)

4 − β0

ε
A(0)

4 ,

Ã(2)
4 = µ4εA(2)

4 − 2µ2ε β0

ε
A(1)

4 + β2
0
ε2

A(0)
4 .

(5.17)

With these equations at hand we can turn our attention to the infrared

singularities of our amplitude. They are universal and independent of the

hard scattering process. We will use a formalism due to Catani [185] to

subtract them and define the finite part of our two-loop amplitude. At one-

loop order a colour-space operator I(1)(ε) may be defined that encodes all IR

singularities [185],

|Ã(1)
N 〉 = |Ã(1)fin

N 〉 + I(1)(ε)|Ã(0)
N 〉 , (5.18)

where Ã(L)fin
N is finite as ε → 0. The bra-ket notation implies that the amplitude

is interpreted as a vector in colour space. In our case for four external particles

we expand the amplitude

Ã(L)
4 = 〈Tcol|Ã(L)

4 〉 , (5.19)

where the trace basis vector is given by

〈Tcol| =



tr(T a1T a2T a3T a4)
tr(T a1T a2T a4T a3)
tr(T a1T a4T a2T a3)
tr(T a1T a3T a2T a4)
tr(T a1T a3T a4T a2)
tr(T a1T a4T a3T a2)

tr(T a1T a2) tr(T a3T a4)
tr(T a1T a3) tr(T a2T a4)
tr(T a1T a4) tr(T a2T a3)


, (5.20)
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and ai is the colour index related to the particle with momentum pi. In this

colour basis for four external gluons, the one-loop operator is given by [186,187]

I(1)(ε) = −e−εγE

Γ(1 − ε)

(
2
ε2

+ β0

Ncε

)
(5.21)

×



N(S + T) 0 0 0 0 0 (T − U) 0 (S − U)
0 N(S + U) 0 0 0 0 (U − T) (S − T) 0
0 0 N(T + U) 0 0 0 0 (T − S) (U − S)
0 0 0 N(T + U) 0 0 0 (T − S) (U − S)
0 0 0 0 N(S + U) 0 (U − T) (S − T) 0
0 0 0 0 0 N(S + T) (T − U) 0 (S − U)

(S − U) (S − T) 0 0 (S − T) (S − U) 2NS 0 0
0 (U − T) (U − S) (U − S) (U − T) 0 0 2NU 0

(T − U) 0 (T − S) (T − S) 0 (T − U) 0 0 2NT


,

where

S =
(
µ2

−s

)ε

, T =
(
µ2

−t

)ε

, U =
(
µ2

−u

)ε

. (5.22)

This method allows us to obtain the finite part of the one-loop amplitude.

Explicit computation of the one-loop amplitude through the integrand given

in [188] confirms the structure in (5.18).

The infrared singularities of two-loop amplitudes are encoded into the formula [185,

189–191]

|Ã(2)
N 〉 = |Ã(2)fin

N 〉 + I(1)(ε)|Ã(1)
N 〉 −

[
1
2I(1)(ε)2 + β0

ε
I(1)(ε)

− e−εγ Γ(1 − 2ε)
Γ(1 − ε)

(
β0

ε
+K

)
I(1)(2ε) − H(2)(ε)

]
|A(0)

N 〉. (5.23)

The terms K and H(2) determine the O(ε−2) and O(ε−1) poles respectively and

depend on the process under consideration. In our case we have

K = −ζ2 CA + 2(1 + 2ε)β0 . (5.24)

The tensor H(2)(ε), which determines the O(ε−1) pole, is split up into a colour-

diagonal and a non-diagonal part

H(2)(ε) = eεγ

4εΓ(1 − ε)

(
µ2

−s

)2ε (
4H(2)

g 1 + Ĥ(2)
)
. (5.25)

The colour-diagonal part is fixed by

H(2)
g = C2

A

ζ3

2 + β0

(
2β0 + CA

ζ2

4

)
. (5.26)
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The non-diagonal part Ĥ(2) matches what was found in [187] for QCD and

N = 1 SYM and is given by

Ĥ(2) = 4 log
(

−s
−t

)
log
(

−t
−u

)
log
(

−u
−s

)
(5.27)

×



0 1 −1 −1 1 0 Nc 0 −Nc

−1 0 1 1 0 −1 −Nc Nc 0
1 −1 0 0 −1 1 0 −Nc Nc

1 −1 0 0 −1 1 0 −Nc Nc

−1 0 1 1 0 −1 −Nc Nc 0
0 1 −1 −1 1 0 Nc 0 −Nc

−Nc Nc 0 0 Nc −Nc 0 0 0
0 −Nc Nc Nc −Nc 0 0 0 0
Nc 0 −Nc −Nc 0 Nc 0 0 0


.

The singularities of the computed two-loop amplitude fit the structure given

in (5.23), further suggesting the validity of the result.

5.3. Transcendentality in N = 2 S(C)QCD

Let us now turn to the question which led us to investigate this amplitude in the

first place: what are the transcendentality properties of N = 2 S(C)QCD

in full kinematics? In particular, we wish to investigate if the maximal

transcendentality of the BFKL ladder at NLLA in the conformal point Nf = 2Nc

indicates maximal transcendentality for N = 2 SCQCD, also beyond the high-

energy limit.

To study this question, let us first compartmentalise our results as follows

A(L)
N = A(L)[N =4]

N + R(L)
N + (CA −Nf )S(L)

N , (5.28)

dividing the amplitude into the gluon amplitude in N = 4 SYM, a remainder

function R(L)
N which survives at the conformal point Nf = 2Nc, and a term

that contributes away from the conformal point S(L)
N . The N = 4 SYM result

A(L)[N =4]
N at one and two loops is known to be maximally transcendental [50,

68,69], and so to study the transcendentality we restrict ourselves to R(L)
N and

S(L)
N . Note that the colour-dual integrand (5.2) is particularly well suited to

this decomposition. In fact, studying the diagram contributions from Figure 5.1,

only four diagrams (b,c,g,h) contribute to R(2)
4 , and six diagrams (b,c,e,g,h,j)

contribute to S(2)
4 . Diagrams (a,d,f,i) may be ignored as they only contribute

to the two-loop N = 4 SYM amplitude.
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Studying the full result, we observe that the unrenormalised amplitude in N = 2
SQCD for generic Nf and Nc shares the same weight properties as the two-

loop QCD amplitude. In particular, the coefficient of ε−k of the function S(2)
4

contains polylogarithms of weight up to 4 − k, including weight zero (note that

the smallest value of k is k = 3, and the coefficient of 1/ε3 has weight zero).

Let us then turn our attention to the conformal point Nf = 2Nc and consider

the transcendentality of R(L)
N .

By definition R(0)
N vanishes, and the remainder also vanishes at one-loop order

in the large-Nc limit for any number of external legs as was shown in [165].

Beyond leading colour, R(1)
N is non-zero and IR finite. At four points, we define

R(L)
4 =

∑
helicites
colours

L∑
k=0

A
(0)
(h1h2h3h4)N

k
c Tr(T a1T a2T a3T a4)R(L)[k]

(h1h2h3h4)

+A
(0)
(h1h2h3h4)N

k
c Tr(T a1T a2) Tr(T a3T a4)R(L)[k]

(h1h2)(h3h4) ,

(5.29)

summing over all external helicity configurations and the colour traces given

in (5.20). The independent helicity configurations of the one-loop remainder for

four external gluons at next-to-leading colour are given by [188]

R
(1)[0]
(−−)(++) = 2τ

[
(T − U)2 + 6ζ2

]
+ O(ε) , (5.30a)

R
(1)[0]
(−+)(−+) = 2τ

υ2 T (T + 2iπ) + O(ε) , (5.30b)

where we have introduced the shorthand notation τ = −t/s, υ = −u/s, T =
log(τ), and U = log(υ). Recall that s > 0; t, u < 0, so T and U are real. We

see that the one-loop remainders at O(ε0) have uniform transcendental weight

two, just like the corresponding N = 4 SYM amplitudes.

At the next loop order, the two-loop remainder functions are finite and non-

zero already at leading colour [166,167]. Using the integrand in (5.2) we can

easily isolate individual diagrams that contribute to R(2)
n at different orders

of Nc. For example, at leading colour O(N2
c ), only graph (b) is needed to

compute the SCQCD remainder. The coefficient of N2
c Tr(T a1T a2T a3T a4) is

diagrammatically given in

R
(2)[2]
(1234) =

−i

πD
e
2ϵγ
∑

cyclic

∫

d2Dl

Db
n

(

1

23

4

↓ l1l2 ↓

)

. (5.31)

Recall that the relevant numerators are given in (5.6). As the integral with

the µ12 factor begins at O(ε), we need only integrate the two Dirac traces
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in the other terms. They are manifestly IR finite1, giving the leading-colour

remainders

R
(2)[2]
(−−++) = 12ζ3 + τ

6

[
48Li4(τ) − 24TLi3(τ) − 24TLi3(υ) + 24TULi2(υ)

+ 24Li2(τ) (ζ2 + TU) − 24ULi3(τ) − 24S2,2(τ) + T 4 − 4T 3U + 18T 2U2

− 12ζ2T
2 + 24ζ2TU + 24ζ3U − 168ζ4 − 4iπ

(
6Li3(τ) + 6Li3(υ) − 6ULi2(τ)

− 6ULi2(υ) − T 3 + 3T 2U − 6TU2 − 6ζ2T + 6ζ2U
)]

+ O(ε) , (5.32a)

R
(2)[2]
(−+−+) = 12ζ3 + 1

6
τ

υ2T
2(T + 2iπ)2 + O(ε) , (5.32b)

where Lin(z) are the classical polylogarithms (2.19) and Sn,p(z) are Nielsen

generalised polylogarithms defined by

Sn,p(z) = (−1)p G(0̄n, 1̄p; z) . (5.33)

The leading-colour remainder of N = 2 SCQCD was presented in [166], and

the R
(2)[2]
(−−++) remainder was first published in [167]; we confirm those results

independently.

Inspecting the leading-colour results (5.32a)-(5.32b), we see that the remainder

does not have uniform weight four. The deviation from uniform weight, however,

is very minimal and entirely captured by a constant 12ζ3 up to the tree level

amplitude. The striking simplicity of the sub-maximal part at leading colour

is suggestive, and one might hope that this points to structure that can be

understood to higher orders as well.

Let us now turn to the subleading-colour contributions. At this point the

remainder is no longer finite, and we encounter IR divergences which can be

subtracted using the Catani formalism

R(2)
N = R(2)fin

N + I(1)(ε)R(1)
N . (5.34)

The full sub-leading colour terms violate maximal transcendentality in a worse

way than the leading colour, containing terms of weight two through four with

all weights appearing in the O(ε0) terms. These submaximal weight terms are

not given by constants as in the leading colour case, but rather explicitly depend

on the kinematic variables.

1Note that the integrals defined by (5.31) precisely match the simple IR finite integrals

considered in [192].
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Computing the finite parts for the subleading-colour two-loop remainder, we

obtain

R
(2)[1]fin
(−−)(++) = 2τ

3

[
96Li4(τ) − 72TLi3(τ) + 24TLi3(υ) + 24TLi2(τ)(T − U)

− 24ULi2(υ)(T − U) + 96Li4(υ) + 24ULi3(τ) − 72ULi3(υ) + T 4 + 4T 3U

− 18T 2U2 + 4TU3 + U4 + 24ζ2TU − 12ζ2T
2 − 12ζ2U

2 − 654ζ4

− 4iπ
(
12Li3(τ) + 12Li3(υ) − 12TLi2(τ) − 12ULi2(υ) − T 3 − 3T 2U

− 3TU2 − U3 − 18ζ2T − 18ζ2U
)]

+ O(ε) , (5.35a)

R
(2)[1]fin
(−+)(−+) = 2τ

3υ2

[
48Li4(τ) − 24TLi3(τ) − 24S2,2(τ) + 24ζ2Li2(τ) + T 4

− 84ζ2T
2 − 102ζ4 + 24Tζ3 − 8iπ

(
3Tζ2 − T 3)]− 8τ

3υ2

[
6τLi3(τ) − 6τLi3(υ)

− 6τTLi2(τ) + 6Li3(υ) − 6υULi2(υ) + 3τTU2 + 3TυU2 − 3TU2 − 30τTζ2

− 30υUζ2 − 6ζ3 + 3iπ
(
2(υ − τ)Li2(τ) + τT 2 + 2TυU + υU2 + 2τζ2

)]
+ O(ε) . (5.35b)

Note that the situation w.r.t. transcendentality is ameliorated for the finite

parts compared to the full sub-leading colour terms. This implies that the O(ε)
and O(ε2) terms of R(1)

4 — which are not of uniform weight — interplay with

the form of the Catani operator to cancel exactly some of the lower-weight

contributions. In particular, we see that the weight-two terms cancel for (5.35b),

and for (5.35a) all non-maximal weight terms are subtracted by the Catani

formalism (5.34). We observe no such cancellation in the non-conformal case.

From the form of the SU(Nc) colour algebra, and using the fact that only four

diagrams (b,c,g,h) are required to fully specify R(2)
4 , one can determine the

subsubleading-colour parts of R(2)
4 as follows

R
(2)[0]
(1234) = R

(2)[2]
(1234) −R

(2)[1]
(13)(24) + 1

2

(
R

(2)[1]
(12)(34) +R

(2)[1]
(14)(23)

)
. (5.36)

From this we see that the subsubleading-colour is entirely determined by the

higher orders in Nc. These relations were observed to hold using the full two-loop

amplitude [8].

The integrand of (5.2) is valid for any gauge group and matter representation,

making it possible to consider results for different gauge groups straightforwardly.

For abelian U(1) N = 2 SQED, only diagram (b) is non-vanishing. This implies

that the full amplitude is obtained by summing over all permutations of the
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external legs in the leading-colour remainders (5.32), multiplied by the respective

tree amplitudes. Since the weight-three terms are constants, they cancel in the

sum due to a photon-decoupling identity satisfied by the tree-level amplitudes.

As a result, the two-loop N = 2 SQED amplitude has uniform weight four, in

agreement with what was found in [193]. Furthermore, for gauge group SO(3)

and a single fundamental hypermultiplet (Nf = 1), the amplitude in N = 2
SQCD is identical to the amplitude in SO(3) N = 4 SYM, and thus has uniform

transcendental weight. We expect this equality to hold to any loop order since

both the structure constants and fundamental generators of SO(3) are described

by rank-three Levi-Civita tensors, so the fundamental hypermultiplet transforms

the same way as if it were in the adjoint representation. From this analysis

we see that the weight properties are tightly connected not only to the matter

content and the symmetries of the theory, but also the choice of gauge group

and representation.

In conclusion, we see from our investigation of the two-loop four-gluon amplitude

in N = 2 SCQCD that maximal transcendentality does not hold in this theory

beyond the high energy limit. The violation for the leading colour part is of

striking simplicity nonetheless, leaving hope for an improved understanding

at higher orders. We note a conspiracy between the lower-weight terms at

subleading-colour and the one-loop terms at higher orders in ε through the

Catani formalism. Based on these observations one may speculate that conformal

symmetry and infrared singularities play a vital role in understanding the

detailed transcendental weight of scattering amplitudes. Finally, we note that

alternative choices of gauge groups may lead to maximal transcendental weight

and we identify two such cases.



116 5. Half-maximal SUSY in General Kinematics



Conclusions and Outlook

In this thesis, we investigated the property of transcendental weight for super-

symmetric theories in various contexts.

In Chapter 3, we studied the high-energy limit of planar N = 4 Super Yang-

Mills theory. In this highly symmetric setup, in which the geometry of the

configuration space of scattering processes can be very well understood, the

possible functions which may arise in generic amplitudes can be determined from

purely geometric considerations. We find that these functions correspond to

single-valued multiple polylogarithms. From an all-order conjectural form of the

amplitude in terms of a Fourier-Mellin transform, one can use this knowledge

of the function space to compute higher order corrections recursively from

known low-loop results via convolution products. Furthermore, this technology

allows one to prove a factorisation through which at a certain logarithmic order

(in particular, as we show, at LLA), (parts of) scattering amplitudes for an

arbitrary number of particles can be related to results for lower multiplicity.

These methods were applied to the computation of the LLA MHV amplitude

for any number of particles to five loops, the LLA amplitude for eight or

less particles for any helicity configuration up to four loops, the seven-point

amplitude at NLLA through five loops for the MHV case, and through three

and four loops for the two independent NMHV helicity configurations, and

the eight-point NLLA amplitude for any helicity configuration at three loops.

Beyond mere computational power, the recursive convolution method allows us

to prove statements about the analytic properties of scattering amplitudes to all

orders inductively. In particular, we show that amplitudes in the multi-Regge

limit of planar N = 4 Super Yang-Mills theory are given by pure combinations

of SVMPLs of uniform transcendental weight with rational prefactors.

Aiming to apply the convolution method beyond planar N = 4 SYM, in

Chapter 4 we turn our attention to the BFKL ladder at NLLA. This object

— which is part of the resummed cross-section for parton-parton scattering in

the high energy limit — is also described perturbatively by a Fourier-Mellin

117
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transform and can be written down for a gauge theory with arbitrary matter

content straightforwardly. Using QCD as a testing case, we apply the convolution

method to the computation of this object to five loops. We find that the result

can be written in terms of generalised single-valued multiple polylogarithms

and generalised inverse tangent integrals. Turning to generic gauge theories,

we formulate constraints on the matter content which allow us to tune the

transcendental weight. From this analysis, we find there is no theory such

that the BFKL ladder at NLLA has uniform and maximal weight and agrees

with the maximal weight terms in QCD. Restricting ourselves to adjoint and

fundamental matter, we solve the constraints for all non-maximal weight terms

in the NLLA BFKL ladder to vanish. We find that the matter content which

satisfies these constraints naturally corresponds to supersymmetric theories

with vanishing one-loop beta functions. This leads us to suspect a connection

between maximal transcendentality and superconformal symmetry.

In order to investigate this connection beyond the high-energy limit, in Chapter 5

we turn our attention to amplitudes in general kinematics in N = 2 super-

symmetric QCD. For a certain number of fundamental hypermultiplets this

theory obeys conformal symmetry, at which point it solves the constraints

from the previous chapter and is refered to as N = 2 superconformal QCD.

It is known that the leading-colour contributions to N -gluon scattering at

one-loop order in this theory are uniformally transcendental, whereas the

leading-colour four-gluon two-loop contribution was found to break uniform

transcendentality by the presence of a single multiple zeta value. Starting from

a colour-dual integrand representation, we compute the full-colour four-gluon

two-loop amplitude for a generic number of hypermultiplets. We find that the

non-conformal contributions violate maximal transcendentality similarly to the

QCD result. In the conformal limit, we confirm the known results at leading

colour. At next-to-leading colour, uniform transcendentality is broken by terms

which – unlike for leading colour – depend on the kinematic variables and

have a larger range of weights. Upon subtracting infrared divergences through

the Catani formalism however, we note a conspiracy between the lower-weight

terms at subleading colour in the conformal point and the one-loop terms at

higher orders in ε. The subtraction cancels exactly some of the lower-weight

contributions at O(ε0), even resulting in a maximally transcendental finite part

for one of the independent helicity configurations. These findings lead us to

speculate that conformal symmetry and infrared singularities play a vital role

in understanding the detailed transcendental weight of scattering amplitudes

Looking forward, there are many more interesting questions which can be

asked on the transcendental weight properties of scattering amplitudes for

supersymmetric theories. Building on the two-loop four-gluon result in N = 2
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SQCD discussed in Chapter 5, it would be interesting to study the transcendental

weight for external hypermultiplets at the same order, the integrand of which

was obtained in [172]. In particular, it would be interesting to investigate if a

similar conspiracy between infrared divergences and lower-weight terms can be

observed in this case. Recalling the striking simplicity of the lower-weight term

for the leading-colour contribution in N = 2 SCQCD, it would be interesting to

see if a similar simplicity can be observed for the lower-weight terms at higher

orders. Finally, looking at Table 4.1, at this point the transcendental weight of

two of the four solutions given by the constraints of the NLLA BFKL ladder

have been studied. It would be very interesting to undergo a similar study to

what we have done for N = 2 SQCD, in the case of N = 1 SQCD, a theory

which also has a conformal regime. In this sense we could investigate the effect

of further lowering the degree of supersymmetry on transcendentality.
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A | The BFKL Building Blocks

up to NLO

In this appendix we show the BFKL building blocks from (3.41) up to NLO

explicitly. The impact factor and BFKL eigenvalue were given to all orders

in [127] and up to NLO they are given by

χ+(ν, n) = 1
ν − in

2

[
1 − a

4

(
E2 + 3

4N
2 −NV + π2

3

)
+ O(a2)

]
, (A.1)

χ−(ν, n) = 1
ν + in

2

[
1 − a

4

(
E2 + 3

4N
2 +NV + π2

3

)
+ O(a2)

]
, (A.2)

−ω(ν, n) = aE − a2

4
(
D2E − 2V DE + 4ζ2E + 12ζ3

)
+ O(a3) . (A.3)

The central emission block at NLO was first derived in [2] and is given by

C+(ν1, n1, ν2, n2) =C+
0,1,2

[
1 + a

(1
2
[
DE1 −DE2 + 1

4 (N1 +N2)2

+ E1E2 + V1V2 + (V1 − V2)
(
M − E1 − E2)

+ iπ(V2 − V1 − E1 − E2)
]

− 3
16 (N2

1 +N2
2 )

− 1
4 (E2

1 + E2
2 +N1V1 −N2V2)

)
+ O(a2)

]
,

(A.4)

where

C+
0,1,2 =

−Γ
(
1 − iν1 − n1

2
)
Γ
(
iν2 + n2

2
)
Γ
(
iν1 − iν2 − n1

2 + n2
2
)

Γ
(
1 + iν1 − n1

2
)
Γ
(
−iν2 + n2

2
)
Γ
(
1 − iν1 + iν2 − n1

2 + n2
2
) . (A.5)
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The building blocks are themselves built out of combinations of the objects

Dν = − i∂/∂ν ,

V (ν, n) = iν

ν2 + n2

4
,

N(ν, n) = n

ν2 + n2

4
,

E(ν, n) = − 1
2

|n|
ν2 + n2

4
+ ψ

(
1 + iν + |n|

2

)
+ ψ

(
1 − iν + |n|

2

)
− 2ψ(1) ,

M(ν1, n1, ν2, n2) =ψ(1 − i(ν1 − ν2) − n1−n2
2 )

+ ψ(i(ν1 − ν2) − n1−n2
2 ) − 2ψ(1) .

(A.6)



B | Proof of the

LLA Factorisation

In this section we discuss the proof of the factorisation theorem at leading

logarithmic accuracy discussed in Section 3.3.2. It will be helpful to formulate

and prove the following two Lemmas.

Lemma B.1. At LLA, we can always drop sequences of 0’s at either end of

the list of indices, i.e.,

g̃
(`;0,...,0,ik,...,iN−5)
`;+...+ (ρ1, . . . , ρN−5) = g̃

(`;ik,...,iN−5)
+...+ (ρk, . . . , ρN−5) , (B.1)

and a similar relation holds if the sequence of indices ends in a 0.

Proof. Target-projectile symmetry implies that it is sufficient to prove Lemma B.1

in the case where the sequence of indices starts with a 0. The proof relies on

an analysis of the Fourier-Mellin integral. Let us start from the Fourier-Mellin

integral for g
(`;0,...,0,ik,...,iN−5)
+...+ , and let us concentrate on the terms that depend

on (ν1, n1) and (ν2, n2),

g̃
(`;0,...,0,ik,...,iN−5)
+...+ = . . .

∫
dν1

2π

+∞∑
n1=−∞

z
iν1+n1/2
1 z̄

iν1+n1/2
1

× z
iν2+n2/2
2 z̄

iν2+n2/2
2 χ+

0 (ν1, n1)C+
0 (ν1, n1, ν2, n2) . . . ,

(B.2)

where the dots indicate terms that are independent of ν1 and n1. Our first goal

is to show that the value of the integral is independent of ρ1. From (3.19) we

see that only z1 and z2 depend on ρ1, so we do not need to consider the cross

ratios zi with i > 2. Due to the symmetry in z1 ↔ z̄1, it is sufficient to analyse

the holomorphic part, i.e., we let z̄1 → 0, with z1 held fixed. This corresponds
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to taking only the residue at iν1 = n1/2 for n1 > 0. After taking this residue,

the sum over n1 becomes trivial, and we are left with

g̃
(`;0,...,0,ik,...,iN−5)
+...+ → . . . (−1)χ+

0 (ν2, n2) [(1 − z1)z2︸ ︷︷ ︸
=ρ2

]iν2+n2/2 . . .
(B.3)

We see that the integral does not depend on ρ1. Note the appearance of an

impact factor. If there is a second 0, we can iterate the procedure, with z1
replaced by ρ2. The result is

. . . (−1)χ+
0 (ν3, n3) [(1 − ρ2)z3︸ ︷︷ ︸

=ρ3

]iν3+n3/2 . . .
(B.4)

Continuing this process, we see that

g̃
(`;0,...,0,ik,...,iN−5)
+...+ (ρ1, . . . , ρN−5) = f(ρk, . . . , ρN−5) , (B.5)

for some function f . We still need to show that f is the lower-point perturbative

coefficient. This follows from the fact that f must have the correct soft limits.

Indeed, we must have

g̃
(`;0,...,0,ik,...,iN−5)
+...+ (ρ2, . . . , ρN−5) = lim

ρ1→0
g̃

(`;0,...,0,ik,...,iN−5)
+...+ (ρ1, . . . , ρN−5)

= f(ρk, . . . , ρN−5) . (B.6)

Similarly, we must have

g̃
(`;0,...,0,ik,...,iN−5)
+...+ (ρ3, . . . , ρN−5) = lim

ρ2→0
g̃

(`;0,...,0,ik,...,iN−5)
+...+ (ρ2, . . . , ρN−5)

= f(ρk, . . . , ρN−5) . (B.7)

Continuing this way, we arrive at

g̃
(`;ik,...,iN−5)
+...+ (ρk, . . . , ρN−5) = lim

ρk−1→0
g̃

(`;0,ik,...,iN−5)
+...+ (ρk−1, ρk, . . . , ρN−5)

= f(ρk, . . . , ρN−5) , (B.8)

which finishes the proof.

Lemma B.2. If f(ρ1, ρi1 , . . . , ρik
) depends on a subset of simplicial MRK

coordinates, then the convolution with some function g(z1) will depend on the

same subset , i.e., we have

g(z1) ∗ f(ρ1, ρi1 , . . . , ρik
) = F (ρ1, ρi1 , . . . , ρik

) , (B.9)

for some function F .
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In the right-hand side of (B.9), the convolution acts on z1, and the simplicial

MRK coordinates ρi should be interpreted as functions of the MRK coordinates

zi. The relation between the two sets of coordinates is given by (3.19).

Proof. We proceed by changing variables to simplicial coordinates based at z1,

defined in (3.20). The relation between the two sets of coordinates is z1 = t1
(we write ti instead of t

(1)
i ) and,

ρ1 = t1
tN−5

, ρ2 = 1 − t1
1 − tN−5

, ρi = ti−1 − t1
ti−1 − tN−5

, 2 < i < N − 5 . (B.10)

We start by proving the claim in the case i1 6= 2. In that case the convolution

integral takes the form

g(z1) ∗ f(ρ1, ρi1 . . . , ρik
) (B.11)

= 1
π

∫
d2τ

|τ |2
g

(
t1
τ

)
f

(
τ

tN−5
,

ti1−1 − τ

ti1−1 − tN−5
, . . . ,

tik−1 − τ

tik−1 − tN−5

)
.

Shifting the integration variable τ → tN−5 τ and writing xj = tj/tN−5, we

see that the integrand only depends on the xj . Hence, there is a function

F̃ (x1, xi1 , . . . , xik
) such that

g(z1) ∗ f(ρ1, ρi1 . . . , ρik
) = 1

π

∫
d2τ

|τ |2
g
(x1

τ

)
f

(
τ,
xi1−1 − τ

xi1−1 − 1 , . . . ,
xik−1 − τ

xik−1 − 1

)
≡ F̃ (x1, xi1−1, . . . , xik−1) . (B.12)

Finally, we can change coordinates back from t’s to ρ’s. We find

x1 = t1
tN−5

= ρ1 , xj = tj
tN−5

= ρ1 − ρj+1

1 − ρj+1
, j ≥ 2 . (B.13)

we see that no new ρ-coordinate is introduced, so the claim follows upon

identifying F̃ (x1, xi1−1, . . . , xik−1) with F (ρ1, ρi1 , . . . , ρik
).

To complete the proof, we still need to investigate what happens when i1 = 2.

ρ2 is not homogeneous in tN−5, and so the function F̃ will now not only depend

on the ratios xi, but also explicitly on tN−5,

g(z1) ∗ f(ρ1, ρ2, ρi2 . . . , ρik
) = F̃ (x1, tN−5, xi2−1, . . . , xik−1) . (B.14)

We know already that the xi’s do not introduce any new ρ’s. Adding tN−5 will

only add ρ2,

tN−5 = 1 − ρ2

ρ1 − ρ2
, (B.15)

which was already present in the original function f . Hence the claim is

proven.
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The factorisation theorem for LLA MHV amplitudes (3.114) now follows from

Lemma B.1 and B.2. Assume that (3.114) holds for all perturbative MHV

coefficients up to a certain number N − 1 of legs, and let us show that it still

holds for coefficients with one more leg. We denote the perturbative coefficient

with one more leg by g̃
(`;i1,...,iN−5)
+...+ (ρ1, . . . , ρN−5) and we label the non-zero

elements in (i2, . . . , iN−5) by ia1 , . . . , iak
, 2 ≤ aj ≤ N − 5. If i1 = 0, then

Lemma B.1 implies that we can drop the first index. The resulting function is

an (N − 1)-point amplitude, where (3.114) applies. So we have

g̃
(`;0,i2,...,iN5 )
+...+ (ρ1, . . . , ρN−5) = g̃

(`;i2,...,iN−5)
+...+ (ρ2, . . . , ρN−5)

= g̃
(`;ia1 ,...,iak

)
+...+ (ρa1 , . . . , ρak

) ,
(B.16)

in agreement with (3.114). If i1 6= 0, we write the amplitude as a convolution

using the recursion (3.106). For the sake of the example, consider the case

i1 = 1. We have,

g̃
(`;1,i2,...,iN5 )
+...+ (ρ1, . . . , ρN−5) = E(z1) ∗ g̃(`;0,i2,...,iN5 )

+...+ (ρ2, . . . , ρN−5)

= E(z1) ∗ g̃(`;ia1 ,...,iak
)

+...+ (ρa1 , . . . , ρak
) ,

(B.17)

where we have used the fact that we know that (3.114) holds for i1 = 0.

From Lemma B.2 we know that the result of the convolution will only depend

on (ρ1, ρa1 , . . . , ρak
). The only thing left to show is that the function F

in Lemma B.2 is precisely the perturbative coefficient g̃
(`;1,ia1 ,...,iak

)
+...+ . This

follows immediately upon noting that the convolution integral used to compute

g̃
(`;1,ia1 ,...,iak

)
+...+ is exactly the same as the one in (B.17), up to a relabelling of the

variables. Repeating exactly the same argument for i1 > 1, we see that (3.114)

holds in general.

Let us now show the LLA factorisation beyond MHV. We proceed by induction

in the number of indices. Let us assume that the factorisation in Figure 3.14

holds for up to k indices, and let us show that the theorem still holds for k + 1
indices. If the first two helicities are not the same, we can factor out a helicity

flip operator,

g̃
(`;i1...ik+1)
−+h3...hk+2

(ρ1, . . . , ρk+1) = H(z1) ∗ g̃(`;i1...ik+1)
++h3...hk+2

(ρ1, . . . , ρk+1) . (B.18)

Hence, it is enough to prove the theorem in the case where the first two helicities

are the same, as Lemma B.2 implies that it will remain true in the case where

the helicities are different. We therefore assume that the first two helicities are

the same. We can use the recursion (3.106) with zk = z1 to reduce the value

of i1 to zero. If i1 = 0, we can repeat the proof of Lemma B.1 and conclude

that we can delete the index i1 = 0. Indeed, we see from (B.2) that the proof of
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Lemma B.1 only relies on the structure of the part of the Fourier-Mellin integral

that depends on (ν1, n1) and the first two helicities, and so we can repeat the

proof of Lemma B.1 independently of the helicity structure of the rest of the

amplitude. After using Lemma B.1 to delete the index i1 = 0, the number

of indices has decreased by one, and so the factorisation applies by induction

hypothesis. To complete the proof, we need to perform the convolution integrals

that were introduced to reduce the value of i1. By Lemma B.2, this does not

introduce any new variables except for ρ1, and so the factorisation theorem is

proven.
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C | Pure Functions

from Convolutions

In this appendix we present and prove two lemmas which will be used in the

main text to show that certain convolution products will naturally lead to pure

functions of a certain weight.

Lemma C.1. Assume that we have a function aνn whose Fourier-Mellin

transform evaluates to an expression of the form,

F [aνn] = |z|A(z)
(z − b)(z̄ − c) , (C.1)

where A(z) is a single-valued pure function of weight k, and b and c are complex

numbers. We wish to show that F [aνnχνn] where χνn is the LO singlet BFKL

eigenvalue of (4.20), consists of a single-valued pure function of weight k + 1
multiplied by the same rational prefactor.

Proof. Using the convolution product, we find

F [aνnχνn] = F [aνn] ∗ F [χνn]

=
∫
d2ω

|z|A(ω)
(ω − b)(ω̄ − c)(ω − z)(ω̄ − z̄)

= |z|
(z − b)(z̄ − c)

∫
d2ω

(
1

ω − z
− 1
ω − b

)(
1

ω̄ − z̄
− 1
ω̄ − c

)
A(ω) .

(C.2)

We can solve this integral in terms of residues as described in Section 3.3.1.1.

We start by computing the single-valued primitive,∫
SV

dω̄

(
1

ω̄ − z̄
− 1
ω̄ − c

)
A(ω) ≡ Ã(ω) . (C.3)
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Since A(ω) is assumed to be a pure function of weight k, Ã(ω) is a pure function

of weight k + 1. The holomorphic residues are

F [aνnχνn] = |z|
(z − b)(z̄ − c)

(
Resω=b

Ã(ω)
ω − b

− Resω=z
Ã(ω)
ω − z

)

= |z|
(z − b)(z̄ − c)

(
Regω=bÃ(ω) − Regω=zÃ(ω)

)
,

(C.4)

where Regω=aÃ(ω) denotes the shuffle-regulated value of Ã(ω) at the point

ω = a, defined as follows: since Ã has weight k + 1, close to every point ω = a

it admits an expansion of the type,

Ã(ω) =
k+1∑
i=0

logi
∣∣∣1 − ω

a

∣∣∣2 Ã(i)(ω) , (C.5)

where the functions Ã(i) are analytic at ω = a, i.e., they admit a Taylor

expansion in a neighbourhood of ω = a. The shuffle-regulated value of Ã at

ω = a is then defined as

Regω=aÃ(ω) ≡ Ã(0)(a) . (C.6)

Since Ã(ω) is a pure function of weight k+ 1, its shuffle-regulated values remain

pure and have the same weight. We have thus shown that

F [aνnχνn](z) = |z|
(z − b)(z̄ − c)

[
Ã(0)(b) − Ã(0)(z)

]
, (C.7)

where the right-hand side is a pure function of weight k + 1, which completes

the proof.

Lemma C.2. The Fourier-Mellin convolution of a pure function φ made up of

SVMPLs with uniform transcendental weight n with a kernel K of the form

K(z, z̄) = |z|2
∑
i,j

aij

(z − αi)(z̄ − βj) , (C.8)

with {aij , αi, βj} ∈ Q is a pure function of SVMPLs with uniform transcendental

weight n+ 1.

Proof. As φ is a pure function made up of SVMPLs with uniform transcendental

weight n, it can be written in the form

φ =
n∑

k=0

∑
ā

bā
n−k Ga1,...,ak

(z) (C.9)
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where bā
n−k is a pure function made up of SVMPLs with uniform transcendental

weight n− k which do not depend on z. This implies that

φ ∗ K(z, z̄) =
n∑

k=0

∑
ā

bā
n−k (Ga1,...,ak

(z) ∗ K(z, z̄)) . (C.10)

Due to linearity of the convolution integral, we then only need to show that the

convolution

f = Ga1,...,ak
(z) ∗

(
|z|2

(z − α)(z̄ − β)

)
, (C.11)

is a pure combination of SVMPLs of weight k + 1. Plugging in the definition of

the convolution integral, we get

f =
∫

d2w

|w|2
Ga1,...,ak

(w) |w/z|2

(w/z − α)(w̄/z̄ − β)

=
∫
d2w Ga1,...,ak

(w) 1
(w − zα)(w̄ − z̄β) .

(C.12)

To determine this integral we first compute the single-valued holomorphic

primitive F which is given by

F =
∫
SV

dw Ga1,...,ak
(w) 1

(w − zα)(w̄ − z̄β) = Gzα,ak,...,an(w)
(w̄ − z̄β) , (C.13)

and then compute its antiholomorphic residues to get

f = Resw̄=z̄β

(
Gzα,ak,...,an(w)

(w̄ − z̄β)

)
= Regw̄=z̄β Gzα,ak,...,an(w) (C.14)

where Regω=aA(ω) denotes the shuffle-regulated value of A(ω) at the point

ω = a. Since Gzα,ak,...,an(w) has weight k + 1, its shuffle-regulated values will

be pure functions of the same weight. This implies that φ ∗ K(z, z̄) is a pure

function of SVMPLs with uniform transcendental weight n+ 1, which concludes

the proof.
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[168] H. Johansson, G. Kälin, and G. Mogull, “Two-loop supersymmetric QCD

and half-maximal supergravity amplitudes,” JHEP, vol. 09, p. 019, 2017.

[169] Z. Bern, J. J. M. Carrasco, and H. Johansson, “New Relations for Gauge-

Theory Amplitudes,” Phys. Rev., vol. D78, p. 085011, 2008.

http://conf.itp.phys.ethz.ch/gaugestring08/


146 BIBLIOGRAPHY

[170] Z. Bern, J. J. M. Carrasco, and H. Johansson, “Perturbative Quantum

Gravity as a Double Copy of Gauge Theory,” Phys. Rev. Lett., vol. 105,

p. 061602, 2010.

[171] H. Johansson and A. Ochirov, “Color-Kinematics Duality for QCD

Amplitudes,” JHEP, vol. 01, p. 170, 2016.
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