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Abstract

The Standard Model (SM) models the behavior of the known elementary particles
and describes correctly most known physical phenomena that happen between
human and subatomic scales. Despite the success of the SM, we know that it
cannot be the ultimate theory of nature because it fails to explain a number of
observations, such as the existence of dark matter. As a result, much activity has
been devoted to finding deviations from the SM, which requires precise theoretical
predictions that can be compared to experiments. My thesis is part of the effort to
improve our predictions for Higgs boson production so that we can probe the SM
at colliders such as the LHC. This manuscript describes two projects. The first
provides a tool for the improvement of the prediction for the associated production
of a Higgs boson with bottom quarks: the first power-suppressed correction to the
bottom-quark Yukawa in the Higgs effective field theory (HEFT). To this end, we
performed the matching of a form fac...
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Calculs de précisions dans des théories effectives
pour la production du boson de Higgs

Résumé en français

La découverte du boson de Higgs en 2012 a marqué le début d’une nouvelle ère en physique des

particules. Après cinq ans d’études, les caractéristiques de cette nouvelle particule confirment qu’elle se

conforme aux prédictions du modèle standard de la physique des particules, bien que les incertitudes

expérimentales permettent encore des déviations non-négligeables, qui pourraient être indicatrices de

nouvelle physique. L’étude du boson de Higgs est donc actuellement tournée vers l’amélioration de la

précision des mesures existantes et l’extension du corpus de données expérimentales à de nouveaux

canaux de production et de désintégration afin de contraindre au mieux les possibles déviations.

Tester les propriétés du modèle standard en utilisant des mesures très précises requiert d’avoir à

notre disposition des prédictions théoriques auxquelles les comparer. Ma thèse s’inscrit dans cette

entreprise qui vise à améliorer la précisiondes calculs théoriques dans lemodèle standard et audelà dans

le but de fournir aux expérimentateurs les outils les plus performants possibles pour tester le modèle

standard, contraindre les modèles de nouvelle physique, et extraire un maximum d’informations de

découvertes éventuelles.

Après une introduction générale, cemanuscrit contient deux chapitres d’introduction, l’un décrivant

le contexte physique et l’autre les techniques mathématiques qui ont permis le développement de cette

thèse. L’introduction du contexte physique fait un survol des aspects les plus importants de la physique

des particules au LHC en présentant d’abord le modèle standard, puis les spécificités des calculs de pré-

cisions en collisionneurs hadroniques, en particulier l’annulation des divergences infrarouges entre les

corrections virtuelles et les émissions réelles. Nous abordons ensuite en plus de détails la physique

du boson de Higgs, passant en revue son statut expérimental après le Run I du LHC et les méthodes

d’ajustement qui ont servi auxmesures globales, avant de décrire la théorie effective du boson deHiggs,

approximation du modèle standard dans la limite de la masse du quark top infinie, qui a permis de cal-

culer la section efficace de production du boson de Higgs par fusion de gluons à une très grande préci-

sion. L’introduction du contexte physique se termine par l’introduction de la théorie effective dumodèle

standard, qui en est une extension permettant de décrire de manière universelle les effets indirects de

nouvelle physique très lourde sur les interactions des particules élémentaires déjà connues.

La présentation des techniques mathématiques utilisées dans la thèse fait une revue des méthodes

d’évaluation des diagrammes de Feynman à plusieurs boucles, qui sont les briques élémentaires des

calculs perturbatifs aux ordres élevés. Nous présentons d’abord les techniques qui permettent de passer

d’un grand nombre de diagrammes et d’intégrales à un petit nombre d’intégrales maîtresses, avant de

décrire trois méthodes d’évaluation de celles-ci: la paramétrisation de Feynman qui permet l’évaluation

directe des intégrales, l’expansion par régions et l’évaluation numérique par laméthode des secteurs. Le

chapitre se termine par l’introduction des polylogarithmes multiples, fonctions spéciales essentielles à

nos calculs, et à leur structure d’algèbre de Hopf, qui est un outil essentiel dans les calculs d’intégrales

de Feynman.

Passés ces deux chapitres d’introduction, le manuscript présente les travaux originaux dévelopés au

cours de cette thèse. Le chapitre 4 décrit l’extraction de la correction du couplage de Yukawa du quark
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bottom dans la théorie effective du boson de Higgs par un calcul de correspondance à deux boucles en-

tre cette théorie effective et le modèle standard. Cette correction représentait la pièce manquante pour

l’amélioration de la prédiction de la section efficace de production du boson de Higgs en association

avec deux quarks bottom, et nous pourrons l’utiliser à l’avenir pour réduire l’incertitude théorique de

cette prédiction. Le calcul de correspondance est effectué par le biais d’un facteur de forme de la désin-

tégration du boson de Higgs en deux quarks bottom. Les deux grandes parties du chapitre décrivent le

calcul de ce facteur de forme. Nous effectuons d’abord un calcul exact dans la théorie effective du boson

de Higgs en décrivant la décomposition de l’amplitude en termes d’intégrales maîtresses à une boucle,

que nous évaluons par intégration directe après avoir introduit plusieurs techniques d’intégration dont

une méthode itérative qui exploite la simplification des polylogarithmes par application du coproduit

de manière itérée. Nous effectuons ensuite le calcul du même facteur de forme dans le modèle stan-

dard, où il est décrit par des diagrammes à deux boucles. Nous réduisons ceux-ci en termes d’intégrales

maîtresses que nous calculons par intégration directe après expansion dans la limite de la masse du

quark top infinie par la méthode des régions. Finalement, nous comparons les deux résultats pour fixer

la valeur de la correction du couplage de Yukawa du quark bottom dans la théorie effective du boson de

Higgs, qui prend une forme compacte.

Les deux chapitres finaux couvrent différents aspects du calcul de la correction au deuxième ordre

de la section efficace de production d’un boson de Higgs par fusion de gluon dans la théorie effec-

tive du modèle standard, en présentant d’abord le calcul analytique des corrections virtuelles puis la

phénoménologie du résultat. Le premier chapitre commence par la présentation des opérateurs de di-

mension six qui modifient la boucle du quark top dans la fusion de gluon et détaille les étapes qui ont

permis d’évaluer analytiquement l’amplitude au premier ordre et sa correction virtuelle à deux boucles.

Nous obtenons l’expression de l’amplitude en termes d’intégrales maîtresses identiques à celles util-

isées dans le calcul de la section efficace de fusion de gluon dans le modèle standard, effectué en 2006,

et utilisons ce résultat pour obtenir l’expression de la correction virtuelle de l’amplitude dans la théorie

effective. Nous décrivons ensuite la structure des divergences de cette amplitude et appliquons sa renor-

malisation à une boucle. Nous utilisons ensuite la soustraction des divergences infrarouges pour isoler

les divergences à deux boucles de l’amplitudes, dont la structure était inconnue avant notre calcul et

fixons ainsi un des éléments de la matrice de renormalisation à deux boucles de la théorie effective

du modèle standard. L’analyse des divergences infrarouges des contre-termes à une boucle permet

d’expliquer l’apparition d’une divergence d’ordre trois dans l’amplitude non-renormalisée, fait inhab-

ituel dans les calculs de corrections radiatives au second ordre. Ayant fixé entièrement la renormali-

sation de l’amplitude, nous pouvons exprimer sa contribution finie dans le formalisme de la soustrac-

tion de Catani-Seymour. Finalement, nous présentons la continuation analytique du résultat aux ré-

gions physique en décrivant le chemin suivi dans le plan complexe par le paramètre rationel en termes

duquel sont exprimées les intégrales maîtresses, qui montre que des points de branchement apparais-

sent lorsque l’énergie passe le seuil de production du quark top et nous expliquons la méthode qui per-

met d’exprimer les polylogarithmes multiples dans le résutlat en termes de fonctions sans point de

branchement et de logarithmes dont la continuation analytique est triviale.

Le second chapitre présente la combinaison du résultat à deux boucles avec le calcul automatique des

corrections par émission réelles par le logicielMadgraph5_aMC@NLO, qui permet l’intégrationde la sec-
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tion efficace évaluée au deuxième ordre et corrigée par l’inclusion de simulations de gerbes hadroniques.

Le résultat de l’évaluation numérique est présenté et nous observons que la distribution différentielle

en impulsion transverse peut discriminer l’effet de chaque opérateur dans la queue de la distribution.

Nous discutons de l’impact des corrections radiatives sur le taux global de production du boson deHiggs

ainsi que sur la section efficace différentielle en impulsion transverse. Ces corrections sont universelles

pour les taux de production totaux, ce que l’on peut expliquer par la domination de la production au

seuil, où les détails de l’interaction ne peuvent être résolus et chaque contribution prend la forme uni-

verselle d’une interaction de contact. Cette explication est confirmée par l’étude des corrections radia-

tives au niveau différentiel, où l’universalité est brisée à haute énergie. Nous finissons la discussion de

la phénoménologie du processus par une rapide considération des effets éventuels d’opérateurs perme-

ttant à d’autres quarks d’apparaître dans la boucle de la fusion de gluons et concluons que seul le quark

bottom pourrait contribuer de façon non-négligeable car d’autres mécanismes sont plus contraignants

pour les quarks légers.
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1
Introduction

The Standard Model (SM) [1–3] is probably the most successful physical theory in history. It models

the behavior of all the known elementary particles and their interactions through three of the four

fundamental interactions and describes successfully most known physical phenomena that happen be-

tween human scales and the most microscopic scales ever probed, with the exception of gravitation. As

a theory of the most elementary interactions between the elementary particles, it has endured impres-

sive success in predicting the behavior of individual interactions between the building blocks of matter,

which we have been probing for nearly a century in scattering experiments over six orders of magni-

tudes in energy, from the earliest Compton scattering experiments at 17 keV [4] to the record-breaking

collisions at the LHC at 13 TeV.

A major milestone in the recent history of the SM was the discovery of the Higgs boson of mass

125 GeV in 2012 [5, 6] by the ATLAS and CMS experiments at the LHC. The study of its properties

is still ongoing, but we already have a rather comprehensive picture after the first run of the LHC [7]

which shows that it behaves as predicted within the experimental uncertainties. The following years

will be a critical period for the study of the SM as the experimental collaborations will push further the

study of Higgs properties.

Despite the tremendous success of the SM in describing particle physics over decades of detailed

scrutiny, we know that it cannot be the ultimate theory of nature because it fails to explain a number

of experimental observations, the most obvious of which is the existence of gravitational interactions.

Furthermore, there is now overwhelming evidence for the fact that neutrinos, which are massless in

the SM, actually have a mass, which manifests itself in their flavor oscillations [8–10]. The existence of

dark matter is also solidly grounded in observations at many scales, from galaxy rotation curves [11,

12], gravitational lensing in clusters [13, 14], cluster collisions [15] and the spectrum of the cosmic

microwave background [16], which all seem to favor the existence of cold, weakly-interacting matter

3



which cannot be accounted for by the particle content of the SM.

As a result of these issues, much theoretical activity is devoted to developing models that go beyond

the SM (BSM), predicting new particles and new structure to address the issues of the SM. Such mod-

els can be constrained or excluded by comparing their predictions to experimental measurements. In

particular, many experimental analyses perform direct searches for new particles that could manifest

themselves through a variety of signatures. Another avenue to constrain BSMphysics is to consider pre-

cision observables: the effects of new physics could be subtle and manifest themselves through small

deviations of processes involving SMparticles. A striking example of this idea are the electroweak preci-

sion observables S, T, U [17] which were measured inZ boson production at LEP [18] and still provide

a major source of constraints on BSM physics today. A number of precision measurements have been

performed at the LHC on standard candle processes such as the production of jets [19, 20], electroweak

boson [21, 22], or pairs of topquarks [23, 24]. Of course, testing the SMrequires equally precise theoret-

ical predictions, which have been the object of intense activity over the last years. Next-to-leading order

(NLO) accuracy inMonte Carlo simulations have become the standard for generic applications since the

publication of a series of automated codes [25–32], which built onmajor progress in our understanding

of the analytic structure of one-loop amplitudes. Further orders in the perturbative expansion aremuch

more difficult and require dedicated efforts for each result. As a result, NNLO calculations only exist for

specific processes but have still been successfully performed for a number of key observables [33–39],

while N3LO calculations only exist for a handful of cases [40, 41]. While most NLO calculations have

been automated, loop-induced processes also constitute a roadblock for automation due to the absence

of universal reduction techniques such as those existing for one loop amplitudes.

While it is still relatively unconstrained compared to the iconic processes traditionnaly used for pre-

cision SMmeasurements, Higgs boson production has become amajor aspect of SMphysics at the LHC,

and it already provides a number of observables that constrain possible new physics scenarios [42, 43].

The observation of many complementary production and decay modes has already permitted to con-

strain its interactions with other SM particles to a reasonable degree of precision and significant im-

provement is expected of the future runs of the LHC. On the theory side, the calculation of Higgs boson

related observables is a very active subject, and we now have reliable predictions for the main produc-

tion and decay processes in the SM [34, 35, 40, 44–50].

Making such predictions in the Higgs sector presents many challenges. In the SM, the main Higgs

boson productionmechanism is gluon fusion, a loop-induced process which includes amassive internal

top quark line. As a result, it is very difficult to evaluate radiative corrections to this process and we

only know it exactly at NLO accuracy [51, 52]. Thankfully, we know that we canmake approximate pre-

dictions that reproduce the exact result very faithfully by considering the limit where the mass of the

top quark goes to infinity. This approximation reduces the SM to an effective field theory (EFT) called

the Higgs Effective FieldTheory (HEFT) [53–55] in which the inclusion of more radiative corrections is

possible, which has lead to the establishment of very precise predictions [40]. While originally devel-

oped with gluon fusion in mind, the HEFT provides a way to include the effects of top quark loops in

other processes relevant for Higgs boson physics in a way that makes the evaluation of radiative correc-

tions easier. The first project presented in this thesis was developed to provide a missing tool for such

radiative corrections. We provided the first power-suppressed correction to the bottom-quark Yukawa
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in theHEFT, which is relevant when considering the NLO correction to the associated production a pair

of bottom quarks and a Higgs boson [44]. To this end, we performed the matching of a form factor for

theH → bb̄ decay between the HEFT and the SM.

When considering BSM extensions of the SMHiggs sectors, another challenge is the large variety of

models, which range from minimal extensions such as the two Higgs doublet model to very complex

theories such as the Minimal Supersymmetric Standard Model [56, 57] or the many composite Higgs

models [58, 59]. Using Higgs boson observables to constrain such models is a very fruitful approach,

but systematically constraining the many BSM ideas available is a very involved task. As a result, the

development of model independent ways of constraining new physics is a popular topic inmodern phe-

nomenology. The current approach used by experimental collaborations in the Higgs sector [7], pro-

posed as a temporary framework by the Higgs cross section working group [45], is based on agnostic

fits of SM predictions to experimental data. While it is properly universal, this approach provides con-

straints on quantities that are not well defined quantum-field-theoretical objects, making the connec-

tion to specific BSM scenarios complicated. Despite being less universal, an attractive alternative is the

use of the SM effective field theory (SMEFT), which is the low energy limit of all BSM extensions whose

new particles decouple at LHC energies [60–62]. This theory can describe all possible deviations to SM

observables coming from heavy new physics, encoded as the Wilson coefficients of higher dimensional

interactions between the SM fields. Because it is a framework defined in the language of quantum field

theory, the relation between SMEFT parameters and physical observables can be established analyti-

cally and systematically improved by radiative corrections. The second project presented in this thesis

is part of the ongoing effort to provide NLO predictions in the SMEFT in order to provide a large set

of observables that could be used for a global fit of the SMEFT parameters. We considered the gluon

fusion mechanism for Higgs boson production and calculated the NLO corrections to the total and dif-

ferential cross sections. Because it is a loop-induced process, the NLO corrections involve evaluation of

two-loop amplitudes, which made them impossible to evaluate them using automated NLO tools.

The outline of the thesis is as follows. In Chapter 2, we make a review of different aspects of LHC

physics. We discuss the theoretical construction of the Standard Model and electroweak symmetry

breaking, perturbative calculations for high-energy hadron scattering processes, experimental and the-

oretical features of Higgs boson physics, and finally describe the SMEFT. In Chapter 3, we introduce the

mathematical tools for multi-loop calculations that have been relevant for our work. We first describe

the techniques used to reduce the complexity of modern multi-loop amplitudes, focusing on the treat-

ment of integrals based on integral families and the reduction to master integrals using integration-

by-parts identities. We then make an overview of some Feynman integral evaluation techniques, de-

scribing the systematics of the Feynman parametrization and of the expansion by regions, which have

been used extensively in this thesis, and providing a more schematic introduction to numerical inte-

gration methods, which were used as a cross check of our analytic result. We conclude this chapter by

providing a review of multiple polylogarithms and their algebraic properties. After these introductory

discussions, Chapter 4 presents our first original result: the evaluation of the power-suppressed correc-

tion to the bottom quark Yukawa in the SMEFT. We first motivate the need for this correction for the

improvement of the prediction of Higgs boson prediction in association with a pair of bottom quarks

and show how a form factor for the decay H → bb̄ can be used to extract this correction. We then
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go over the calculation of this form factor in the SMEFT, which is a one-loop calculation. We derive

the relevant one-loop integrals in a pedagogical way, introducing several techniques relevant for the

direct integration of Feynman parametrized integrals and highlighting the usefulness of modern mul-

tiple polylogarithm techniques. We then describe the more complex calculation of the form factor in

the SM, which requires the evaluation of two-loop Feynman diagrams. We compute the relevant two-

loop master integrals and show explicitly how the expanded integrals in the SM are related to integrals

appearing in the HEFT calculation. Finally, we compare the two results to extract the desired Wilson

coefficient. The next two chapters, Chapter 5 and Chapter 6 describe our second original contribution:

the evaluation of theNLO correction to the gluon fusion process in the SMEFT.Thefirst chapter focuses

on the evaluation of the virtual corrections to this process, which required the evaluation of two-loop

Feynman diagrams. We first explain how the SMEFT modifies Higgs boson production by introducing

the relevant dimension six operators that modify interactions between top quarks, gluons and Higgs

bosons before describing the calculation of the amplitude at LO.We then describe the evaluation of bare

amplitude at NLO and discuss the divergences of this amplitude. Using the known one-loop renormal-

ization and infrared structures of the theory, we extract a previously unknown counterterm and use

it to obtain the renormalized amplitude. We then discuss the running of the Wilson coefficients and

the analytic continuation of the amplitude to the physical region, both of which will be used to study

the phenomenology of the process. In Chapter 6, we describe the combination of the two loop virtual

correction to the amplitude with the real emission diagrams generated by MadGraph5_aMC@NLO to pro-

duce physical predictions for gluon fusion in the HEFT. We then address the issue of the theoretical

uncertainties of our predictions related to the missing orders in the perturbative QCD expansion and

the power suppressed terms in the SMEFT expansion. We present results for the total cross section

and kinematic distributions as a function of the Wilson coefficients and discuss the effects of the NLO

corrections on these observables. Finally, we consider the possibility to extend our prediction to in-

clude the effects of light quarks in the loop and discuss their phenomenological relevance. We provide

concluding remarks in Chapter 7.
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2
Physics at the Large Hadron Collider

. The standard model of particle physics

.. Theoretical structure

TheSM is a quantumfield theory (QFT), defined by its set of quantumfields, their symmetry properties,

and an action, SSM, which encodes their behavior. The action can be entirely constructed from the

symmetry properties of the fields and the constraint of renormalizability and this section will outline

the principles of this construction and their physical consequences. The action is invariant under the

following symmetry group:

GSM = P4 ⊗ U(1)Y ⊗ SU(2)L ⊗ SU(3)c, (2.1)

whereP4 is the 4-dimensional Poincaré group¹ which describes the invariance of the theory under spe-

cial relativity transformations and the other groups are gauge groups, describing internal symmetries

of the fields. The labels of the gauge groups are there to indicate the role each group plays in the SM:

U(1)Y is the hypercharge group, whose charge is ŷ, SU(2)L couples only to left-handed fermions and

the Higgs boson, and SU(3)c is the color group.

¹Note that in practice we will work in the context of dimensional regularization, where we will compute all quantities in
d = 4− 2ϵ dimensions and analytically continue observables in the limit ϵ → 0.
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The Standard Model classical action SSM can be compactly expressed as

SSM =

∫ +∞

−∞
ddx
(
− 1

4
FµνFµν −

1

4
Wµν

I W I
µν −

1

4
Gµν

a F a
µν

+ iL̸̄DL+ iē̸De+ iQ̄L ̸DQL + i¯̃uR ̸DũR + id̄R ̸DdR

+
(
L̄ϕc

)
Yle+ ēY †

l

(
ϕc†L

)
−
(
Q̄Lϕ

)
YddR − d̄RY

†
d

(
ϕ†QL

)
−
(
Q̄Lϕ

c
)
YuũR −¯̃uRY

†
u

(
ϕc†QL

)
+ |Dϕ|2 − µ2ϕ†ϕ+ λ

(
ϕ†ϕ

)2 )
(2.2)

Where F,W,G,L, e,QL, ũR, dR, ϕ are functions of spacetime that take their value in some irreducible

representation of P4 ⊗ U(1)Y ⊗ SU(2)L ⊗ SU(3)c.

Poincaré invariance is automatically satisfied by the fact that the action is written as the integral of

a Lagrangian

SSM =

∫ +∞

−∞
d4xLSM (2.3)

where each term of the Lagrangian is local and is a Lorentz scalar. The constraint of renormalizability

means that the set of operators in LSM is stable under quantum corrections, which is equivalent to the

absence of terms of the form gO, where g is a parameter andO contains only fields and derivatives and

is of dimension> 4.

While Poincaré symmetry is manifest, the invariance of LSM under the gauge group is non-trivially

realized. Gauge symmetry requires the invariance under local transformations of the gauge group. For

example, spin-1/2 fields transform linearly, which means that these fields are vectors of some irre-

ducible representation of this gauge group and that for any function U(x) from spacetime to this irre-

ducible representation, the transformation

ψ(x) → U(x)ψ(x) (2.4)

leaves the Lagrangian invariant. Using the generators Ka of the representation, this transformation

can be re-expressed as

ψ(x) → exp (iαa(x)K
a)ψ(x), (2.5)

for some function αa(x). This, in particular, means that the kinetic term cannot enter the Lagrangian

alone: under such a transformation

iψ̄(x)̸∂ψ(x) → iψ̄(x)̸∂ψ(x) + iψ̄(x)
(
U † ̸∂U

)
ψ(x). (2.6)

This is a consequence of the fact that the field ψ takes its values in the tangent bundle of a fiber bundle

whose base is Minkowski space and whose fiber is the gauge group: the derivative needs to contain a

connection term that describes the geometry of the fiber. In that language, the invariance under gauge

transformations corresponds to the invariance under reparametrization of the fiber. The covariant
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derivative should therefore be

Dµ = ∂µ − iCµ(x), (2.7)

where Cµ is the connection and takes its values in the tangent space of the gauge group, i.e., the Lie

algebra of the gauge group, and transforms in the following way:

Cµ(x) → U †(x)Cµ(x)U(x) + U †(x)∂µU(x) (2.8)

which leaves ψ̄ ̸Dψ invariant under gauge transformations. It is often convenient to decompose Cµ(x)

in the basis provided by the generators of the Lie algebra:

Cµ(x) = Cµa(x)G
a. (2.9)

The exact form of the covariant derivative is implicitly dependent on the representation of the field

it acts on, and provides a generic way to construct gauge-invariant kinetic terms for fermions. The

kinetic terms for the fermion fields L, e,QL, ũR, dR are built exactly in this way in the second line of

Equation 2.2. These terms saturate the complete list of symmetric renormalizable operators involving

only fermion fields and the coupling between the fermions and the gauge connection Cµ(x).

The names and representations of the SM fermions are described in Table 2.1. Each fermion is actu-

ally a three-component field, with each component called a flavor or a family, whichwill be distinguished

by the structure of the Yukawa matrices Yi, which are 3× 3matrices in flavor space.

Name Symbol U(1)Y ⊗ SU(2)L ⊗ SU(3)c

lepton doublet Le =

νe
eL

 −1⊗ 2⊗ 1

charged lepton singlet eR −2⊗ 1⊗ 1

quark doublet QL =

ũL
dL

 1/3⊗ 2⊗ 3

up quark singlet ũR 4/3⊗ 1⊗ 3

down quark singlet dR −2/3⊗ 1⊗ 3

Table 2.1: The fermion fields of the SM. Each field has three components which represent the three flavors of each type of SM
fermion.

In gauge theories such as the SM, the geometry of the gauge fiber bundle is a dynamic object. As

a result, the gauge connections Cµa(x) are promoted to dynamic fields, which will correspond to the

mediators of the fundamental interactions. Because our gauge group is a semi-simple Lie group, it is

useful to use that structure to decompose its Lie algebra as a direct sum u(1) ⊕ su(2) ⊕ su(3) and to
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choose an adapted basis:

ŷ ⊕

(
0 0

0 0

)
⊕

0 0 0

0 0 0

0 0 0

 ,

0⊕ τ I ⊕

0 0 0

0 0 0

0 0 0

 ,

0⊕

(
0 0

0 0

)
⊕ T a,

(2.10)

where the τa andT a are respectively the generators of the relevant representation ofSU(2) andSU(3).

We will systematically drop all trivial parts of the algebra and use ŷ, τ and T to mean the matrices with

0n×n blocs. To reflect the fact that the gauge group describes several interactions, we introduce the

coupling constants g, g′ and gs corresponding to each interaction and define the following fields

Cµ(x) = g′
ŷ

2
Bµ(x) + gWµIτ

I + gsGµaT
a. (2.11)

The B and WI fields are called the electroweak gauge fields and G the gluon field. The gluons, are

particles whose effect is seen in colliders and were discovered in 1979, while the electroweak bosons

have generic names because they will be recombined under electroweak symmetry breaking to form

the other known vector bosons, the photon γ, definitely established in 1923, and theW andZ bosons,

discovered in 1983.

The basic building blocks for the gauge sector of the SM Lagrangian are the field strengths, which are

the simplest objects that transform linearly under the gauge group:

Fµν = ∂µAν − ∂µAν , (2.12)

W I
µν = ∂µW

I
ν − ∂µW

I
ν + gϵIJKWJµWKν , (2.13)

Ga
µν = ∂µG

a
ν − ∂µG

a
ν + gsf

abcGbµGcν . (2.14)

The kinetic terms appearing in the first line of Equation 2.2 are constructed of the contraction of each

field strength with itself. For the non-abelian fieldsW and G, another structure is however possible:

ϵµνρσW I
µνWIρσ and ϵµνρσGa

µνGaρσ, while the corresponding term for A yields a trivial contribution

to the action because it can be shown to be a total derivative. Similarly, the term ϵµνρσW I
µνWIρσ can

be safely eliminated from the Lagrangian by some transformations of the fields [63] that leaves the

classical Lagrangian unchanged. On the other hand, the most general gauge symmetric Lagrangian

should contain a term of the form θϵµνρσGa
µνGaρσ. It can be shown that such a term would induce

an electric dipole moment in neutrons, which has never been observed experimentally and constrains

θ < 10−11 [64], which explains why it is not included in the SM Lagrangian. It is not understood

why this term is zero or extremely supressed in the SM, and this issue is referred to as the strong-

CP problem, which can only be solved by extensions of the Standard Model such as the Peccei-Quinn

model [65]. Except for this operator, the first line of the SM Lagrangian contains all the renormalizable

operators involving only gauge bosons preserving its gauge symmetries.
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The final component of the Standard Model is the Higgs field ϕ, which was introduced by Brout,

Englert and Higgs [66, 67] and is the source of the breaking of the U(1) ⊗ SU(2) part of the gauge

symmetry. This field is a Lorentz scalar in the 1 ⊗ 2 ⊗ 1 representation of the gauge group. There

are three possible renormalizable gauge invariant operators that involve the Higgs boson, which are all

included in the last line of Equation 2.2. The last two terms −µ2
(
ϕ†ϕ

)
+ λ

(
ϕ†ϕ

)2 are referred to as

the Higgs potential and we will discuss in the next section how it provides a mechanism to generate

masses for the gauge bosons and the fermions.

Finally, the Yukawa sector is composed of the 4th and 5th lines of Equation 2.2 and is composed of

the last 4 possible gauge invariant terms. In each of these terms, the Higgs field is contracted with a

left-handed fermionicSU(2) doublet and a right handed field. A priori, the Yukawamatrices appearing

in the Lagrangian are generic matrices, but we can use the symmetries of the Lagrangian to constrain

them. Indeed, we can always rotate our fermion fields in flavor space

L→ ULL eR → Ueer

QL → VqQL ũR → VuũR dR → VddR,
(2.15)

where the Vi and Ui are orthogonal matrices acting on flavor. In the lepton sector, we can use these

transformations to diagonalize the leptonic Yukawa matrix Yl, which also leaves the kinetic term un-

changed. As a result, we can consider that

Yl =

ye 0 0

0 yµ 0

0 0 yτ ,

 (2.16)

where the indices in the eigenvalues indicate that the flavors correspond respectively to the electron, the

muon and the tau and the eigenvalues are real. On the other hand in the quark sector, Yu and Yd cannot

be simultaneously diagonalized in general. The convention in the Standard Model is to diagonalize Yd
and leave the mixing in Yu. We can choose Vq, Vd and Vu such that

Yd = VqŶdV
T
d , Yu = V ŶuV

T
u , (2.17)

where Ŷd and Ŷu are diagonal matrices and V is an orthogonal matrix. Let us define V = V T
q V , we can

always write the quark Yukawa terms in the Lagrangian as

−
(
Q̄Lϕ

)
ŶddR −

(
Q̄Lϕ

c
)
VŶuũR + h.c. (2.18)

The leftover matrix V that we cannot rotate away is the CKM matrix, which has the physical conse-

quence of allowing flavor-changing charged currents in the Standard Model.

.. Electroweak symmetry breaking

The structure of the Standard Model in its manifestly gauge-symmetric form in Equation 2.2 seems

to have many different features from real-life physics. Indeed, no fermion has a mass term in the La-

grangian because the gauge structure forbids direct linear couplings between left- and right-handed
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Figure 2.1: The Higgs potential as a function of |ϕ| =
√
ϕ†ϕ. The minimum of the potential is at |ϕ| = v.

fields. Futhermore, while we have observed the existence of massive vector bosons, gauge symmetry

also forbids the existence of mass terms. This apparent discrepancy is due to the fact that the SM un-

dergoes electroweak symmetry breaking, which is a process in which the vacuum breaks the symmetry,

allowing for mass terms to appear. This is an essential feature of the SM as theories withmassive gauge

bosons are generally non-renormalizable unless their mass is generated through spontaneous symme-

try breaking [68].

Spontaneous symmetry breaking is realized because of the structure of the Higgs potential:

V (ϕ) = −µ2
(
ϕ†ϕ

)
+ λ

(
ϕ†ϕ

)2
, (2.19)

which can be represented graphically as a function of |ϕ| =
√
ϕ†ϕ as in Figure 2.1.

This representationmakes it manifest that this potential has aminimum away from the usual ϕ = 0.

As a result, the physical ground state should correspond to a situation where ⟨|ϕ|⟩ =
v√
2

where the

minimum of the potential is reached. By minimizing Equation 2.19, we find that

v2 =
µ2

λ
, (2.20)

and our perturbative expansion should be taken around such a ground state. Because ϕ is a SU(2)

doublet, we can parametrize it in the following way

ϕ(x) = exp(iπ(x) · τ)

 0
v + h(x)√

2

 , (2.21)

where the τ are the generators of SU(2) and the dynamical degrees of freedom are the Goldstone fields
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πi(x) and the physical higgs field h(x). This choice corresponds to a vacuum in which

⟨ϕ⟩ =

 0
v√
2

 . (2.22)

There are infinitely many degenerate vacua as any SU(2) transformation of this state provides a differ-

ent state which minimizes the potential: indeed, the theory itself is still SU(2) invariant.

Let us outline the main consquences of the spontaneous symmetry breaking on the SM Lagrangian.

To this end, we will work in the unitary gauge, in which we perform a local SU(2) transformation to

eliminate the dependence on the fields π(x):

ϕ(x) → exp(−iπ(x) · τ)ϕ(x) =

(
0

v+h(x)√
2

)
, (2.23)

which also transforms all the other states. The general form of the Lagrangian in Equation 2.2 is left

unchanged, but this simplifies the expansion of the Higgs fields into its components greatly. In this

gauge, the potential is reduced to

V (h) = −λv
2

4
+ v2λh2 + vλh3 +

λ

4
h4. (2.24)

As a result, it appears that the field h describes a neutral scalar particle with massmH = v
√
2λ, the

Higgs boson. Let us now work out what happens to the covariant derivative of the Higgs field by ex-

panding explicitly the generators in the SU(2) fieldW :

|Dϕ|2 = 1

2

(
∂µh+ (h+ v)

(
−igBµ − ig′Wµ

))(
∂µh+ (h+ v)

(
+igBµ + ig′Wµ†

))
(2.25)

=
1

2
∂µh∂

µh+
1

8

(
g′Bµ − gW 3

µ

) (
g′Bµ − gW 3µ

)
(v + h)2

+
g2

8

(
W 1

µ + iW 2
µ

) (
W 1µ − iW 2µ

)
(v + h)2

(2.26)

=
1

2
∂µh∂

µh+
(
g2 + g′2

) v2
8
ZµZ

µ +
g2v2

4
W+

µ W
µ
− + interactions. (2.27)

As a result, the Higgs field covariant derivative generates the kinetic term for h and masses for two

combinations of gauge bosons. TheZ field is a combination of theB and theW3 fields to form a neutral

massive vector field andW1 andW2 combine to form a charged massive vector field,W±. Out of the

four electroweak gauge boson, there is therefore a last combination which remains massless, which

corresponds to the photon fieldA:

Zµ =
g′Bµ − gW 3

µ√
g2 + g′2

, Aµ =
gBµ + g′W 3

µ√
g2 + g′2

, W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (2.28)

The photon field is associated to a leftover U(1) symmetry, leaving a conserved quantum number, the
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chargeQ. The charge operator depends on the hypercharge and the third generator of SU(2)²:

Q =
y

2
+ τ3. (2.29)

Finally, let us outline the effect of symmetry breaking on the fermion sector. The only affected part

of the Lagrangian is the Yukawa sector. Remember that we had the Yukawa part of the Lagrangian

LY = −
(
L̄ϕ
)
ŶleR −

(
Q̄Lϕ

)
ŶddR −

(
Q̄Lϕ

c
)
VŶuũR + h.c. (2.30)

= −
∑

f=e,µ,τ

yfv√
2
ēfLe

f
R −

∑
f=d,s,b

yfv√
2
d̄fLd

f
R −¯̃uLV

vŶu√
2
ũR + h.c (2.31)

Let us define the physical up-quark states: uLcL
tL

 = V†ũL, (2.32)

uRcR
tR

 = ũR. (2.33)

Using this notation, the Yukawa sector is entirely diagonalized

LY = −
∑

f=e,µ,τ

yfv√
2
ēfLe

f
R −

∑
f=d,s,b

yfv√
2
d̄fLd

f
R −

∑
f=u,c,t

yfv√
2
ūfLu

f
R + h.c. (2.34)

This change leaves the kinetic term for the up quarks diagonal, so this choice of basis provides the

correct definition for the physical fields in the SM.

After electroweak symmetry breaking, the physical spectrum of fundamental particles can be sum-

marized as in Figure 2.2.

Every one of these particles has been observed experimentally in a span of 115 years, from the dis-

covery of the electron in 1887 to that of the Higgs boson at the LHC in 2012 [5, 6].

.. Quantum chromodynamics

The theory of the strong interaction, mediated by gluons, is called quantum chromodynamics (QCD).

The QCD Lagrangian, which is contained in the SM Lagrangian after electroweak symmetry breaking,

takes a much simpler form than the electroweak sector:

LQCD = −1

4
Ga

µνG
µν
a + q̄f (i̸D −mf ) q

f . (2.35)

This Lagrangian is however deceiptively simple, as the phenomenology of QCD is very rich and changes

dramatically across energy scales. At high energy, taking a perturbative expansion canbe used to predict

physical phenomena reliably. As a result, it makes sense to describe hard physical processes in terms

²The generator is representation-dependent
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Figure 2.2: The physical spectrum of the SM.

of interactions between quarks and gluons and to express physical observables in powers of the SU(3)

coupling constant gs.

Low-energy QCD is however very different due to the phenomenon of confinement. Indeed, at ener-

gies lower than the confinement scaleΛQCD ≈ 200 MeV, quarks and gluons are confined into colorless

states called hadrons. Hadrons come in a wide variety and hundreds of different states have been ob-

served experimentally since thefirst discovery of a hadron, the proton, in 1917. Describing the behavior

of hadrons from first principles is extremely complicated because of the loss of perturbativity for en-

ergies below ΛQCD. Indeed, as shown in Figure 2.3, the strong coupling constant αs = g2s/(4π) has

the peculiar feature of growing as the energies goes from infinity toΛQCD, around which the theory be-

comes strongly coupled and we cannot use perturbative expansions to make predictions. A number of

effective theories exist that describe low energy QCD in a bottom-up approach, but predicting hadron

behavior from first principles has for long been a very tough nut to crack. The current best approach is

lattice QCD, which attempts to evaluate the path integral by discretizing spacetime and has become a

powerful tool.

A crucial point for our ability to use perturbativeQCD is that, at high energies, the quarks and gluons

inside hadrons, collectively called partons, have individual interactions that factorize from the nonper-

turbative dynamics of the hadron. Indeed, the high energy interactions of hadrons can be predicted as

a decoherent sum over the interactions of their components, meaning that we can separate the hard

interactions of elementary particles from the hadronic physics which happens at a different scale. In

the next section, we will discuss how this phenomenon is used to make perturbative QCD predictions
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Figure 2.3: Evolution of the strong coupling αs with the energy scaleQ [69]. The theory becomes nonperturbative below
1 GeV

at hadron colliders.

. Making predictions for proton collisions

.. Brief overview of perturbative QFT

Most modern particle physics experiment are scattering experiments, in which one studies the colli-

sions of subatomic particles to determine how they interact. Predicting the outcome of such experi-

ment using QFT is done by calculating transition amplitudes, whose norm is the probability for a given

physical process to occur. The quantum operator describing general transitions between asymptotic

states (states where particles are well separated and do not interact anymore) is called the S-matrix,

providing a compact definition of a transition amplitudeAi→f from an initial state i to a final state f :

Ai→f = ⟨f |S | i⟩ . (2.36)

Determining theS-matrix in general for aQFT is a very difficult task andwe aremost often contentwith

finding approximate solutions using perturbation theory, in which we expand around a free theory in

powers of the interactions couplings. For example, in the case of QCD, the strength of all interactions

is controlled by the coupling gs and high-energy observables such as scattering cross sections can be

expressed as an asymptotic series in the strong coupling

αs =
g2s
4π
. (2.37)
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In general, finding individual elements of the S-matrix as an expansion in powers of a coupling is by

itself a difficult task. The canonical approach is to use the fact that, by the LSZ theorem [70], elements

of the S-matrix are related to time-ordered correlation functions. By the Wick theorem [71], such cor-

relation functions can be expressed as linear combinations of products of two-point functions, and

the expression of terms in the perturbative expansion is reduced to a combinatorial exercise. Modern-

day calculations usually bypass these steps by using a pictorial approach based on Feynman diagrams.

Feynman diagrams are constructed using Feynman rules, which can be determined directly from the

Lagrangian of a theory in an algorithmic way and nowadays, several tools exist that can perform this

task automatically [72]. As an example, the Feynman rules of QuantumChromodynamics are described

in Figure 2.4.

igsγ
µ1T a1 −gsfa1a2a3V (p1, p2, p3) −ig2sW a1a2a3a4

µ1µ2µ3µ4

i
̸ p+m

p2 −m2
−i gµ1µ2

p2 −m2

Figure 2.4: The Feynman rules of QCD with one quark flavor. The straight lines indicate quarks and the curly lines indicate
gluons. External lines have the same properties as the corresponding fields and their properties (spin and color indices, mo-
menta) are labelled with the corresponding number. The tensor V andW correlate the color and Lorentz structures of the
incoming particles.

Because the vertices of Feynman are associated to factors of the interaction couplings, they can be

used directly to find at which order a diagram contributes. Finding the perturbative expansion of a

transition amplitude at a given order is therefore reduced to drawing all possible diagrams that have the

right external legs and the right number of vertices. For a given number of external legs, higher orders

in the expansion correspond to diagrams with more closed loops, and for each loop in the diagram,

the momentum flowing through one line cannot be fixed by momentum conservation, as shown in

Figure 2.5.

Part of the Feynman rules is the prescription that this unspecified momentum kmust be integrated

over using the d-dimensional measure ∫
ddk

(2π)d
. (2.38)

Oneof the issues that arisewhen evaluatingFeynmandiagrams is that the integrals in the amplitudes

associated to loop diagrams are often divergent in the limit d → 4, and we need to regularize and

renormalize the amplitudes. We will systematically work in the context of dimensional regularization, in

which we use the number of dimensions as a regulator: we compute the integral for a generic d = 4−2ϵ

and express it as a Laurent series in ϵ which we can analytically continue to complex ϵ.
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(a) Tree-level diagram (b) Loop-level diagram

Figure 2.5: In tree-level diagrams, all internal momenta are fixed by the external legs while in loop diagrams, one internal
propagator per loop is undetermined and integrated over.

Poles in the Laurent series of loop integrals have two origins: ultraviolet (UV) or infrared (IR). Ul-

traviolet poles come from divergences in the limit where the loop momentum k goes to infinity while

infrared divergences potentially appear when one of the propagators in the loop integral goes to zero

for some finite value of k.

Observables are made free of UV divergences in the limit ϵ→ 0 through the process of renormaliza-

tion, in which we relate the parameters that appear in the Lagrangian, called bare parameters, to finite,

ϵ-independent quantities called the renormalized parameters. Let us consider for example the gauge

coupling in QCD, gs. The bare QCD coupling gBs appears in the term coupling quarks to gluons:

LQCD ⊃ gBs q̄γµT
aqGµ

a . (2.39)

Because SSM is an action, it has no dimension in natural units where ℏ = c = 1, whence terms in the

Lagrangian must be d-dimensional. The kinetic terms determine the dimension of the fields and we

can use the interactions to fix the dimensionality of the coupling:

[q] =
d− 1

2
, [Gµ] =

d− 2

2
,
[
gBs
]
=

4− d

2
. (2.40)

If we want to define a finite renormalized coupling gRs independent of the number of dimensions, we

need to compensate for the dimension of the bare parameter using an external scale µ which is a priori

arbitrary. We will therefore define in general

gBs = µϵgRs (µ)Zgs , (2.41)

where Zgs is the ϵ and µ dependent renormalization constant. The renormalization constants are deter-

mined as an expansion in the renormalized coupling constant by imposing that all transition amplitudes

in the theory be free of UV divergences in the limit ϵ→ 0 once expressed in terms of the renormalized

couplings. As a result, the renormalized constant depend on the precise way the divergences are ab-

sorbed. In this thesis, we will usually work in the modified minimal subtraction scheme (MS scheme),

inwhich the relation between a bare parameterλB and its renormalized counterpartλR at a given order
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in the perturbative expansion is

λB = S−κλ/2
ϵ µκλϵλR

(
N∑

n=1

Z
(n)
λ

ϵn

)
. (2.42)

where
[
λB
]
= 4 − κλϵ and Sϵ = (4π)ϵ exp (−γϵ), with γ the Euler-Mascheroni constant is a factor

that systematically appears in loop integrals and is removed in MS. In practice, we will drop the factors

of Sϵ for all parameters except for the strong coupling constant as a matter of simplicity. This yields

differences of orderO(ϵ) in the finite results and therefore does not affect physical results.

The fact that absorbing divergences in a finite number of renormalization constants is enough to

make all the transition amplitudes in a theory free ofUVdivergences is far from trivial and only happens

for renormalizable theories such as the Standard Model [73].

Once the renormalization structure of a theory has been determined, renormalized amplitudesAR

can be related to the amplitudeA expressed in terms of the bare parameters

∏
ϕ

Z
1
2
ϕA(λB) = AR(λR), (2.43)

where the product is taken over the external fields and the Zϕ are the field renormalization constants.

After renormalization amplitudes can still contain infrared divergences. These cannot be absorbed

by redefinitions of the parameters, but cancel against singularities that appear in the phase space inte-

gration if one considers IR-safe observables [74, 75], as we will discuss in Section 2.2.3.

.. From hadronic processes to partonic processes

Applying the techniques of perturbative QFT to quantum chromodynamics is a suitable approach to

evaluating partonic cross sections for processes where the initial state is defined in terms of partons

(quarks and gluons) Indeed, the renormalized strong coupling constant αR
s (µ) =

(
gRs (µ)

)2
/(4π) is

a decreasing function of the renormalization scale as we showed in Figure 2.3 and it becomes smaller

than 1 for µ ≳ 1 GeV. It is however impossible to perform parton scattering experiments directly

because of confinement: we can only collide hadrons. High-energy hadron scattering can however be

described in terms of elementary parton scattering thanks to factorization: due to the large separation

between the typical hadronic energy scale (∼ 1 GeV) and the scattering energy in experiments (13 TeV

at the LHC), individual parton scattering probabilities are added incoherently up to power suppressed

corrections that scale at worse like the inverse center-of-mass energy. The factorization formula for the

proton-proton scattering cross section of the processus pp → X at a center-of-mass energy
√
s takes

the form

σpp→X =
∑
i1,i2

∫ 1

0
dx1dx2fi1(x1, µ)fi2(x2, µ)σ̂ij→X(ŝ, µ) +O

(
1√
ŝ

)
, (2.44)

where the sum goes over the partons inside the protons, σ̂ij→X is the partonic cross section for the

process ij → X at the partonic center-of-mass energy ŝ = x1x2s and fi(x, µ) is the parton distribution

function (PDF) of the parton i in the proton, which can intuitively be interpreted as the probability

of finding the parton i in the proton with a fraction x of its total momentum. The PDF depend on an
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Figure 2.6: Examples of PDF from the MSTW2008 fit [77].

arbitrary scale called the factorization scale, which can be thought of as the scale that separates the hard

physics described by σ̂ and the low-energy physics described by the PDF. Factorization is only proven for

a specific set of scattering processes but is conjectured to hold generally in high energy scattering [76].

Because the PDF relate to the internal dynamics of hadrons, they cannot be determined by pertur-

bative QCD, and the best approach at the moment is to measure them experimentally through fits of

experimental data. The result of such a fit is provided in Figure 2.6. The first historical measurements

were performed using data from deep inelastic scattering (DIS) experiments in which electrons were

collided with protons at high energies. Nowadays data is used from many experiments and many PDF

fits are available [77–79].

Relating partonic final state to physical, hadronic final states seen in colliders is another part of QCD

that cannot be predicted using perturbative QCD. At the energy regime of the LHC, the main experi-

mental signatures of partonic final states with colored partons are hadronic jets, narrowly collimated

bundles of hadrons. In electron-positron collisions at high energies for example, most hadronic final

states are two-jet final states, in which two colimated sprays of boosted hadrons are back-to-back as

shown in Figure 2.7, which corresponds to the leading-order partonic picture in which a pair of quarks

is produced through a virtual photon or Z boson. From a theoretical point of view, the link from final

states partons to hadronic states is described in two steps: fragmentation and hadronization. Fragmen-

tation is still governed by perturbative processes and corresponds to the repeated splittings of partons

(g → qq̄, q → qg, …). If the initial parton is very boosted, its fragmented version will consist of many

partons going in the same directions, which will give rise to a jet. The perturbative picture breaks down

when the typical momentum transfer in splittings becomes lower than 1 GeV, at which point the de-

scription is switched to hadronization, which is the nonperturbative process in which partons group

together to form physical hadrons. Hadronization models are not constructed from first principles,

but are phenomenological models that are fitted to experiment.
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Figure 2.7: An example of a dijet event in the ATLAS detector at the LHC

.. Calculating partonic cross-sections at NLO

Let us briefly discuss the structure of NLO calculations in QCD at the parton level. As we explained

in Section 2.2.1, higher order corrections to observables in QCD contain divergences that correspond

either to UV divergences, or to IR divergences which disappear once we consider IR-safe observables, in

which phase space integration divergences cancel against the IR divergences of loop integrals. We will

illustrate our discussion with the cross-section for inclusive hadron production in electron-positron

scattering well below theZ bosonmass. The leading order contribution for this observable comes from

the Feynman diagram shown in Figure 2.8. The total, unpolarized cross section σH is obtained by

�

e�

e+ q̄

q

1

Figure 2.8: Leading-order contribution for e+e− → hadrons

integrating the norm of the amplitude over the phase space of the two quarks

σH =
4πα2

s

(∑
i

Qi

)
+O

(
α2αs

)

= σ0 +
αs

2π
σ1 + . . . ,

(2.45)
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where α is the electromagnetic coupling constant α = e2/(4π),
√
s is the center-of-mass energy of

the collision, the Qi are the quark charges and the sum runs over active quark flavors. The next-to-

leading (NLO) corrections, which are O
(
α2αs

)
come from two different sources: virtual corrections,

which include an extra loop, and real emission corrections, in which an extra parton is created, which

will also hadronize. In the case of e+e− → hadron, they are realized in the Feynman diagrams shown

in Figure 2.9. TheO(αs) virtual correction σ1V comes through the interference with the LO Feynman

�

e�

e+ q̄

q

1

1
�

e�

e+ q̄

q

1

1

(a) Real emissions

1

�

e�

e+ q̄

q

1

(b) Virtual correction

Figure 2.9: Feynman diagrams contributing to the NLO correction to the total cross section for e+e− → hadron

diagram, integrated over the phase space of the pair of quarks dΦ2, as shown in Equation 2.46.

σ1V ∝
∫
dΦ2 2Re


 �

e�

e+ q̄

q

1




1

�

e�

e+ q̄

q

1


†  (2.46)

The contribution from real emissions on the other hand, does not interfere with the LO amplitude

because the final state is different. Its contribution σ1R is therefore directly the square of the real

emission amplitude integrated over the phase space of the three-particle final state dΦ3, as shown in

Equation 2.47.

σ1R ∝
∫
dΦ3

∣∣∣∣∣∣∣∣∣∣
�

e�

e+ q̄

q

1

1
�

e�

e+ q̄

q

1

1+

∣∣∣∣∣∣∣∣∣∣

2

(2.47)

After renormalization, both contribution contain IR divergences coming respectively from the loop

integral for the virtual correction and from the phase space integral for the real emission correction.

Using dimensional regularization for both integrals we find that

σ1V = σ0H(ϵ)

(
− 2

ϵ2
− 3

ϵ
− 8 +O(ϵ)

)
(2.48)

σ1R = σ0H(ϵ)

(
2

ϵ2
+

3

ϵ
+

19

2
+O(ϵ)

)
, (2.49)

where

H(ϵ) =
3(1− ϵ)2

(3− 2ϵ)Γ(2− 2ϵ)
. (2.50)
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It appears clearly that the divergences cancel in the total cross section:

σH = σ0 +
αs

2π
(σ1R + σ1V ) = σ0

(
1 +

αs

π

)
. (2.51)

It is a general feature of infrared divergences that those arising from real and virtual gluonsmust cancel

if sufficiently inclusive observables are considered [74, 75]. Such observables are called infrared-safe

observables and must verify the proprety that they measure the same value on a n-parton final state

as on a n + 1-parton final state in which the extra parton has a very small energy or is collinear with

another parton. More explicitly, if Sn and Sn+1 are the measure functions that define the observable

as a function of the n and n+ 1momenta of the final state,

lim
pn+1→0

Sn+1(p1, . . . , pn, pn+1) = Sn(p1, . . . , pn), (2.52)

lim
pn+1→pn

Sn+1(p1, . . . , pn, pn+1) = Sn(p1, . . . , pn). (2.53)

Clearly, inclusive hadron production is an infrared-safe observable, since the measure function is a

constant independent of the number of partons. On the other hand, the cross section for exclusive

qq̄ production is not infrared safe, since the measure functions can be defined as S2(p1, p2) = 1,

Sn̸=2({pi}) = 0. Indeed, if we try to evaluate it explicitly to NLO, we should perform the same cal-

culation as before and drop the real emission diagram, hence spoiling the cancellation of divergences.

In general, the cross section for the inclusive production of any neutral particle is infrared-safe. For

example, the cross section for Higgs production that we will consider in Chapter 6 is infrared safe be-

cause it is fully inclusive over the production of final state partons. It is still possible to define exclusive

observables, which for example restrict the presence of hadronic jets coming from energetic partons,

but even such observables cannot entirely restrict the presence of soft hadronic activity as jets must be

defined in an infrared-safe way.

. Higgs boson physics at the LHC

.. Current experimental status of the Higgs boson

Since the discovery of the Higgs boson in 2012 [5, 6], it has been extensively studied at the LHC to test

its compatibility with the SM. After the Run I, a number of properties have been confirmed to be con-

sistent with the SM. In particular, the experimental collaborations have confirmed that the particle is a

CP -even state compatible with a spin-0 particle [80, 81]. The spin-1 hypothesis has been conclusively

excluded and, while the hypothesis of a spin-2 is difficult to rule out entirely as many possible models

exist for spin-2 production and decay [82], but all the models tested experimentally were excluded with

a large confidence level while the spin-0 hypothesis is compatible with the experimental data.

A SM Higgs boson with a mass of 125 GeV has a rich phenomenology, as shown in Figure 2.11. The

main production mechanism is gluon-fusion, which dominates the cross section by contributing more

than 90%, followed by vector boson fusion and associated production with vector bosons. Rarer pro-

ductionmodes include associated productionwith top and bottom quarks as well as the pair production

of Higgs bosons. LO Feynman diagrams for each of these processes are show in Figure 2.10. It is in-
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teresting to note that the main production channel is loop induced; its dominance is explained by the

importance of gluon PDFs at high energies and the large coupling of the top quark to the Higgs boson.

(a) Gluon fusion (b) Vector boson
fusion

(c) Associated production with
W/Z (d) Associated

production with tt̄

Figure 2.10: Sample Feynman diagram for each of the main channels for Higgs boson production.

The decays of the Higgs boson are also diverse, as already three decay channels (ZZ,WW , γγ) con-

tributed to the initial discovery [5, 6]. Several of the dominant decay channels are however difficult to

separate from the background and have yet to be conclusively observed, including the decay to bottom

quark pairs, which is the most frequent decay mode.
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Figure 2.11: Production and decay modes for a 125 GeV Higgs boson at the LHC from the CERN Yellow report 4 [83].

A comprehensive picture of Higgs boson interactions has already been established by the experimen-

tal collaborations using the complete dataset of Run I [7]. The approach taken in this combined study

was to perform fits on parametrizations of the full dataset, using three different parametrizations. The

first version is very agnostic and uses products of the form σi × Bj as fit parameters, where σi is the

production cross section for some production mode and Bj is the branching ratio for some decay. For

each analysisA, the observed number of eventnA is compared with a theoretical prediction of the form

nA = L
∑
ij

ϵAij (σi ×Bj)
(σ ×B)ref
(σ ×B)SMref

, (2.54)
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where L is the integrated luminosity and ϵAij is the selection efficiency of the channel ij in the analysis

A, which is determined by simulations. The processus gg → H → ZZ is used as a reference for

the overall normalization due to its overall reliability, being a channel with low backgrounds and small

systematic uncertainties. The result of this fit is shown in Figure 2.12a. The second parametrization

is done in terms of signal strengths, which works under the assumptions that the measurements of

production and decay strengths can be factorized universally. The fit parameters µi for production and

µj for decays rescale the theoretical predictions for the contribution of eachmode to themeasured yield

of each analysis:

nA = L
∑
ij

ϵAij µiµj σ
SM
i ×BSM

j . (2.55)

The result of this fit is shown in Figure 2.12c. The third parametrization is based on the idea of coupling

modifiers often referred to as the κ-framework. A coupling modifier κi is associated to each coupling

involving the Higgs boson and the contribution of each channel is rescaled by a combination kappas

based on the LO scaling of the cross section times branching ratio. For example, in search for the as-

sociated production of a Higgs boson with a pair of top quarks, with the Higgs boson decaying into

bottom quark, the signal contribution (i.e. the contribution from genuine tt̄H, H → bb̄) contributes

to the event number n in the following way

n = Lϵ κtκb σSMtt̄H ×BSM
H→bb̄

+ . . . (2.56)

where κt (κb) is the coupling modifier for the top (bottom) Yukawa coupling. The result of this fit is

shown in Figure 2.12b. This approach has a nice intuitive interpretation since, at leading order, chang-
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Figure 2.12: Results for the fits in the three parametrizations used in [7].

ing the coupling of the Higgs boson to a given SM particle is equivalent to finding a value of the cor-

responding kappa different from one. However, predictions in the Higgs sector are very sensitive to

radiative corrections so that that the relationship between a modified interaction strength and a mea-

sured kappa can be nontrivial. Furthermore, the phenomenology of SM extensions can be different to

that of the SM. As a result, relating the measurement of kappas to the interactions in a specific BSM

model can be non-trivial. One should therefore be wary of interpreting the kappas as BSM coupling
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modifiers as they are really fit parameters that cannot be trivially related to the parameters of some

QFT.

The bulk of the Run I Higgs analysis campaign was centered around total rates, which allowed to

answer the burning questions that followed the initial discovery: is the Higgs boson produced as we

expect? Does it decay in the right channels? Asmore data is being gathered and analyzed, wehave access

to a growing body of information not only on the rates, but also on the kinematics of Higgs-related

processes. An important milestone in this regard was the publication of differential rates for Higgs

boson production [84, 85], which provided transverse momentum spectra, as shown in Figure 2.13.

Such measurements will provide crucial tools to test the SM down to the smallest details as they can
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Figure 2.13: Transverse momentum spectra for the Higgs boson after Run I.

shed light on the precise nature of the Higgs boson couplings, and in particular probe the presence of

new Lorentz structures in the interactions.

.. Calculating Higgs properties in the SM and the HEFT

Gluon fusion and the infinite top mass limit

Testing the properties of the Higgs boson at colliders implies having reliable theoretical predictions for

its properties. An important effort has been expanded to provide a comprehensive body of theoretical

work to support thework of experimenters in studyingHiggs physics at the LHC [34, 35, 40, 44, 45, 50],

and as shown in Figure 2.11, the dominant modes are known to high orders in QCD.

In this section, we will focus on the specifics of the main production mode, gluon fusion, which is a

loop-induced process: the LO Feynman diagrams for this mode include a loop of top quarks, as shown

in Figure 2.14. The amplitude associated to these Feynman diagrams can be evaluated easily and takes
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2

Figure 2.14: LO diagrams for Higgs production through gluon fusion. The dominant contribution comes from top quarks run-
ning in the loop.

the form

−i αs

2πv
δabεµ(p1)εν(p2) (p1 · p2gµν − pν1p

ν
2) τ

(
1 + (1− τ) tan−1

(
1√
τ − 1

)2
)
, (2.57)

where τ =
4m2

t

m2
h
, the εα(pi) are the polarization vectors of the gluons and the indices a, b their color

indices. Radiative corrections to this process are notoriously difficult to obtain: the NLO correction

was calculated in 2006 [51, 52] and further exact results are still at a bottleneck due to the complexity

of evaluating multiloop integrals with internal masses. A successful alternative approach has been to

observe that despite the fact that the mass of the top quark is not much larger than the mass of the

Higgs boson, expanding the amplitude in the limitmt → ∞ is a reasonable approach due to the fact

that the expansion is formulated in powers of 1/τ ≃ 0.13. In this limit, the LO amplitude reduces to

−i αs

3πv
δabεµ(p1)εν(p2) (p1 · p2gµν − pν1p

ν
2) , (2.58)

which is independent of the top mass and corresponds to a local interaction between the Higgs boson

and gluons. Indeed, the same amplitude can be obtained from an effective interaction Lagrangian

Leff = −1

4

αs

3πv
hGµν

a Ga
µν , (2.59)

which generates a tree level Higgs-gluon interaction, as shown in Figure 2.15.

The Higgs Effective Field Theory

A systematic approach can be taken to improve the prediction for gluon fusion in the large top mass

limit using the framework of effective field theory (EFT) [86]. Indeed, taking this limit is tantamount to

considering anEFT inwhich one integrates the top quark field out of the theory [53–55]. This procedure

generates non-renormalizable interactions between Standard Model fields and modifies the values of

the couplings, all of which are suppressed by powers of 1/mt. Performing this task in general would be

a very involved operation since removing the top quark from the theory breaks the gauge invariance.

On the other hand, if one is only interested in evaluating the QCD corrections to gluon fusion, it is
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Figure 2.15: Effective coupling between the Higgs boson and the gluons in the infinite top quark limit.

sufficient to consider a ”limited SM” containing QCD and the Higgs boson:

LQCD+h = −1

4
Gµν

a Ga
µν +

∑
f ̸=t

iq̄f ̸Dqf + t̄ (i̸D −mt) t

+
1

2

(
∂µh∂

µh−m2
hh

2
)
−
∑
f

yf√
2
q̄qh+ V (h).

(2.60)

Since the goal of the large topmass expansion is to describe gluon fusion, happening for partonic center-

of-mass energies
√
ŝ > 125 GeV, it is reasonable to consider all light flavors massless. Integrating out

the top quark, we can write a generic form for the new theory, which is called the Higgs Effective Field

Theory (HEFT):

LHEFT = −1

4
Gµν

a Ga
µν +

∑
f

q̄f
(
i̸D −meff

f

)
qf

+
1

2

(
∂µh∂

µh−
(
meff

h

)2
h2
)
−
∑
f

yefff√
2
q̄qh+ V eff(h)

+
1

mt
L(5)
eff +O

(
1

m2
t

)
(2.61)

where L(5)
eff contains non-renormalizable dimension five operators and the ellipsis contains a tower of

higher dimensional operators suppressed by powers of 1/mt. We need to consider all the parameters

appearing in this Lagrangian as new parameters, called Wilson coefficients, which we need to match to

the parameters of the complete theory by comparing their prediction for some choice of observables in

the limitmt → ∞. This comparison will in general yield an expression for the parameters of the HEFT

in the form of an expansion

λeff = λ0 +
λ1
mt

+
λ2
m2

t

+ . . . , (2.62)

where the λi are expressed in terms of the parameters of the full theory. It is of course true that the

couplings of all operators that are present both in the full theory and in the HEFT should match at

the O
(
1/m0

t

)
level. For example, let us perform the leading-order matching of a light-quark Yukawa
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Figure 2.16: The lowest order SM diagram that will yield a contribution to the Wilson coefficient of the operator q̄qhh in the
HEFT.

coupling using the amplitudes for the processH → qf q̄f in the SM,A, and in the HEFT,Aeff:

A = −i
yf√
2
ūv, (2.63)

Aeff = −i
yefff√
2
ūv +O

(
1

mt

)
. (2.64)

By imposing that the expressions in Equations 2.63 and 2.64 match up to power-suppressed terms, we

find that yefff = yf + O(1/mt). The operators in L(5)
eff , on the other hand must describe top-mediated

interactions that cannot be reduced to operators already present in the SM. We have already found one

of them above and have performed the matching to the full SM at leading order:

1

mt
L(5)
eff ⊃ −C

4
hGµν

a Ga
µν (2.65)

C =
αs

3πv
. (2.66)

Of course, other operators must be considered in order to describe the theory completely. For example,

the operator q̄qhh can be matched to the SM using the process q̄q → hh. As shown in Figure 2.16, the

first Feynman diagrams that contains power-suppressed terms in the limitmt → ∞ appears at the two

loop levels. As a result, the Wilson coefficient of this operator will be of orderO
(
α2
s

)
.

Radiative corrections in the HEFT

Despite the fact that the HEFT is non-renormalizable, it verifies the property of order-by-order renor-

malizability, which is a generic feature of EFTs. Explicitly, if one truncates the HEFT Lagrangian at a

given order n in the 1/mt expansion, the set of operators present in the theory is sufficient to absorb

all the divergences that appear in observables if they are themselves truncated at the order n. In partic-

ular, this means that one can safely consider QCD corrections of HEFT observables. For example, the

one-loop QCD correction to gluon fusion in the HEFT contains UV divergences that can be absorbed by

dimension 5 counterterms, as shown in Figure 2.17.

The constraint that observables should be truncated at a given order in the expansion takes a very

simple form for the first order in the expansion: one should only consider diagrams with at most one

dimension 5 operator. For example, the Feynman diagram shown in Figure 2.18 cannot be renormal-

ized in the HEFT truncated at dimension 5 because it contains two dimension 5 operators, making a
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Figure 2.17: Example of a Feynman diagram involving a dimension 5 operator whose divergence can be absorbed by a di-
mension 5 operator. This is possible because this Feynman diagram contributes to the amplitude at the same order in 1/mt

as the truncation of the HEFT.

dimension 6 counterterm necessary.

1

−→
counterterm

1

1
mt

× 1
mt

1
m2

t

(2.67)

Figure 2.18: Example of a Feynman diagram involving dimension 5 operators whose divergence cannot be absorbed by a
dimension 5 operator. Here, the contribution of the diagram to the amplitude isO

(
1/m2

t

)
, so a dimension 6 counterterm is

necessary.

If we perform the truncation appropriately, it is possible to evaluate radiative corrections to the gluon

fusion process without having to consider the massive quark loops that are still out of reach of exact

calculations. Two types of corrections have to be considered for such calculations: radiative corrections

to HEFT diagrams and corrections to the Wilson coefficients. Indeed, the Wilson coefficients are ex-

pressed as a double expansion in the coupling constants and the top mass, i.e. the λi in Equation 2.62

are themselves expressed as a series in αs, which can be obtained by matching radiative corrections to

observables between the HEFT and the SM. In the case of the gluon-fusion operator, this matching has

been performed to high orders [87, 88] and for example at NLO, the renormalized Wilson coefficient

gets a correction:

C =
αs

3πv

(
1 +

αs

2π

11

2

)
. (2.68)

Calculations performed in the HEFT have been essential in providing trustworthy predictions for the

gluon fusion cross section. Indeed, the NLO correction in the complete SM change the LO result by

70% at
√
s = 8 TeV, motivating the need to evaluate NNLO corrections, which were computed in

the HEFT in 2002 [89]. This result yielded another 20% increase in the total cross section, showing

that the expansion was converging, though slowly. The N3LO corrections were obtained in 2015 [40]

in an expansion around the threshold limit s → m2
h, yielding this time a correction to the prediction

smaller than 5%. The slow convergence of the perturbative expansion for the gluon fusion cross section
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is shown in Figure 2.19.
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Figure 2.19: Gluon fusion cross section in pp collisions in the HEFT as a function of the center-of-mass energy at four differ-
ent orders in perturbation theory. The bands around the central values reflect the scale dependence of each prediction.

. The standard model effective field theory

.. Model independent tests of the Standard Model

Two main options exist to test for the existence of new physics at the LHC: direct searches and preci-

sion measurements. Direct searches test the hypothesis that some new particles are light enough to be

produced at the LHC and aim at observing the signature of their production experimentally. The typol-

ogy of possible signature is extremely varied and can range from clear-cut resonances in invariant-mass

distributions [90–93] in the case of simple resonances, to more subtle signals with missing energy as

considered in searches for dark matter [94], or very complicated final states characteristic of R-parity

conserving decays of supersymmetric particles [95, 96]. Direct searches face the problem that many

BSM models exist, and many of the most popular ones such as the minimal supersymmetric standard

model (MSSM) [56, 57] have a very large parameter space and a correspondly rich and varied phe-

nomenology [97]. Other types of approaches to BSM physics have many different realizations such

as extra dimensions [98–102] or composite Higgs models [58, 59], making it difficult to devise meth-

ods to broadly constrain them. Because experimental searches target signatures and notmodels, a very

popular approach in modern analyses is to use simplified models [103], which specify minimal particle

spectra to probe specific signatures, which can then be reinterpreted in terms of complete models and

be included in global fits [104]. Searches in the context of simplified models are therefore a good way
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Figure 2.20: Results summary for supersymmetry searches from CMS using simplified models.

to make model independent statements on specific signatures, and can provide clear-cut limits such as

those shown in Figure 2.20. Note however that the limits from simplified models usually need reinter-

pretation, as they often make simplifying assumptions such as the existence of a single decay channel

for a given particle.

As no direct search for BSM physics has returned a positive result since the start of the LHC, a com-

plementary type of analysis is gaining momentum, based on precision measurements. The idea behind

this approach is that new physics particles might be too heavy to be produced at the LHC and could

therefore be considered in the decoupling limit [105] as inducing new interactions between SM parti-

cles, much like weak decays could be described by an effective four-fermion interactions at an energy

scale well below theW bosonmass. From a BSMmodelMwith only heavy new particles, one can there-

fore construct an effective theory [60–62] that describes the effects of new physics as corrections to SM

observables in an expansion in the inverse power of the heavy mass scale Λ of the new particles after

they have been integrated out of the theory. The Lagrangian for this effective theory is then expressed

as an expansion in this heavy scale:

LM
EFT = LSM +

∞∑
i=1

Ni∑
j=0

c
(i)
j(M)

Λi
O

(i)
j , (2.69)

where LSM is the SM Lagrangian, the operatorsO(i)
j have an energy dimension of 4 + i and the c(i)(M)

j

are dimensionless couplings that are expressed in terms of the parameters of the BSM model M, and

therefore often verify relations among themselves that reflect the structure and symmetries ofM. An
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essential feature of the effective theories obtained by decoupling heavy BSM particles is that the set of

operators that can appear in this expansion at each order is finite³. As a result, it is possible to construct

a general effective field theory, the standardmodel effective field theory (SMEFT), that can describe the

decoupling limit of any BSM model. The Lagrangian of the SMEFT can therefore be expressed as

LSMEFT = LSM +

∞∑
i=1

Ni∑
j=0

c
(i)
j

Λi
O

(i)
j , (2.70)

where this time the sum over operators covers all possible operators that verify the symmetries of the

SM and the ci are all independent couplings. In general, an observable in the SMEFTO is expressed as

a series which matches the SM predictionOSM in the limit Λ → ∞

⟨O⟩ = ⟨OSM⟩+
1

Λ
⟨O1⟩+

1

Λ2
⟨O2⟩+ . . . (2.71)

where each order in the expansion depends on the Wilson coefficients c(i)j . A sufficient criterium for

the applicability of the EFT approach for a given BSM model is that when one matches the parameters

of the SMEFT with those of the model, the expansion of observables be convergent for LHC energies.

From a bottom up point of view, the parameter space of the SMEFT considered in LHC studied should

be restricted to the region where the expansion of the observables are convergent.

One can perform model independent tests of the SMEFT by fitting its prediction to experimental

results for SM observables at the LHC [107–109]. In the case of a measurement compatible with the

SM prediction, bounds can be placed on the SMEFT parameter space, while a small deviation can be

fitted to the SMEFT prediction to measure the value of the SMEFT Wilson coefficients. The strength

of the SMEFT in this procedure is its universality: by matching decoupling BSMmodels to the SMEFT,

one can establish a correspondance between the Wilson coefficients and the model parameters [110],

hence propagating constraints or measurements to a large number of BSM models.

.. The SMEFT at dimension six

Most current studies in the SMEFT are performed in a truncation at the second order in the expansion.

Indeed, it would be insufficient to truncate at the first order, as the dimension 5 operators in the SMEFT

are very restricted: up to the flavor structure, there is a single operator, the Weinberg operator [60]:

L5 =
cαβ
Λ

(
(L̄αϕ

c)(ϕc†Lβ) + h.c.
)
, (2.72)

whereα, β are flavor indices. This operator can be related to the existence of neutrinomasses and other

lepton-number-violating effects. Due to the very small value of the neutrino masses, this operator is

heavily constrained and is expected to bear no impact on LHC physics. Indeed, these constraints imply
Λ

cαβ
≳ 1014 GeV.

The situation changes dramatically when one considers the SMEFT expansion up to dimension six.

Indeed, there are 59 independent operators that preserve baryon and lepton numbers and verify flavor

³A systematic approach to finding the number of operators at each order has been proposed in [106].
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universality [61, 111], which yields a total of 76 real parameters, accounting for possible CP violations,

and 2499 operators if a general flavor structure is considered [112]. This large number of operator

ensures that essentially all areas of LHC physics can be modified by SMEFT effects, providing a good

starting point to put model independent constraints on heavy BSM physics. The number of operators

by itself is not a trivial result as one can findmany relations between operators. The first really minimal

basis was the Warsaw basis [111], and other bases exist such as the SILH basis [113].

If one constrains the SMEFT Lagrangian to conserve lepton number, the SMEFT truncated at di-

mension six contains does not contain dimension five operators

L(6)
SMEFT = LSM +

1

Λ2

∑
i

ciOi, (2.73)

wherewe drop the (2) superscript becausewework at a fixed order. As a result, any observableO should

be truncated at the orderO
(
1/Λ2

)
and contain no 1/Λ term, which makes it take a simple form:

⟨O⟩ = ⟨OSM⟩+
1

Λ2

∑
i

ci ⟨Oi⟩ , (2.74)

where ⟨Oi⟩ is the result of the interference of the Standard Model with the EFT:

⟨Oi⟩ =
∑
p

∫
dΦ2Re

(
ASM(p)A†

i (p)
)
O, (2.75)

where the integration is taken over the phase space, the sum is taken over the relevant scattering pro-

cesses, ASM(p) is the SM amplitude for each process and Ai(p) is the amplitude for each process with

one insertion of the operatorOi.

As in the case of the HEFT, the SMEFT is renormalizable order by order, and the fact that all opera-

tors appear at most linearly in observables makes the renormalization of the Wilson coefficients take a

simple form:

cBi = Zijc
R
j , (2.76)

where Z is a renormalization matrix which can mix operators during renormalization. The presence of

dimension six operators also brings corrections to the SM parameters, for example the topmass has an

expansion

mB
t = mR

t + δmSM +
1

Λ2

∑
i

ciδm
(i)
t . (2.77)

Note that the linear structure of the renormalization is a specific property of the truncation at dimen-

sion six. If we were to consider dimension eight operators, we would instead find renormalization rela-

tions of the form

c
(4)B
i = Xijc

(4)
j + Yijkc

(2)
j c

(2)
k . (2.78)

The general one-loop renormalization structure of the SMEFT has been determined in a series of

three papers [112, 114, 115] that calculated the complete renormalization matrix of the SMEFT and

the RGE dependence of the Wilson coefficients. Based on this result, a number of SMEFT predictions

have been calculated at the LHC including radiative QCD corrections [116–124].

34



3
Multi-loop techniques

. Feynman diagrams, topologies and master integrals

.. Dealing with many diagrams and integrals

Thebasic building blocks of perturbative calculations inQuantumFieldTheory are encoded in Feynman

diagrams, which provide a diagrammatic description of the terms that contribute to the calculation

of transition amplitudes at a given order. Feynman diagrams themselves are constructed from the

Feynman rules of the theory, which describe how elementary interactions between fields contribute to

physical processes.

In a given theory, writing down the perturbative expansion for a given scattering amplitude is re-

duced to finding the set of diagrams that contribute to the desired order, i.e. with the correct number

of vertices. While the discovery of Feynman diagrams has tremendously reduced the complexity of

calculations in perturbative quantum field theory, modern calculations make finding the relevant set

of Feynman diagrams for a given calculation a tremendous task. Indeed, the number of diagrams for

processes with many loops and legs can reach the hundreds or thousands, making the use of computer

programs to generate and evaluate Feynman diagrams essential. Several public codes exist that allow

users to specify the Feynman rules of a theory and produce either abstract representation of the dia-

grams [125], or directly the expression for the corresponding terms in the transition amplitude [126].

One of the most popular tools available is the program QGRAF [125], which is very efficient and flex-

ible. We developed the program qgraf-xml-parser detailed in Appendix B to express the diagrams

generated by QGRAF as input files for FORM [127] to perform the tensor algebra calculations and provide

expressions suitable for Mathematica.
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Figure 3.1: Example of a Feynman diagram where two propagators are identical in ϕ4 theory. Indeed, the propagators la-
belled 1 and 2 are identical.

In general, a Feynman diagramA with n external legs takes the form

A = ψ1(p1)
a1 . . . ψn(pn)

anTa1...an , (3.1)

where the ψi are the wavefunctions associated to each external leg and have indices, which we grouped

into ai, describing their transformation properties under Lorentz and gauge transformations. It is in

general much easier to work with scalar amplitudes when one works at loop level, as scalar integrals

are in general easier to handle than tensor integrals. As a result, it is often useful to decompose the

amputated amplitude T on a basis of tensor structure {Ba1...an
i }1≤i≤N :

Ta1...an = T1B
a1...an
1 + · · ·+ TNB

a1...an
N . (3.2)

This basis only depends on the external legs, meaning that the decomposition of T is the same for all

diagrams contributing for a given amplitude at all loop orders. For example, the amplitude for Higgs

production through gluon fusionA(gg → H) can be decomposed in a single tensor structure:

A(gg → H) = εµ1εµ2T a1a2
µ1µ2

= εµ1εµ2δa1a2 (p1 · p2gµ1µ2 − pµ1
1 p

µ2
2 − pµ2

1 p
µ1
2 )T1, (3.3)

where the εµi are the polarization vectors of the gluons and the ai are the color indices.

Let us consider one scalar form factor T among the Ti in an L-loop amplitude evaluated in d dimen-

sions. It takes the general form

T =
∑
j

Aj ({gm} , {sn})
∫ L∏

l=1

ddkl
(2π)d

Nj

Dn1
1 . . . DnN

N

, (3.4)

where the Aj are rational functions that depend on the couplings gm and the external scales sn, the

numerators Nj are products of contractions involving at least one loop momentum and the Di are

propagator denominators of the form
(
q2 −m2

)
where q is some combination of momenta and m

some mass, and the ni ∈ N+. Note that in most cases, all n1 = · · · = nN = 1, but in some cases,

several propagators in a diagram can be identical, as shown in Figure 3.1.

All the integrals appearing in a single diagram share the same set of propagators {Di}, and in a given

calculation, it is often the case that many diagrams can be defined with the same set of propagators, or
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that diagrams with fewer propagators can be defined such that their set of denominator is a subset of

the denominators of some other diagram. This provides us with an organisational principle to sort the

integrals appearing in a calculation, which is much needed as the number of scalar integrals in a given

calculation often ranges in the thousands. As a result, we define a concept of Integral Families, which

are also often called Topologies, for a reason which we will highlight shortly.

Definition 1. LetK = {ki}1≤i≤L be a finite set of loopmomenta,P = {pi}1≤i≤E be a finite set of external

momenta andM = {mi}1≤i≤N be a finite list of masses, with possible redundancies. LetQ = {qi}1≤i≤N

be a set of momenta taken from
(
SpanQ(K) \ {0}+ SpanQ(P )

)
andD = {Dj = (qj −mj)} such that

Q[D, P ·P, M ] = Q[K ·K, K ·P, P ·P, M ].

The Family or Topology defined byD is theQ(P ·P, M)-vector space generated by Feynman integrals of

the form ∫ L∏
l=1

ddkl
(2π)d

N
Dn1

1 . . . DnN
N

, (3.5)

withN ∈ Q[K ·K, K ·P, P ·P, M ] and ni ∈ N+.

The condition on the propagators means that all scalar products in the numerators can be expressed

as linear combinations of propagators and external scales. This has a nice consequence as it provides a

generating family for our vector space. Indeed, let us consider a family defined by a set of denominators

D, then for any numeratorN , we can rewrite it as a polynomial of the denominators and the masses:

N =
∑
k

qkD
a1k
1 . . . DaNk

N , (3.6)

where the qk are polynomials of the external scales. As a result the integral can be rewritten only in

terms of numerators:∫ L∏
l=1

ddkl
(2π)d

N
Dn1

1 . . . DnN
N

=
∑
k

qk

∫ L∏
l=1

ddkl
(2π)d

1

Dn1−a1k
1 . . . DnN−aNk

N

. (3.7)

Because the qk ∈ Q(P ·P,M), this shows that the integrals of the form

I(n1, . . . , nN ) =

∫ L∏
l=1

ddkl
(2π)d

1

Dn1
1 . . . DnN

N

(3.8)

for n⃗ ∈ ZN form a generating set of the family. We have developed the program SAIF, described in

Appendix B to express integrals with arbitrary numerators as linear combinations of I(n1, . . . , nN )

integrals.

Our discussion has shown that it would be sufficient to calculate all the I(n1, . . . , nN ) to know all

the integrals in the family. This, of course does not seem to provide a significant simplification, as there

are still infinitely many of them, but we shall see in the next section that we need to calculate much

fewer integrals in reality.
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I(1, 1, 1) I(1, 0, 1)

Figure 3.2: Graphical representations of two integrals in the family used for the calculation of gluon fusion at LO

Graphical representation of scalar integrals It is often useful to give a graphical represen-

tation for scalar integrals, as, for example, this allows one to easily see when individual integrals from

different topologies are actually identical. For integrals of the form I(n1, . . . , nN ), we simply represent

our integrals as Feynman diagrams that share the same set of propagator denominators. Extra powers

of propagators are indicated by dots on the corresponding edges and negative powers or numerators are

generically indicated by a dot inside the diagram, or a small note indicating the value of the numerator.

Because we will consider QCD processes, we conventionnaly assign gluon lines to massless propagators

and either quark or Higgs boson lines to massive propagators. For example, consider the one-loop fam-

ily ofmassless bubble integrals defined byD1 = k2−m2,D2 = (k+p1)
2−m2,D3 = (k+p1+p2)

2−m2

where k is the loop momentum, p2i = 0 and (p1 + p2)
2 = m2

H . We show in Figure 3.2 how some inte-

grals in the family can be represented. We will use this representation throughout the next chapters to

illustrate the loop integrals we considered.

.. Integration by parts and Master integrals

As we mentionned in the previous subsection, reducing the integrals in a Feynman diagram to the

form I(n1, . . . , nN ) for a given topology does not reduce the number of integrals we need to evalu-

ate. However, this number can be significantly reduced as we can express all the integrals of the form

I(n1, . . . , nN ) in a given family as linear combination of a finite number of integrals [128]. In other

words, families are always finite dimensional vector spaces on the field of rational functions of external

scales. While existence theorems can in general be frustratingly abstract, we do know in principle how

to reduce our infinite generating set for the family,
{
I(n1, . . . , nN ), n⃗ ∈ ZB

}
, to a finite generating

set, which is conjectured to be free and therefore often called a basis of the family, or a set of master

integrals. Several methods exist to reach a basis, and they are all based on the general idea in linear al-

gebra for reducing a family of vectors to a free family: one finds linear relations between the vectors to

eliminate redundant elements. In the case of integral families, finding linear relations is in principle not

straightforward, but the Integration-by-Parts Identities (IBP) provide a powerful tool that can generate

arbitrarily many linear relations between integrals in a given topology [129, 130]. These IBP relations

rely on the fact that integrals in dimensional regularization are shift invariant. Indeed, for any regular
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enough function f(k), momentum p, and real number h∫
ddk f(k) =

∫
ddk f(k + hp)

=⇒ lim
h→0

∫
ddk

f(k)− f(k + hp)

h
= 0

=⇒
∫
ddk′

∂f

∂kµ
(k′) = 0

(3.9)

Let us apply this identity on the integrand of one of the integrals in a L-loop topology defined by

propagatorsD1, . . . , DN ∫ L∏
l=1

ddkl
(2π)d

∂

∂kµi

vµ

Dn1
1 . . . DnN

N

= 0, (3.10)

in which we chose to derive with respect to one of the loop momenta ki and vµ is either one of the

other loop momenta or an external momentum. It is easy to see that evaluating the left-hand side of

Equation 3.10 will yield a linear combination of integrals in the family:

∫ L∏
l=1

ddkl
(2π)d

∂

∂kµi

vµ

Dn1
1 . . . DnN

N

=

∫ L∏
l=1

ddkl
(2π)d

∂vµ

∂kµi

1

Dn1
1 . . . DnN

N

−
N∑
j=1

nj
Dnj

∂Dnj

∂kµi

vµ

Dn1
1 . . . DnN

N

.

(3.11)

The derivative in the first term will yield 1 if vµ = kµi and 0 otherwise and vµ
∂Dnj

∂kµi
is a linear combi-

nation of scalar products of loop momenta and external momenta, whence each term takes the form

described in Definition 1. We can therefore reduce each term to linear combinations of I integrals and

obtain identities of the form ∑
i

CiI(n1i, . . . , nNi) = 0. (3.12)

Generating these equations for a given family provides the essential tool to obtain a basis and all known

techniques are based on IBP relations. The first applications [129, 130] were based on generating IBP

relations for general powers of the propagators and solving the system of equations symbolically, thus

yielding general expressions for any integral in the family. While this technique is very satisfying from

a theoretical point of view, no general algorithm exists that can provide solutions in generic cases. In

the following we will present a different method, which has become a staple of the Feynman integral

calculation toolbox: the Laporta algorithm [131, 132].

Instead of providing a general solution to the system of equations generated by the IBP relations for

general powers of the propagators, this method relies on a total order among I(n1, . . . , nN ) integrals,

which can be intuitively interpreted as sorting the integrals in terms of complexity. One then builds

IBP relations with explicit values for the propagator powers starting from the least complex integrals

and moving up the complexity ladder progressively. At each step of the ladder, either all integrals can

be expressed in terms of simpler integrals, or some irreducible ones appear that cannot be related to

simpler integrals, and these are master integrals. After a number of steps that is dependent on the

family, the set of master integral stabilizes and constitutes the set of master integrals. One of the nice
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features of this algorithm is that it specifies a uniquely determined basis.

Definition 2. The Laporta basis for a topology T equipped with a total order< is the set of integrals of the

form I(n1, . . . , nN ) such that no IBP relation can express them as linear combination of smaller integrals.

While this algorithm can in principle find a complete basis of the family, it is often sufficient to stop

before that. In practice, we have a precise list of Feynman integrals we want to simplify, so one can stop

when the set of IBP relations generated by the algorithm involves all the integrals we want to simplify.

There is no unique natural way to define a total order in a family. There is however a natural partial

organization provided by sectors.

Definition 3. In an integral family defined by the set of denominators D1, . . . DN , the sector indexed by

ν ⊂ J1, NK is the vector space generated by the I(n1, · , nN )whose positive powers are at most ν.

For example, the integrals of the form I(0, n1, n2) all belong to the same sector. Sectors provide a

structure on integral that is compatible with many operations:

• If we apply the IBP identity to the integrand in a given sector, the identity only relates integrals

within that sector:
∫

ddk

(2π)d
∂

∂kµ
kµ

(k −m2)((k + p)2 −m2)
does not generate new denomina-

tors.

• The same is true for differentiation:
∂

∂m
I(0, n1, n2) yields a linear combination of integrals with

non-positive first entries

Some sectors are related to each other:

Definition 4. Given two sectors S and S′ indexed by respectively ν and ν ′, S′ is a subsector of S if ν ⊊ ν ′.

We can assign a diagrammatic representation to each sector: it is the diagram of the integral where all

non-negative powers are set to 0 and all strictly positive powers are set to 1. The diagram of a sector is

related to that of its subsectors by pinching the lines with non-positive powers in the subsector.

Integrals with sufficiently many non-positive integer powers are zero, this is in particular the case

for integrals with only negative powers, since integrals of polynomials are always scaleless. As a result,

it is natural to interpret sectors with more denominators as more complicated.

Definition 5. Let S and S′ be two sectors in a family. If integrals in S have more denominators than the

integrals in S′, we assign the relation S′ ≤ S.

Sincewhatwe reallywant to construct is a total order on the integrals I(n1, . . . , nN ) themselves, we also

need to decide on an ordering between sectors. Several choices have been proposed in the literature, and

here we present the one described in [133]. Let us consider two integrals I1 = I(n⃗1) and I2 = I(n⃗2),

we assign I1 ≤ I2 if

1. the sector of I1 is smaller than the sector of I2:

I(1, 1, 0) < I(1, 1, 1)
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2. if one sector is not larger, the sum of the positive powers of I1 is smaller than that of I2:

I(1, 1, 0) < I(2, 0, 1)

3. if they are equal, the sum of the non-positive powers of I1 is larger than that of I2:

I(1, 2,−1) < I(2,−2, 1)

4. if they are equal, the sequence (n11θ(n11), . . . , n1Nθ(n1N )) is lexicographically smaller than

(n21θ(n21), . . . , n2Nθ(n2N )), where θ(n) is 1 if n > 0 and 0 otherwise:

I(1,−2, 2) < I(2,−2, 1)

5. if they are equal, the sequence (−n11θ(−n11), . . . ,−n1Nθ(−n1N )) is lexicographically smaller

than (−n21θ(−n21), . . . ,−n2Nθ(−n2N )):

I(2,−1,−2) < I(2,−2,−1)

.

This provides a total ordering on the integrals, i.e. for any I1, I2, I3,

• I1 ≤ I2 or I2 ≤ I1,

• if I2 ≤ I1 and I1 ≤ I2, I1 = I2,

• if I2 ≤ I1 and I3 ≤ I2, then I3 ≤ I1.

Let us now describe how the algorithm proceeds to build a basis. One starts with a list of integrals

I = {I1, . . . , In}. We define a set of replacement rulesR initialized atR = ∅, and an integerK which

is initialized atK = 1.

1. Generate rK , the set IBP relations with integrands whose powers n1, . . . , nN verify
∑

|ni| = K.

2. For each IBP relation in rk
∑
aiJi = 0, where the Ji are integrals, express them as Jĵ =∑

ai/aĵJi where Jĵ is the largest integral in the relation.

3. Simplify every possible integral in rk usingR, thenR = R ∪ rk.

4. If any of the new relations is linearly dependent of the others inR, eliminate it.

5. If every integral in I figures in the left-hand-side of a relation inR, stop

6. ElseK = K + 1 and repeat.

After this procedure terminates, the set of integrals in the right-hand side of the relations inR consti-

tutes the set of master integrals necessary to express the integrals in I.
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Automation is of course crucial for modern real-life applications. For example, we will see in Chap-

ter 5.1 that we need to evaluate more than 1900 integrals in order to express the amplitude for Higgs

boson production at NLO in the SMEFT. However, we only need 18 different master integrals in order

to express them. Not only is it unimaginable to evaluate these 1900 integrals individually, but using

IBP reductions to reduce them to master integrals by hand is also unrealistic.

Luckily, the Laporta algorithm has been implemented in a number of public codes, like FIRE [134,

135], AIR [136], LiteRed [137], or Kira [138] which allow one to automatically reduce integrals in

a topology to a set of master integrals with very little user input. In practice, in the projects we will

present in the following chapters, we used both LiteRed and FIRE to reduce integrals to master inte-

grals.

. Evaluating scalar integrals

In this section, we will describe the different methods we have used to evaluate Feynman integrals.

Calculating multiloop integrals is more of an art than a science and no systematic, algorithmic method

is known to obtain them. Among the modern methods, that of differential equations is probably the

most popular, due to its many successes in deriving the most complicated Feynman integrals, such as

those relevant for vector boson pair production at NNLO [139]. This method has the particularity of

relying not on the direct calculation of the integrals, but on the derivation of a system of differential

equations verified by the integrals in a basis, which can then be solved as an expansion ϵ [140–142].

In the projects presented in this thesis, we have however used more traditional methods to evaluate

integrals, which rely on direct integration in the Feynman parameter representation. We will first dis-

cuss the general framework of Feynman parameters and show how one can industrialize the approach

presented in quantum field theory textbooks. We will then discuss the method of regions, which is a

general scheme to obtain approximations of integrals in certain limits. Finally we will discuss the nu-

merical integration of Feynman integrals based on themethod of sector decomposition, which we used

in both the projects presented in this thesis to cross check our analytic results.

.. Feynman parameters

The classical approach to Feynman integrals presented in many QFT textbooks is based on Feynman

parameters, which is a technique to transform loop integrals expressed in terms of loop momenta into

integrals over rational functions, which are usually easier to deal with. This approach is based on two

identities:

• The value of tadpole integrals:∫
ddk

(2π)d
1

(Uk2 −F)n
= (−1)ni(4π)−d/2Γ(n− d/2)

Γ(n)

U−d/2

Fn−d/2
(3.13)
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• The Feyman Trick:

1

Dn1
1 . . . DnN

N

=
Γ (n)∏
i

Γ(ni)

∫ 1

0

∏
i

xni−1
i dxi

δ (1−
∑
xi)

(
∑
xiDi)

n , (3.14)

where n =
∑
ni. The parameters xi are usually referred to as Feynman parameters.

One can use the Feynman trick to convert a L-loop integral into a tadpole integral:

I(n1, . . . , nN ) =
Γ(n)∏
Γ(nj)

∫ ∏
i

ddki
(2π)d

∫ ∏
j

dxjx
nj−1
j δ(1−

∑
nk)

1

(
∑
xkDk)

n . (3.15)

Since the Di can be expressed as (ailkl + biqpq)
2 −m2

i , where the pq are the external loop momenta

and themi are masses, the denominator of the Feynman-parametrized integral can be written as∑
i

xiDi = Almkmkl + 2P lkl +M2 = KT ·A ·K + 2K ·P +M2, (3.16)

whereA is a symmetricmatrix with scalar entries,K is theL-dimensional vector of loopmomenta, and

P andM are respectively a vector and a scalar independent of the loop momenta. We can use the shift

invariance of loop integrals to eliminate the linear term by applying the changeK = K ′ −A−1 ·P :∑
i

xiDi = K ′TAK ′ + M̃2. (3.17)

We can then diagonalize A by performing an orthogonal transformation K ′ = RK ′′ with K ′′ =

(k̃1, . . . , k̃N ), and define Ã = RTAR = Diag(Ã1, . . . ÃN ). The integral over loop momenta we need to

compute takes the form

Ĩ =

∫ ∏
i

ddk̃i
(2π)d

1

(Ã1k̃21 + · · ·+ ÃN k̃2N − M̃2)n
, (3.18)

Which is something we can do iteratively. Let us define Ui = Ãi and Fi = −
∑
j>i

Aj k̃
2
j + M̃2. After

performing l integrals, we find

Ĩ = (−1)
∑

i≤L ni(i(4π)−d/2)l
Γ(n− ld/2)

Γ(n)

∫ ∏
i>l

ddk̃i
(2π)d

(U1 . . .Ul)
−d/2

(Ul+1k̃
2
l+1 −Fl)n−ld/2

, (3.19)

which terminates at

Ĩ = (−1)n(i(4π)−d/2)L
Γ(n− Ld/2)

Γ(n)

(U1 . . .UL)
−d/2

(Fl)n−Ld/2
. (3.20)

Note that, in the numerator of Ĩ ,
∏

Ui is the determinant of the matrix A and Fl = M̃2 = M2 −

P TA−1P . It is useful to re-shuffle the ratio
U1 . . .UL

(Fl)n−Ld/2
into

Un−(L+1)d/2

Fn−Ld/2
, where U = det(A) and
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F = det(A)Fl. Using this notation, we can give a general form for the L-loop integral I(n1, . . . , nN ):

I(n1, . . . , nN ) = (−1)n(i(4π)−d/2)L
Γ(n− Ld/2)∏

Γ(ni)

∫ ∞

0

(∏
xni−1
i dxi

)
δ(1−

∑
xi)

Un−(L+1)d/2

Fn−Ld/2
,

(3.21)

where the integration can be taken from 0 to ∞ because the delta function forces xi ≤ 1, and U and

F can be determined from the denominator of the integral directly after the insertion of the Feynman

parameters. Due to their definition that can be determined directly from the expression of the denom-

inator of the integral after inserting the Feynman parameters, expressing any integral I(n1, . . . , nN )

in the form of Equation 3.21 is straightforward to do algorithmically and automated tools to do so

from the definition of a topology, such as UF [143].

The choice of U and F to parametrize Feynman integrals has several advantages. First of all, both

of them are polynomials in the Feynman parameters with uniform degree. Indeed, the matrix A has

a polynomial dependence on the xi with rational coefficients, making U = det(A) a polynomial of

uniform degree L, while F has the following expression:

F = det(A)Fl = det(A)
(
M2 − P TA−1P

)
= det(A)M2 − P TAdj(A)P,

(3.22)

where Adj(A) is the adjugatematrix ofA, constructed out ofminors ofA, and is expressed as a uniform

polynomial of degree L − 1 in the entries of A. Because P ·K is of uniform degree 1 in the Feynman

polynomials andK is of degree 0, P is of uniform degree 1, the second term inF has a uniform degree

L+ 1, whileM2 is of degree 1, so that F overall of uniform degree L+ 1.

Another advantage of using these polynomials is that they can easily be constructed by hand from

the topology [144]. Indeed, let G be the graph of the integral I(1, . . . , 1) in the sense defined in Sec-

tion 3.1.1 seen as a set of edges ei labelled by the Feynman parametersmutliplying the associated prop-

agator {(ei, xi)}. The polynomial U can be constructed by considering T1, the spanning 1-forest of G,
which is to say the set of connected tree diagrams that can be constructed by removing L edges from

G:
U =

∑
T∈T1

∏
i|ei ̸∈T

xi, (3.23)

that is U is the sum of monomial that are the products of L Feynman parameters associated to propa-

gators which can be removed to make G into a tree. We can similarly construct F out of T2, the set of

2-trees of G, which is to say the set of disconnected pairs of trees that can be constructed by removing

L + 1 edges from G. Each such pair of trees T has an associated invariant q2(T ), where q(T ) is the

momentum flowing from one tree to the other. The polynomial F is then constructed in the following

way:

F = −
∑
T∈T2

q2(T )
∏

i|ei ̸∈T

xi + U
∑
i

m2
ixi, (3.24)

wheremi is the mass in propagatorDi.
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Cheng-Wu Theorem The Cheng-Wu theorem is the following [145]

Theorem 1. Let F : RN → R be a homogeneous function of degree −N , then for any non-empty ν ⊂J1, NK, ∫ ∞

0

(
N∏
i=0

dxi

)
δ

(
1−

N∑
i=0

xi

)
F (x)

=

∫ ∞

0

(
N∏
i=0

dxi

)
δ

(
1−

∑
i∈ν

xi

)
F (x).

(3.25)

While it seems unsignificant, this theorem is a great help in practical calculation of loop integrals

through direct integration, as choosing a smart combination of variables that will be fixed by the delta

function can substantially simplify integrals. It is nearly always most useful to have only one variable

leftover in the delta function, so that it is fixed to one and one is left with an integral over a rational

function between 0 and∞. Proving the Cheng-Wu theorem can be done shortly by using a “nontrivial

value of 1”:

1 =

∫ ∞

0

dη

η
δ

(
1− 1

η

∑
ν

xi

)
. (3.26)

Let us insert this expression in our integrand

∫ ∞

0

(
N∏
i=0

dxi

)
δ

(
1−

N∑
i=0

xi

)
F (x) (3.27)

=

∫ ∞

0

(
N∏
i=0

dxi

)∫ ∞

0

dη

η
δ

(
1− 1

η

∑
ν

xi

)
δ

(
1−

N∑
i=0

xi

)
F (x), (3.28)

and apply the change of variable xi = ηαi:

∫ ∞

0

(
N∏
i=0

dxi

)∫ ∞

0

dη

η
δ

(
1− 1

η

∑
ν

xi

)
δ

(
1−

N∑
i=0

xi

)
F (x) (3.29)

=

∫ ∞

0

(
N∏
i=0

dαi

)∫ ∞

0

dη

η
δ

(
1−

∑
ν

αi

)
δ

(
1− η

N∑
i=0

αi

)
F (α) (3.30)

=

∫ ∞

0

(
N∏
i=0

dαi

)
δ

(
1−

∑
ν

αi

)
F (α), (3.31)

(3.32)

thanks to the fact that ∫ ∞

0

dη

η
δ (1− aη) =

∫ ∞

0

dη

aη
δ (1/a− η) = 1. (3.33)

The two key elements for this proof to work are the homogeneity of the loop integrand, which is always

verified for Feynman integrals and the fact that the integration is performed from 0, to ∞, to ensure

that all multiplicative changes of variables leave the bounds unchanged.
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.. Approximating integrals: the method of regions

Evaluating Feynman integrals through direct integration of the Feynman parameter representation or

by any othermethod is often a difficult task, especially for those integrals that depend on several param-

eters. It is however often the case that the general dependence on such external scales is more than we

need to study the phenomenology of interesting physical processes and it can be a successful approach

to obtain approximate results for observables in specific limits which simplify the calculation. In quan-

tum field theory, this idea essentially has two realizations which are tightly related. The first approach

is based on effective field theories, in which one derives a Lagrangian that approximates reality in a

specific regime which automatically generates observables as a power series in some small parameters.

The second approach to approximating observables in given limits is to perform the expansion at the

amplitude level. This type of calculation is actually necessary for EFT that are used as approximations

of a known UV-complete theory¹, such as the two we described above. As approximations of a known

theory, the value of their paramaters can be derived from the parameters of the full theory. This is

done by the process of matching, which we discussed in the context of the SMEFT in Section 2.4. To

obtain the value of the EFT coefficients, one calculates the prediction for a given observable in the EFT,

which is automatically expressed as a power series in the expansion parameter, and in the full theory,

which one then needs to expand. In simple cases, it is possible to calculate such observables in the full

theory exactly. However, it can also be the case that it is a better choice to expand the full theory pre-

diction at the integrand level. This is what we do in Chapter 4, in which we extract a HEFT coefficient

by performing the expansion by region of a SM two-loop amplitude.

The method of choice to perform such an expansion is the method of regions [146]. It provides a

systematic way to do expansions of loop integrals at the integrand level, thus simplifying the integrals

one has to calculate. It can be used, as we will see in Chapter 4, as a way to relate a UV-complete theory

to an EFT, or as a way to bypass the use of an EFT. It is indeed not always necessary to develop a full

EFT, which can get particularly involved, if one is only interested in a limit of one single observable.

The counterpart, however, is that every new observable requires to be expanded from scratch, while

performing the matching once on simple observables and then doing all calculations in an EFT can be

a big advantage if one needs to make many predictions in a given limit.

Themethod of regions ismotivated by the observation thatmaking expansions at the loop integrand

level can be a tricky business. Indeed, let us consider an off-shell bubble integral with massive propa-

gators already discussed in [146]:

I(p,m) =

∫
ddk

1

((k + p/2)2 −m2)((k − p/2)2 −m2)
, (3.34)

where,m is a mass and p2 ̸= 0. If we want to consider a threshold limit, in which p2 → 4m2, we can

define a parameter y = m2−p2/4 and try to obtain the integral as an expansion in the limit y/p2 → 0.

The naive approach would be to expand the integrands in powers of y to obtain in power series:

I(p,m) =
naive

∫
ddk

1

(k2 − k · p)(k2 + k · p)
+ y

∫
ddk

2k2

(k2 − k · p)2(k2 + k · p)2
+O

(
y2
)
. (3.35)

¹Often called top-down EFT
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However, if we look at the exact formula for I(p,m) and expand, we realize that we are missing terms

that we can never obtain with the power expansion of the integrand:

I(p,m) = i(π)d/2Γ(ϵ)y−ϵ
2F1

(
1

2
, ϵ,

3

2
,− q2

4y

)
=

1

ϵ
+ 2

4y

p2

+ log

(
4y

p2

)
−

2π
√
y

p
+ . . .

(3.36)

The naive expansion correctly reproduces the first line of the expansion of the full result, but will never

be able to reproduce the logarithm and the term proportional to
√
y. This problem can be explained

by the fact that our naive expansion blindly considered that the expansion parameter is the only small

parameter, while the loop momentum is integrated from−∞ to+∞, therefore taking both small and

large values.

Themethodof region is a formalizationof thenatural idea following this observation, that one should

divide the integration range into different parts where we know how to treat the loop momentum in

our integrand expansion. The original formulation of the idea [146] was based on themomentum space

formulation of loop integrals and consisted of performing the following steps:

1. Separate your integral as a sum of pieces where the components of the loop momenta scale like

small or large parameters.

2. Expand each piece in powers of the small quantities.

3. Integrate each piece over the complete range (from−∞ to+∞).

The crucial element in this sequence is step 3 which seems problematic: if we consider the loop mo-

mentum to scale in a definite fashion and we then integrate over the whole range, we restore the fact

that our loop momentum goes from small to large, and indeed if we exchange steps 2 and 3, we get

n×
∑
naive

xiIi, where n is the number of regions and the expansion
∑
naive

xiIi in the small parameter x is

exactly the naive integrand expansion which we argued can miss contributions. Indeed, steps 2 and 3

do not commute, which can be understood from the fact that scaleless dimensionally-regularized inte-

grals are zero. When we expand the integrand, we are factorizing some scale or combination of scales

out of the integral. As a result, in each region, the integration picks up only these scales that remain

in the propagators even if we integrate over the whole range of loop momenta. Let us look at how this

appears in our bubble integral example. We have already discussed the contribution of the regionwhere

we consider k2 ≫ y where the process we discussed was clear: at each order in the expansion, the small

quantity y factorizes out of the integrand, which can therefore only pick a dependence on p2. The only

other region that contributes is the potential region which underlies the non-relativistic nature of our

expansion, since in pair production, p2 ≃ 4m2 corresponds to producing particles near rest. Let us pick

a frame in which p = (p0, 0, 0, 0) and specify the scaling k ∼ (y/p0,
√
y,
√
y,
√
y). In the integrand of
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I(p,m), we can neglect the terms proportional to k20 and get the following integral:∫
dk0d

d−1k⃗
1

(k⃗2 + p0k0 + y)(k⃗2 − p0k0 + y)
. (3.37)

We can use the Cauchy theorem to integrate over k0 and get

iπ√
p2

∫
dd−1k⃗

1

k⃗ + y
, (3.38)

which yields the missing piece from the expansion of the exact result. In this integral, we integrated

over k0 by extracting the residue of the poles of the propagator at k0 = ± k⃗
2 + y

q0
, showing that,

despite integrating over the whole range, we only collect contributions from the region where k0 is

soft. Similarly, the integral over k⃗ only depends on y, so that despite integrating all the way to infinity,

it is the scale y that controls the integral.

Of course, while we recover the correct expansion, this discussion is very hand-wavy, which be-

trays the fact that the method of regions is not proved to be correct. It has however become a major

technique in the toolbox for the evaluation of Feynman integrals and has successfully provided many

results, which have always matched the explicit expansion of exact results when available. In modern

multi-loop calculations, however, the formulation described above in terms of loop momenta has

been mostly abandonned in favor of Feynman parameters, which is much more systematic and avoids

several issues of the loop-momentum formulation, such as the possibility of double counting and of

obfuscation of regions due to the shift invariance of the loop momenta [147]².

In this formulation a region is defined by a definite scaling of Feynman parameters in the small

parameter y:

xi ∼ yκi (3.39)

whereκi is some integer. In each regionwe compute the expansion of the integrands and then integrate

the Feynman parameters between 0 and ∞. Mechanically, this can be done by introducing a auxiliary

parameter ρ to keep track of the power dependence of each term in the integrand: we assign a scaling

in ρ to each scale, a scaling in ρ to each Feynman parameter and then express the integrand as a power

series in ρ, which we can set to one after the expansion. This trick is both a useful bookkeeping device

to track the scaling of each monomial in U and F , and a nice technical tool to define the expansion

algorithmically.

While the expansion of the polynomials in the integrand is straightforward, the treatment of

the delta function in the Feynman parametrization is less obvious. We can actually keep it as

δ

(∑
i∈ν

xi − 1

)
, for any subset ν of the indices even after the rescaling and expansion. There are

two ways of showing that this is true.

²The shift invariancemeans that it can be that the property of being soft or hardmust be associated to linear combinations
instead of individual momenta, which might not have a well-defined scaling. As a result, if the wrong parametrization is
chosen, it can be difficult to find regions.
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• One can start from the Schwinger parametrization of integrals, which is also formulated in terms

of the Symanzik polynomials but does not contain delta functions. In this parametrization, one

can expand the integrand in powers of ρ and then apply the classical trick [133] to switch to

Feynman parametrization. As this trick only relies on the homogeneity of the Symanzik poly-

nomial, which is conserved in the expansion, one reaches a Feynman-parametrized integral with

expanded polynomials and the usual delta function, independent of ρ.

• If we start from the Feynman parametrization, we can use the Cheng-Wu theorem to keep only

those xi in the integral that will be rescaled by ρ0. After the expansion, which leaves the delta

function unchanged, we have new integrals with new homogeneous integrands, which is suffi-

cient to use the Cheng-Wu theorem and restore any rescaled xi into the delta function.

We are now equipped to write the expansion of a generic integral

I = I0

∫
(dxi x

ai
i ) δ(1−

∑
xi)

Up

Fq
. (3.40)

After rescaling by ρ, the polynomials are ordered in the following way:

U = ρκU

nU∑
i=0

ρiUi (3.41)

F = ρκF

nF∑
i=0

ρiFi, (3.42)

and we can write the expansion of a generic Feynman integral I . After setting ρ = 1, the expansion

takes the form

I = I0

∫
(dxi x

ai
i ) δ(1−

∑
xi)

(
Up
0

F q
0

+
Up−1
0

F q−1
0

(pU1F0 − qU0F1) + . . .

)
, (3.43)

where the neglected terms are all of the form P
Ua
0

F b
0

where P is a polynomial.

Of course, a key point in working in this representation is to find the relevant regions as, even if

one restricts oneself to κi ∈ {0, 1}, there are 2N possible sectors, where N is the number of propa-

gators, while in reality most are zero. Thankfully, we know an a priori criterium that can be applied

algorithmically to find relevant regions [148] using geometry.

A sufficient condition for a Feynman integral to be zero is that it be scaleless. If we consider a Feyn-

man parametrized integral I and apply the change of variable xi → ακixi with at least one κi = 0,

and find that this transforms the integral homogeneously, I → ακI I , the integral is obviously trivial

since it is independent ofα. For this behavior to happen, it is necessary that, under such a change, both

Symanzik polynomials transform homogeneously:

U → ακUU
F → ακFF ,

(3.44)

which, because U and F are polynomials, is equivalent to UF transforming homogeneoulsy.
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Furthermore, if an integral is scaleless, multiplying its integrand by a polynomial will also yield a

scaleless integral since each monomial is homogeneous. As a result, remembering the structure of the

integrand in the expansion by region described in Equation 3.43, for a region to be irrelevant, it is

sufficient to show that U0F0 is homogeneous under rescaling of a subset of the parameters. We will

now show that we can give a geometric characterization of the regions that generate such homogeneous

polynomials.

Let us switch to a geometric description of this polynomial: toUF , we substitute a set pointsP [UF ]

inN + 1-dimensional space associated to its monomials:

six
v1
1 . . . xvNN → v⃗ = (v0, v1, . . . , vN )T , (3.45)

where the si is an external scale that scales like ρv0 . In this picture, in a region r defined by xj → ρrjxj ,

each monomial is transformed in the following way:

six
v1
1 . . . xvNN → ρv0+r1v1+...rNvN six

v1
1 . . . xvNN (3.46)

= ρr⃗ · v⃗six
v1
1 . . . xvNN , (3.47)

where r⃗ = (1, r1, . . . , rN ). Let us consider the convex hull of P [UF ],H[UF ], that is the convex poly-

tope whose vertices are the points of P [UF ]. Because UF is of dimension 2L+ 1, where L is the loop

order, any vector v⃗ in P [UF ] verifies v1 + · · ·+ vN = 2L+1, meaning thatH[UF ] has dimensionN .

More precisely,H[UF ] is in the hyperplane orthogonal to (0, 1, . . . , 1)T . We are always free to translate

a region vector r⃗ in the direction (0, 1, . . . , 1)T since this corresponds to uniform rescalings, so we can

chose r⃗ ⊥ (0, 1, . . . , 1)T , which is an irrelevant direction when discussing the scaling behavior of UF .

If we consider a region defined by r⃗, the leading-order polynomial in the expansion of UF corre-

sponds to a set of points {v⃗i}i∈ν inP [UF ]whosemonomials have the same scaling, which implies that

they belong to a hyperplane V orthogonal to r⃗: (v⃗i − v⃗j) · r⃗ = 0. All the neglected terms will corre-

spond to points w⃗ such that w⃗ · r⃗ > v⃗i · r⃗, and we can decompose w⃗ = v⃗i+ar⃗+ w⃗
⊥r⃗ such that r⃗ ⊥ w⃗⊥r⃗

and a > 0. As a result, all the points correponding to neglected terms are above V in the r⃗ direction

which means that the intersection of V andH[UF ] is the face³ ofH[UF ] Φ orthogonal to r⃗ such that

r⃗ points intoH[UF ].

The basis of the method used by ASY [149] is that if Φ is not a facet, that is a maximal-dimensional

face ofH[UF ], then the associated region yields a scaleless integral, which leaves a finite, and usually

small, number of regions to test, defined by the orthogonal vectors of the facets of H[UF ]. Let us

prove this claim by considering a region r⃗ orthogonal to a face ϕ which is not a facet. We know that

H[UF ] is of dimension N , so ϕ has dimension at most N − 2. In our N + 1-dimensional space, we

know two explicit vectors orthogonal to ϕ: r⃗ and (0, 1, . . . , 1)T , and we can find a third one, w⃗, which

we can choose to be of the form (0, w1, . . . , wN )T with at least one wi = 0. This means that there is

a nontrivial rescaling xi → αwixi that transforms both U and F homogeneously, making the integral

scaleless.

³InN -dimensions, a face is any polytope in the surface ofH[UF ]. Faces with maximal dimensions are called facets
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Diagrammatic interpretation of the method of regions Because each Feynman parameter

is associated to one propagator in the loop-momentum representation of the integral, there is a nice di-

agrammatic interpretation of the expansion by region which makes the connection to EFT calculations

and to the technique of expansion by subgraphs, which is an rigorous expansion method, but is very

limited as it only works in Euclidean space. The expansion by region is therefore not equivalent to the

expansion by subgraph, but their language is close enough to suggest an intuitive graphical interpreta-

tion of the method of regions.

Assigning a scaling to the Feynman parameters in themethod of regions is the analog of considering

the associated propagator as either being small or large, which is what is done in the expansion by

subgraphs.

In this technique, one defines a set of hard and soft externalmomenta (internalmasses are supposed

to be small) and the expansion of an integral I whose graphical representation is Γ is organized in the

following way:

I =
∑
γ

IΓ/γ ◦TIγ , (3.48)

where the sum runs over asymptotically irreducible subgraphs of Γ (1-particle irreducible subgraph

that contains all the vertices connected to external particles with hard momenta). IΓ/γ is the integral

associated to the graph in which γ has been reduced to a point. Iγ is the integrand associated to γ, T

denotes the operator associating expansion in powers of the small momenta andmasses – which yields

integrands whose non-trivial dependence is limited to the hard momenta – and the ◦ symbol indicates

that we insert this expansion under the integral sign of IΓ/γ .

The interpretation of this expansion is quite straightforward: by assigning each propagator to either

γ or Γ/γ, we define it to be either hard or soft, which is reflected by the fact that the soft scales are

factored out of the integration in γ and that Γ/γ is independent of the hard scales due to the condi-

tions on asymptotic subgraphs. Because this interpretation is based on graphs, it is also clear how one

should diagrammatically represent this expansion: the integral is a sum of diagrams in which each hard

subgraph γ is reduced to a single point. The integral over the expanded propagators in γ is completely

independent of the soft scales, and this can be interpreted as the fact that they describe very hard,

short-distance interactions, which can be described as local interactions from the point of view of the

soft physics.

A similar interpretation can be made in the Feynman parametric expansion: in a given region, Feyn-

man parameters which are assigned a trivial scaling in ρ can be considered as hard while those that

contain positive scaling can be considered as soft, and we can represent the associated integral with the

corresponding hard propagators contracted to a point. The integrals does not obviously take a structure

reminiscent of Equation 3.48, but experience shows that the integral over hard parameters is simplified.

It is hard not to want to make a connection between this diagrammatic description and the EFT ex-

pansion of amplitudes: heavy particles are integrated out of the theory and loops of such particles are

described by new local interactions whose coefficients are computed by evaluating these loops in the

infinite mass limit. The correspondance is of course not directly one-to-one since the EFT description

works at the amplitude level while we are discussing individual integrals inside the amplitude, but we

shall see in Chapter 4 that it can be a useful guide to understanding the matching between the SM
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and the HEFT. In particular, we will observe the factorization of an integral appearing in the SM into a

tadpole multiplied by an integral appearing the HEFT, corresponding to the picture described by Equa-

tion 3.48.

.. Numerical evaluation of integrals

In this final section exposing themodern techniques for evaluating Feynman integral, we discuss briefly

the method of numerical evaluation by sector decomposition. The goal is not to provide a fully compre-

hensive description of the method, but to rapidly describe the basics of this technique, which was used

during this thesis as a cross-checking tool for our analytic results.

A systematic approach to numerically evaluating Feynman integrals usingMonte Carlomethods was

proposed in [150–152]. A number of programs have been developped that can evaluate Feynman in-

tegrals in this fashion [153–157], in particular the public tools SecDec [156] and FIESTA [157], which

can evaluate integrals for both Euclidean and physical kinematics. They are often used as a check of an-

alytic calculations, but have also produced major results where integrals were not known analytically,

as was the case in the case of the evaluation of the NLO corrections to Higgs boson pair production by

the SecDec collaboration [158], which has been an impressive tour de force of the recent years. In the

projects described in this thesis, we used both FIESTA and SecDec to check our analytic results, and

they have been instrumental in giving us confidence in the validity of our results.

A major issue with the numerical integration of integrals is the presence of divergences. In analytic

calculations, we regulate such divergences using dimensional regulation in which we set the number

of dimensions d = 4 − 2ϵ and then express our integrals as a Laurent series in ϵ. Let us for example

consider a massless bubble integralB(1, 2) with one propagator squared

B(1, 2) =

∫
ddk

iπd/2
1

k2((k + p)2)2
=
(
p2
)−ϵ−1 Γ(1− ϵ)Γ(−ϵ)Γ(ϵ+ 1)

Γ(1− 2ϵ)

= − 1

p2ϵ
+

log
(
p2
)
+ γ

p2
+O(ϵ) ,

(3.49)

which we can represent as the Feynman parameter integral

B(1, 2) =

∫ ∞

0
dx1 (x1 + 1)2ϵ−1 Γ(ϵ+ 1)

(
p2x1

)−1−ϵ
= Γ(1 + ϵ)

(
p2
)−1−ϵ

∫ ∞

0
dx1b(x1, ϵ). (3.50)

Becausewe need to express our result as a Laurent series in ϵ, we need to keep the dimensional regulator

explicit and evaluate the coefficients of the series numerically. Of course, naively expanding b(x1, ϵ) in

powers of ϵ before integration breaks the regulation:

b(x1, ϵ) =
1

x1 (1 + x1)
+O(ϵ) , (3.51)

which is the original unregulated integral, since regularization and integration do not commute. We

can however treat the x−1−ϵ
1 as a distribution and expand it in the following way:

x−1−ϵ
1 = −1

ϵ
δ(x) +

∑
n

ϵn

n!

(
logn(x)

x

)
+

(3.52)
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where we use the plus distribution∫
dxf(x)

(
logn(x)

x

)
+

=

∫
(f(x)− f(0))

(
logn(x)

x

)
. (3.53)

Inserting this expansion in the integrand yields a series of convergent integrals thatwe can then further

expand in powers of ϵ and evaluate numerically. However, this is still not sufficient to evaluate generic

integrals when the divergences appear in the limit where several parameters go to 0. Let us for example

consider the integral ∫ 1

0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ϵ
. (3.54)

The fact that a logarithmic divergence appears in the corner of the two-dimensional integration space

(x1, x2) → (0, 0)makes the expansion of the denominator insufficient to have a regulated integral∫ 1

0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ϵ
→ 1

ϵ

∫ 1

0
dx2

∫ 1

0
dx1

δ(x1 + x2)

(x1 + x2)
+ . . . (3.55)

Thismotivates the need for sector decompositionwhich is a technique that extracts divergences from the

corners of multi-dimensional intregration spaces and factorize them as one-dimensional divergences

that can be regulated using Equation 3.52. Let us first see how it works on our example.

We can cut the integration region in the following way:∫ 1

0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ϵ
=

∫ 1

0
dx1

∫ x1

0
dx2

1

(x1 + x2)2+ϵ
+

∫ 1

0
dx2

∫ x2

0
dx1

1

(x1 + x2)2+ϵ
,

(3.56)

and in each, factorize the divergence by remapping the integration to the unit square∫ 1

0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ϵ
=

∫ 1

0
dx1

∫ 1

0
dx̃2

1

x1+ϵ
1 (1 + x̃2)2+ϵ

+

∫ 1

0
dx2

∫ 1

0
dx̃1

1

x1+ϵ
2 (1 + x̃1)2+ϵ

.

(3.57)

where we respectively applied the change of variable x2 = x1x̃2 and x1 = x2x̃1. As a result, we have

transformed our integral with divergences appearing in the corner of the unit square by two integrals

in which the divergence is concentrated in one of the variables. We can now expand the factorized

divergence using Equation 3.52 to obtain∫ 1

0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ϵ
=

1

ϵ

(∫
dx̃2

1

(1 + x̃2)2
+

∫
dx̃1

1

(1 + x̃1)2

)
+ . . . , (3.58)

which is formulated in terms of convergent integrals that we can evaluate numerically using Monte

Carlo integration.

The method of iterated sector decomposition generalizes this approach to an arbitrary number of

Feynman parameters. To this end, one first builds N primary sectors from the integrand by singling
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out one parameter in each sector:

∫ ∞

0

∏
i

dxix
ni−1
i δ

(
1−

∑
i

xi

)
Un−ld/2

Fn−(l+1)d/2

=
∑
j

∫ ∞

0
dxjx

nj−1
j

∫ xj

0

∏
i ̸=j

dxix
ni−1
i δ

(
1−

∑
i

xi

)
Un−ld/2

Fn−(l+1)d/2

=
∑
j

∫ ∞

0

dxj
xj

∫ 1

0

∏
i ̸=j

dx̃ix̃
ni−1
i δ

1− xj
∑
i ̸=j

x̃i

 Un−ld/2
j (xi ̸=j)

Fn−(l+1)d/2
j (xi ̸=j)

,

(3.59)

where in the last line we perfomed the change of variables xi ̸=j → xix̃j . The parameter xj factorizes

from the polynomials U and F because they are homogeneous and leave the first integral trivial:

∫ ∞

0

dxj
xj

δ

1− xj
∑
i ̸=j

x̃i

 = 1. (3.60)

For each primary sector j, one can then iteratively extract divergences by splitting the integration

domain and rescaling the parameters. At each step, the original is expressed as a linear combination

of integrals where k divergences have been factored out. Let us consider one such sector Ii1,...,ik where

the variables i1, . . . , ik have been treated

Ii1,...,ik =

∫ 1

0

k∏
l=1

dxilx
ail+ϵbil
il

∫ 1

0

∏
m ̸∈

{j,i1,...,ik}

dxmx
nm−1
m

Un−ld/2
ji1...ik

(xm)

Fn−(l+1)d/2
ji1...ik

(xm)
(3.61)

If there is a subset {xm}m∈S such that U and F vanish when the parameters tend to 0, we split the

integration over these parameters into subsectors as before. In each subsector one of the xm̂ is larger

than the others and we use it to rescale all parameters and factor its divergence out, which generates

new integrals Ii1,...,ik,m̂ for each m̂ ∈ S. This produre is applied to all the integrals generated at each

step and terminates when the polynomials cannot vanish, that is to say when

Uji1...ik = 1 + . . . (3.62)

Fji1...ik = σ + . . . , (3.63)

for some external scale σ. One then gets integrals of the form

∫ 1

0

k∏
l=1

dxilx
ail+ϵbil
il

∫ 1

0

∏
m ̸∈

{j,i1,...,ik}

dxmx
nm−1
m

Un−ld/2
ji1...ik

(xm)

Fn−(l+1)d/2
ji1...ik

(xm)
, (3.64)

in which we can insert the expansion in Equation 3.52 to generatemany convergent integrals, which we

can expand in ϵ, to obtain a Laurent series of convergent integrals in powers of ϵ and we can compute

each integral using the Monte Carlo method.

Note that themethod we have explained in this section only works in the Euclidean region, as other-

wiseF could vanish inside the integration region. Working in physical kinematics requires the integral
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contour to be deformed around points where such singularities occur. We will not however discuss this

aspect of numerical calculations, first of all because most of the numerical verifications we did of our

results were performed in the Euclidean region, and because the discussion would be too long for this

introductory exposition.

. Multiple polylogarithms

Multiple polylogarithms (MPLs) form a class of functions that are essential to modern loop calcula-

tions. Most phenomenologically important results are formulated in terms of MPLs, such as the cross-

section for Higgs boson production at NLO with full top mass dependence [51, 52], or that for the pair

production of vector bosons at NNLO [139]. MPLs have been thoroughly investigated and have many

well-known properties [159] which have lead to the development of a wealth of techniques to deal with

them. In particular, they have a very rich algebraic structure that is essential to perform many calcula-

tions and this chapter will describe some aspects of this structure that have been relevant to deriving

the results presented in this thesis.

MPLs are omnipresent in particle physics amplitudes and provide a very general class that ecom-

passesmany generalizations of the logarithmsuch as classical polylogarithmsorharmonic polylogarithms[160].

It has however been known for two decades that they are not the only functions that appear in loop

integrals as one famously needs elliptic integrals to express the two-loop sunset integral [161] and

the kite integral [162]. More than a mathematical curiosity, elliptic integrals have recently made their

appearance in physically relevant calculations, such as that of the planar master integrals for the decay

of a Higgs to three massless partons [163] and are expected to play a growing role in the field. Much

less is known of the structure of the elliptic integrals that appear in loop integrals than we know about

MPLs and we shall not discuss them in this section, as all integrals evaluated or used in this thesis can

be expressed in terms of MPLs.

.. Definitions and basic properties

Multiple polylogarithms are defined as iterated integrals [164, 165]

G(a1, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t), (3.65)

whereG(;x) = 1. The entries a1, . . . , an are complex numbers and the variable x is also complex. The

number of entries is called theweight of theMPL. A special case where the integral representation does

not converge is that when all entries are 0:

G(0, . . . , 0︸ ︷︷ ︸
n

;x) =
1

n!
logn(x) (3.66)

The entries contain the information on the singularities of the polylogarithms. In particular,

G(a1, . . . , aN ;x) can have a divergence only at x = a1 and branch cuts starting only at x = ai. Some

MPLs do reproduce this full structure, like G(1, 2, x) which has a pole at x = 1, and branch cuts
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starting at x = 1 and x = 2 as can be seen from its expression in terms of classical polylogarithms:

G(2, 1, x) = Li2(x− 1) + log(1− x) log(2− x) +
π2

12
. (3.67)

However, not all MPLs reproduce this phenomenon and some poles or branch cuts can be absent, as is

the case for G(0, 1, x) = −Li2(x), which has no divergence or branch cut starting at x = 0, but does

have a branch cut starting at x = 1. It is in general necessary to study the functions weight by weight

to understand their divergence structure.

As we hinted above, MPLs contain many classical functions that appear in loop calculations:

• Logarithms appear at the first level

G(a;x) = log(1− x

a
) (3.68)

• Powers of logarithms correspond to repeated arguments

G(a, . . . , a︸ ︷︷ ︸
n

;x) =
1

n!
logn(1− x

a
), (3.69)

we shall see that thismatches the definition ofG(0, . . . , 0;x) in the framework of shuffle regurlar-

ization.

• Classical polylogarithms, which can be defined as a series

Lin(x) =
∑
k>1

xk

kn
(3.70)

verify the property

Lin(x) =
∫ x

0

dt

t
Lin−1(t) (3.71)

where Li1(x) = − log(1− x). As a result,

G(0, . . . , 0︸ ︷︷ ︸
n−1

, 1;x) = −Lin(x) (3.72)

It is possible to generalize the series expansion of classical polylogarithms tomultiple polylogarithms

using nested sums. Let us define the following class of functions

Lim1,...,mk
(z1, . . . , zk) =

∑
0<n1<···<nk

zn1
1 . . . znk

k

nm1
1 . . . nmk

k

(3.73)

It is possible to express these functions as iterated integrals to see that

Lim1,...,mk
(z1, . . . , zk) = (−1)kG(0, . . . , 0︸ ︷︷ ︸

mk−1

,
1

zk
, . . . , 0, . . . , 0︸ ︷︷ ︸

m1−1

,
1

z1 . . . zk
; 1), (3.74)
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which provides a series representation for anyG function.

One of the nice features of the MPLs over classical polylogarithms is that they form an algebra. To

this end, let us first build a shuffle algebra over sequences of entries. We consider MPLs with entries

taken from an alphabet Σ and build sequences, or words by concatenation. We consider a Q-vector

space V (Σ) of linear combinations of letters⁴:

V (Σ) = {q1σ1 + . . . qnσn|qi ∈ Q, σi ∈ Σ, n ∈ N} . (3.75)

The space of wordsW (Σ) is then the tensor algebra of V (Σ) extended:

W (Σ) =
∞⊕
n=0

V (Σ)⊗n, (3.76)

and elementary tensors w = σ1 ⊗ · · · ⊗ σn represent words which we will write without the tensor

product: w = σ1σ2 . . . σn. The factor V (Σ)⊗0 = Q1Σ, where 1Σ is the empty word, is isomorphic to

Q. We can build an algebra based on the shuffle product� which is built iteratively:

Definition 6. Let σ, σ′ ∈ V (Σ), the shuffle product of letters is defined by

σ� σ′ = σσ′ + σ′σ, (3.77)

Let v, v′ ∈W (Σ) andw = σv,w′ = σ′v′, the shuffle product is defined iteratively on words by

w� w′ = σ(v� w′) + σ′(w� v′). (3.78)

The shuffle of two elementary words w,w′ is the sum of all the ways the letters in w and w′ can be

interleaved while keeping the order in the letters of each word. For example:

ab� cd = abcd+ acbd+ acdb+ cabd+ cadb+ cdab (3.79)

The reason we introduced this structure is that it is carried on to MPLs. Let us write MPLs whose

entries form the word w = σ1 . . . σn asG(σ1, . . . , σn;x) = Gw(x) and extend this notation toW (Σ)

such that if w = w1 + w2, Gw(x) = Gw1(x) + Gw2(x). This gives a very simple expression for the

product of two MPLs:

Gw1(x)Gw2(x) = Gw1�w2(x). (3.80)

⁴Explicitly, V (Σ) can be constructed as the vector space of functions Σ → Q with finite support, where a function f

represents the linear combination
∑
σ∈Σ

f(σ)σ
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It is easy to see that this works explictly on MPLs with single entries:

G(σ1;x)G(σ2;x) =

∫ x

0
dx1dx2

1

(x1 − σ1) (x2 − σ2)
(3.81)

=

∫ x

0
dx1

∫ x1

0
dx2

1

(x1 − σ1) (x2 − σ2)
(3.82)

+

∫ x

0
dx2

∫ x2

0
dx1

1

(x1 − σ1) (x2 − σ2)
(3.83)

= G(σ1, σ2;x) +G(σ2, σ1;x) (3.84)

We can generalize this easily by recursion. Let us consider two elementary wordsw = σv andw′ = σ′v′

Gw(x)G
′
w(x) =

∫ x

0
dtdt′

Gv(t)Gv′(t
′)

(t− σ)(t′ − σ′)

=

∫ x

0
dt

1

(t− σ)

(
Gv(t)

∫ t

0
dt′

Gv′(t
′)

(t′ − σ′)

)
+

∫ x

0
dt′

1

(t′ − σ′)

(
Gv′(t

′)

∫ t′

0
dt
Gv(t)

(t− σ)

)

=

∫ x

0
dt

1

(t− σ)
(Gv(t)Gw′(t)) +

∫ x

0
dt′

1

(t′ − σ′)

(
Gv′(t

′)Gw(t
′)
)

=

∫ x

0
dt

1

(t− σ)
Gv�w′(t) +

∫ x

0
dt′

1

(t′ − σ′)
Gw�v′(t)

= Gσ(v�w′)(x) +Gσ′(w�v′)(x) = Gw�w′(x),

(3.85)

where we identified the iterative definition of the shuffle product. One interesting thing is that, in the

case of the words or the MPLs, the shuffle algebra defines a graded algebra: one can order the words by

lengths and the MPLs by weight (which is just the entries length) and the shuffle product of elements

of uniform weights n andm has a uniform weight n+m.

.. The Hopf algebra of polylogarithms

MPLs inherit more structure fromW (Σ) than its graded shuffle algebra. Indeed, we can build a Hopf

algebra out ofW (Σ) that will propagate to the MPL. The Hopf algebra is a structure that will allow us

to deconstruct complicated MPLs into tensor products of simpler functions, which provides us a tool

to turn analytic problems such as the establishment of functional identities into algebraic problems.

Before definingwhat aHopf algebra is, let us first reformulate the algebra structure in terms of tensor

products to make the transition easier.

Theorem 2. LetA be a unital algebra over a field Fwith product� and unit 1A

�

{
A×A → A
(a, b) → a� b

(3.86)

There exists a linear map µ that reformulates the product as an operation on the tensor productA⊗Awhich
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we can define on elementary tensors and extend by linearity:

µ

{
A⊗A → A
a⊗ b→ a� b.

(3.87)

The associativity of the product implies the following property

µ(µ⊗ id) = µ(id⊗ µ), (3.88)

where id is the identity, which can be nicely summarized by the following commutative diagram

A⊗A⊗A µ⊗id - A⊗A

A⊗A

id⊗µ

?
µ - A

µ

?

(3.89)

Because A contains a unit 1A, there is a subalgebra isomorphic to the base field F (all elements of the

form ϵ(f) = f1A for f ∈ F). The existence of this isomorphism can be taken as an axiom instead of

that of the existence of a unit to keep reformulating properties of the algebra as operations on tensor

products:

Definition 7. LetA be an algebra over F, with a scalar product defined in the tensorial language

s

{
F⊗A → A
f ⊗ a→ fa.

(3.90)

The algebra is unital if there exists a unit morphism ϵ : F → A such that

µ(ϵ⊗ id) = µ(id⊗ ϵ) = s, (3.91)

which we can again summarize in a diagram

F⊗A id⊗ϵ - A⊗A

A⊗A

ϵ⊗id

?
µ - A

µ

?

s

-

(3.92)

That this is equivalent to the existence of a unit is obvious: if such a map exists, ϵ(1F) is the unit of A
and if a unit 1A exists, the morphism f 7→ f1A fits the bill.

The idea of a Hopf algebra is to supplement the algebra structure with new operations that invert

the arrows in the above diagrams. A Hopf algebra H is an algebra equipped with three new objects: a

coproduct∆, a counit η, and an antipode S.

The coproduct decomposes elements of the algebra as tensor products, working in the opposite sense

to µ. It has to have two properties:
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• Co-associativity:

(∆⊗ id)∆ = (id⊗∆)∆ (3.93)

• Compatibility with the product

∆(µ(a⊗ b)) = ∆(a)�∆(b), (3.94)

where we define the multiplication of tensors as element-wise:

(a⊗ b)� (a′ ⊗ b′) = (a� a′)⊗ (b� b′). (3.95)

Indeed, the co-associativity results in the following diagram

H⊗H⊗H � ∆⊗id H⊗H

H⊗H

id⊗∆

6

� ∆ H

∆

6

(3.96)

Note that one of the consequence of the co-associativity is that there is only one way to iterate the

coproduct to generate tensors inH⊗n:

H
∆
- H⊗H

∆⊗id
- H⊗H⊗H

∆⊗id⊗id
- . . . (3.97)

since all other choices are equivalent.

The counit η is a morphism H → F that operates the reverse of the unit operator ϵ, ηϵ = 1F, and

can be used to define s† = (η ⊗ id)∆, which nicely reverse the diagram for the unit:

F⊗H

H⊗H

η⊗id

6

� ∆ H

�

s †
(3.98)

Finally, the antipode S is a new structure which does not have an equivalent in the algebra. It is an

endomorphism S : H → H such that µ(S ⊗ id)∆ = µ(id⊗ S)∆ = ϵη, which is summarized as

H η - F ϵ - H

H⊗H

∆

? id⊗S

S⊗id
- H⊗H

µ

6

(3.99)
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The Hopf algebra of words Let us now build a Hopf algebra on the word algebraW (Σ). We can

construct a coproduct compatible with the shuffle product using the deconcatenation of words:

∆(σ1 . . . σN ) =

N∑
i=0

σ1 . . . σi ⊗ σi+1 . . . σN , (3.100)

where the two bounds of the sum are the products 1Σ ⊗ σ1 . . . σN and σ1 . . . σN ⊗ 1Σ. The fact that

this coproduct is coassociative is easy to see: both ways of applying the coproduct a second time will

yield the sum of all possible ways to cut the word into three pieces. This coproduct is compatible with

the shuffle product,∆(a� b) = ∆(a)�∆(b), and, like the shuffle product, the coproduct respects the

grading ofW (Σ) by the length

∆(Σn) ⊂
n⊕

k=0

(
Σk ⊗ Σ(n−k)

)
. (3.101)

The antipode is defined in the following way on elementary words

S(σ1 . . . σN ) = (−1)NσN . . . σ1, (3.102)

and the counit η can be defined as the coefficient of the empty word. That is for a word w = q01Σ +∑
i>0wi, where wi ∈ V (Σ)⊗i are words of length i,

η(q01Σ +
∑
i>0

wi) = q0. (3.103)

A limited Hopf algebra of MPLs It seems easy to define a Hopf algebra on MPLs using the Hopf

algebra of words. We have amorphismΦwhichmapswords toMPLs: Φ(a1 . . . aN ) = G(a1, . . . , aN ;x)

and its inverse Φ−1(G(a1, . . . , aN ;x)) = a1 . . . aN and we can construct

∆Φ = (Φ⊗ Φ)∆Φ−1, (3.104)

where∆ is the coproduct on words. For example, we can calculate

∆ΦG(a, b;x) = (Φ⊗ Φ) (1⊗ ab+ a⊗ b+ ab⊗ 1)

= 1⊗G(a, b;x) +G(a;x)⊗G(b;x) +G(a, b;x)⊗ 1.
(3.105)

While this seems like a nice structure at first, it is very limited for several reasons. First of all, because

there is a one-to-one mapping between words and the integrands of MPLs, this definition of the co-

product misses a significant amount of information related to the integration path. Indeed, MPLs have

complicated branch cut structures and several equally valid MPLs can be defined for a given set of en-

tries in some parts ofC. For example, onR−,G(0, x) can be analytically continued asG(0,−x)±iπ but

∆Φ will never know about this choice. This significantly limits the power of the coproduct to generate

functional relations between MPLs. Furthermore, our definition fails when one considers the case of

multiple variables or when one allows the entries to depend on x. In this latter case for example, non-

trivial relations betweenMPLs appear that are not reflected in the algebra of words, see Appendix A for
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details.

The Goncharov coproduct A better definition of a coproduct on MPLs has been constructed by

Goncharov [166], which can deal withmuchmore general cases as that inherited from the Hopf algebra

of words. It is easier to define it using a notation for polylogarithms which allows us to choose the base

point for the integration:

I(a0; a1, . . . an; an+1) =

∫ an+1

a0

dt

t− an
I(a0; a1, . . . an−1; t) (3.106)

I(a0; ; a1) = 1. (3.107)

This is in fact the same class of functions as the G(a1, . . . , an;x). Indeed, working iteratively, it is

possible to express all I-MPLs into linear combinations of G-MPLs by cutting the integration at 0 so

we can freely go back and forth between the two sets of integrals.

On these functions, the Goncharov coproduct is defined as

∆I(a0; a1, . . . an; an+1) =

n∑
k=0

 ∑
0<i1<···<ik<n+1

I(a0; ai1 , . . . , aik ; an+1)⊗
k∏

p=0

I(aip ; aip +1, . . . , aip+1 −1; aip+1)

 (3.108)

There is a nice graphical way of generating this formula:

• Draw a closed semi-circle, assign the values a0 and an+1 to the end-points of the diameter.

• Mark n points along the semi-circle and assign the values a1, . . . , an to them in a counterclock-

wise fashion.

• Each term is generated by selecting k points ai1 , . . . , aik among the points on the semi-circle and

drawing the convex polygon that has the vertices a0, ai1 , . . . , aik , an+1:

– The left-hand side of the tensor product is I(a0; ai1 , . . . , aik ; an+1)

– Theterms of the product on the right-hand side are associated to the complementary convex

polygons: the first is I(a0; a1, . . . , ai1 −1; ai1) etc.

Let us look at how this works on the example of I(a0; a1, a2; a3). As shown in Figure 3.3 we find

∆I(a0; a1, a2; a3) = I(a0; a1, a2; a3)⊗ 1 + I(a0; a1; a3)⊗ I(a1; a2; a3)

I(a0; a2; a3)⊗ I(a0; a1; a2) + 1⊗ I(a0; a1, a2; a3)
(3.109)

This definition is compatible with the product of MPLs and, as in the case of words, it is easy to see

that it respects the grading of MPLs by the weight. It suffers, however from several issues when one

considers specific choices for the entries.
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a0

a1 a2

a3 a0

a1 a2

a3
I(a0; a1, a2; a3)⊗ 1 I(a0; a1; a3)⊗ I(a1; a2; a3)

a0

a1 a2

a3 a0

a1 a2

a3
I(a0; a2; a3)⊗ I(a0; a1; a2) 1⊗ I(a0; a1, a2; a3)

Figure 3.3: Graphical derivation of the coproduct∆I(a0; a1, a2; a3).

The first issue is that divergences can appear in the coproduct of finite MPLs when several entries

are identical:

∆I(1; 0, 1;x) = I(1, 1, x)⊗ I(1; 0; 1) + . . . , (3.110)

And I(1, 1, x) =

∫ x

1

dt

t− 1
is a divergent integral. In order to be able to use the coproduct on any

integral we encounter, we can regularize the MPLs in such a way that their algebraic structure is re-

spected while removing all divergences. We use shuffle regularization, which is based in the structure of

the MPLs. The basic idea is that one can use the shuffle product to factorize divergences of the form

G(a, . . . , a; a) out of divergent MPLs systematically, which we can then set to 0. Let us consider for

example the divergent MPLG(−1, 1,−1). We can consider the functionG(−1, 1;x), which only has a

divergence at x = −1. Using the shuffle algebra we can find

G(−1, 1;x) = G(−1;x)G(1;x)−G(1,−1;x). (3.111)

Now G(1,−1;x) is perfectly regular at x = −1, while the other term has a factorized logarithmic di-

vergenceG(−1;−1) and so we defineGreg(−1, 1;−1) = G(1,−1;−1). The reason why this approach

works systematically is that the decomposition we operated in Equation 3.111 can be expressed in gen-

eral as a decomposition in Lyndon words.

Definition 8. LetΣ be an alphabet with an order<, extended to elementarywords by the lexicographic order.

A wordw = σ1 . . . σn is said to be a Lyndon word ifw < σiσi+1 . . . σn for an1 < i ≤ n.

For example aabb and aaabab are Lyndon words (for a < b), while baa is a counterexample. A

theorem by Radford [167] shows that they provide a basis of the shuffle algebra of words:

Theorem 3. LetΣ be an alphabet with an order< extended to words by the lexicographic order. Let L(Σ)<
be the set of Lyndon words. Any wordw ∈W (Σ) can be expressed as a polynomial of elements ofL(Σ)<. In
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other words

Q[L(Σ)<] =W (Σ). (with the shuffle product as product) (3.112)

We will use this to extract terms of the formG(a, . . . , a; a). Indeed, ifΣ admits a largest element S,

then the only Lyndon word starting with S is S .

We can define the regularized MPLs Greg in the following way. If G(σ1, . . . , σn;σn+1) is divergent,

σ1 = σn+1. Let us define the alphabet Σ = σ1, . . . , σn+1 (with redundant entries removed). We start

by bulding an order <σ1 on Σ such that ∀1 < i ≤ n + 1, σi <σ1 σ1, which is trivial because there is

a finite number of letters. By the Radford theorem, the word w = σ1 . . . σn admits a decomposition

into Lyndon words based on<σ1 Lσ1 . The σ1-regularized Lyndon word decomposition of w, wreg
σ1 is its

Lyndon word decomposition with the singular word σ1 set to 0. Using the duality between words and

MPLs we define

Greg(w;σn+1) = Gw
reg
σ1
(σn+1), (3.113)

which reduces to G(w;σn+1) if it is not divergent, while if σn+1 = σ1, no elementary word in wreg

starts with σ1 so that Greg(w;σn+1) is regular. We can easily extend this definition to the I-MPLs as

they also verify a shuffle algebra.

This regularization scheme preserves the algebraic structure of the MPLs. Indeed

Greg
w (x)G

reg
w′ (x) = G

reg
w�w′(x), (3.114)

and we can still build a coproduct on regulated integrals:

∆Ireg(a0; . . . ; an+1) =
∑

0<i1<···<ik<n+1

Ireg(a0; ai1 , . . . aik ; an+1)⊗
k∏

p=0

Ireg(aip ; . . . ; aip+1). (3.115)

Another issue that plagues some choices of entries appears when we consider ζ-values, ζn = Lin(1).

Indeed, the coproduct of classical polylogarithms is

∆Lin(x) = ∆Ireg(0; 1, 0, . . . , 0;x) = 1⊗ Lin(x) +
n∑

k=0

Lin−k ⊗
logk(x)

k!
. (3.116)

Setting x = 1, we conclude that

∆ζn = 1⊗ ζn + ζn ⊗ 1. (3.117)

However, this implies that the coproduct is not in general compatible withmultiplication. For example,

we know that ζ4 = 2
5ζ

2
2 = π4/90. If the coproduct was behaving as it should, we should have

∆ζ4 =
2

5
(∆ζ2)

2 = ζ4 ⊗ 1 + 1⊗ ζ4 +
4

5
ζ2 ⊗ ζ2. (3.118)

Among the possible solutions to restore∆ as a morphism, a very simple one is to work modulo ζ2, that

ismoduloπ2, or evenmoduloπ. A predecessor to the coproduct in loop calculations, the symbol, worked

implicitly in this scheme [168], as did the original definition of the coproduct by Goncharov [166]. It is

however better to keep as much information as possible in the coproduct and a consistent way of doing

this is, in essence, to workmodulo ζ2 except in the leftmost term of the tensor product [169]. Let us call
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the algebra of regulated MPLsA, we can define the two-sided ideal generated by ζ2, Iζ2 = ζ2A+Aζ2
and the associated equivalence relation

x ∼ y ⇐⇒ x− y ∈ Aζ2 . (3.119)

We can now construct the MPLs modulo ζ2, Aζ2 as the quotient A by this equivalence relation. If we

now see∆ as an operation that mapsA toA⊗Aζ2 , we can consistently define

∆ζ2n = ζ2n ⊗ 1, (3.120)

which does not change the practical definition of ∆ for the case of generic MPLs. By singling out the

first entry of the coproduct, we also definitely fix how the iterated coproduct should work:

A
∆
- A⊗Aζ2

∆⊗id
- A⊗Aζ2 ⊗Aζ2

∆⊗id⊗id
- . . . (3.121)

It was further conjectured in [168] that one can make this structure more powerful by workingmod-

ulo π, that is to say to define

∆ : A → A⊗Aπ (3.122)

∆π 7→ π ⊗ 1. (3.123)

Because ζ2 ∝ π2, this implies the definition of the coproduct on even ζ-values. We will systematically

work with this definition of the coproduct.

Singling out the first entry has several consequences on the polylog. First of all, it makes it carry the

information on the discontinuities of the function. Let us callMx=a the monodromy operator

Mx=aF (x) =

∮
a
dxF (x), (3.124)

where the integration is taken over a small contour around a, the following result is proven for MPLs

with generic entries and conjectured to be general [168]:

∆Mx=aF (x) = (Mx=a ⊗ id)∆F (x). (3.125)

Similarly, derivatives only act on the rightmost entry

∆
∂F (x)

∂x
=

(
id⊗ ∂

∂x

)
∆F (x). (3.126)

Both of these properties can be extended to the iterated coproduct.

We are now in position to use the coproduct to solve actual problems that arise in the calculation

of loop integrals. In general, this structure is used to generate functional equations between different

MPLs in a systematic and algorithmic way. In essence if we want to simplify a function F (x), which is
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expressed in terms of weight wMPLs, we can compute its coproduct

∆F (x) = 1⊗ F (x) + F (x)⊗ 1 +
∑
i

fi(x)⊗ gi(x). (3.127)

Of course, the first two terms do not help us in any way, so it is usual to define ∆′F = ∆F − 1 ⊗
F (x)−F (x)⊗1 to avoid carrying them in every calculation. On the other hand the rest of the coprod-

uct is useful because it involves functions fi, gi that are of weight strictly less to w. We can therefore

proceed in an interativemanner, starting with weight 1 functions, i.e. ordinary logarithms, where func-

tional equations are trivial and increase weight iteratively. If we want to provide a simplified expression

G(x) = F (x), we can use the lower weight identities to show that∆′F (x) = ∆′G(x). This, however,

does not show that F (x) = G(x), as ∆′ has a non-trivial kernel. This kernel contains constants such

as the powers of π and ζ-values. Indeed, for example

∆′(Li2(x) + π2) = (1− x)⊗ x = ∆′(Li2(x)). (3.128)

Because the elements of the kernel of ∆′ are usually rational multiples of known constants, it is how-

ever easy to fix them numerically. A downside to this way of generating functional equations is that

one might generate a lot of useless relations at lower weights to generate a single useful equation and

working constructively is often better.

Another approach to establishing functionnal identities is toworkwith the iterated coproduct to con-

struct relations instead of generating tables of identities. Because the coproduct preserves the weight

of objects we can uniquely decompose the coproduct onAw, the vector space of weight wMPLs:

∆
∣∣
Aw

=
w∑

k=0

∆k,w−k, (3.129)

where∆k,w−k maps toAk⊗Aw−k. Similarly we can decompose the iterated coproduct in pieces where

each term in the tensor product has a definite weight and we will note them by extension∆w1,...,wn . Of

particular interest is the term that has only weight one objects,∆1,...,1, which contains only logarithms.

This term can be used to simplify arguments of MPLs: let us consider for example Li2

(
1

x+ iϵ

)
for

x ∈ [0, 1]

∆1,1Li2

(
1

x+ iϵ

)
= − log

(
1− 1

x+ iϵ

)
⊗ log

(
1

x

)
(3.130)

= (log (1− x)− log (−x− iϵ))⊗ log (x) (3.131)

= log(1− x)⊗ log(x) + log(x)⊗ log(x) + iπ ⊗ log(x) (3.132)

= ∆1,1

(
−Li2(x) + log2(x) + iπ log(x)

)
. (3.133)

where we remembered the expression for ∆Li2 from Equation 3.116. This, however, is not the final

answer as there could be some irreducible weight two elements, i.e. some cπ2 term, and indeed by

evaluating the two expression numerically one can see that they differ by π2/3. For MPLs with higher
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weight, using∆1,...,1 does awaywithmore information, which needs to be built iteratively. For example,

at weight 3, π2 log(x) is lost from∆1,1,1, but can be reconstructed by taking∆2,1. Using this approach,

going from the terms of weight one and then reconstructing the missing pieces weight by weight, one

can make sure to always deal with simple functions to construct functional relations.

.. Applications of the algebraic structure of polylogarithms

Analytic continuation of Harmonic Polylogarithms

A particular subclass of MPLs is of particular importance for the projects presented: harmonic poly-

logarithms. They are the MPLs whose entries are taken from the alphabet {0, 1,−1} and have been

studied extensively [160]. In particular, their analytic structure has been entirely elucidated:

• if the last entry is 0, the function may have a branch cut extending from 0 to−∞,

• if the last entry is 1, the function may have a branch cut extending from 1 to+∞,

• if one entry is -1, the function may have a branch cut extending from−1 to−∞.

In this section, we will describe the technique proposed in [160] to analytically continuate harmonic

polylogarithms to −1 < x < 0. In this case, a choice of branch cut is necessary for all functions

whose rightmost entry is 0. The technique is closely related to the shuffle regularization and we can

formulate it in an efficient algorithm using Lyndon words. The basic idea, like in shuffle regularization,

is to factorize out functions of the form G(0, . . . , 0;x) whose analytic behaviour around 0 is easy to

describe, and leave only functions whose rightmost entry is not 0.

To this end, we use an order 0 on the alphabet such that 0 is the smallest element, for example

0 < 1 < −1. Because of this Lyndon words cannot have 0 as their last entry because the word 0 is the

smallest possible word.

Let us consider a harmonic polylogarithm g(x) = G(σ1, . . . , σk, 0, . . . 0), σk ̸= 0 of weight w. In

order to analytically continuate it to−1 < x < 0, we generate the setLw of all Lyndon words of length

smaller or equal to w and use them to build a basis
{
G

(w)
i

}
of MPLs of weight w. There exists a set of

rational numbers ai such that

g(x) =
∑
i

aiG
(w)
i . (3.134)

Using the shuffle algebra, we can express each product in the G(w)
I as a linear combination of MPLs

over words of length w, which are linearly independent⁵ [170]. As a result, we obtain an equation of

the form

g(x) =
∑

w∈{0,±1}4
bwG(w;x), (3.135)

where the bw are linear combinations of the ai. Because of the linear independence of the functions on

the right-hand-side, this equation can only be solved if the following system is solved for the ai{
bσ1...σk0...0 = 1

bw = 0 ∀w ∈ {0,±1}4 \ σ1 . . . σk0 . . . 0.
(3.136)

⁵This is only the case for polylogarithms with constant entries.
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Upon finding the ai, we obtain an expression of g(x) which involves only functions of the form

G(0, . . . , 0;x) andG(. . . ,±1;x). We can now analytically continue the regular logarithms:

G(0, . . . , 0︸ ︷︷ ︸
n

;x)
∣∣
−1<x<0

=
1

n!
(log(−x)± iπ)n , (3.137)

and use the fact that for−1 < x < 0,G(σ1, . . . , σn,±1, x) = G(−σ1, . . . ,−σn,∓1,−x).

Reduction to Canonical form

When evaluating Feynman integrals by direct integration, one takes repeated integrals over multi-

variable rational functions, which most often yield MPLs. In such cases, one tries to transform the

integral into a linear combination of terms of the form∫ ∞

0
dx
G(a1, . . . , an;x)

x− a0
=
[
G(a0, a1, . . . , an;x)

]∞
0
, (3.138)

where all the entries aj are independent of x. This kind of approach raises two issues:

• Apart from the simplest cases, it is rare that the aj are independent of x.

• While the evaluation of the primitive at x = 0 is easy (it is 0 unless all aj = 0, in which case there

is a logarithmic divergence), taking the limit x→ ∞ is not trivial.

Both problems can be cast in a similar way for simple enough cases: given rational functions

Aj(x), can we in general express G(A1(x), . . . , An(x);An+1(x)) in terms of functions of the form

G(a1, . . . , ak;x), where the aj are independent of x? Explicitly, we want to find an expression of the

form

G(A1(x), . . . , An(x);An+1(x)) =
∑
i

G(a
(i)
1 , . . . , a(i)n ;x) +

∑
i

c
(1)
i G(a

(i)
1 , . . . , a

(i)
n−1;x) + . . . ,

(3.139)

where the a(j)i and c(k)i are independent of x and the c(k)i are weight k constants (we limit ourselves to

π, multiple ζ-values andMPLs evaluated at rational points). We will call such a form a canonical form of

the MPL, introduced by [171]. In the following we outline the technique they devised to construct the

canonical form, which is implemented in PolyLogTools.
We can consider what the iterated coproduct of such terms looks like

∆1,...,1c
(k)
i G(a

(i)
1 , . . . , a

(i)
n−k;x) =

(
∆1,...,1c

(k)
i

)
�

(
∆1,...,1G(a

(i)
1 , . . . , a

(i)
n−k;x)

)
(3.140)

=
(
∆1,...,1c

(k)
i

)
�

(
log(x− a

(i)
n−k)⊗ · · · ⊗ log(x− a

(i)
1 )

+non maximal tensors,)

(3.141)

wherewedefinemaximal tensors as tensors inwhichno entry is independent ofx. As a result, each term

with a weight k constant has exactly one tensor with n−k entries that depend on x [171]. If a function

g(x) = G(A1(x), . . . , An(x);An+1(x)) admits a canonical form, we can use the iterated coproduct to

fix this form up to some constants c(k)i if its iterated coproduct can be expressed in terms of degree one
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polynomials. Indeed let us consider the maximal tensors of the iterated coproduct T = ∆1,...,1g(x):

T =
∑
i

log(a(i)n x+ b(i)n )⊗ · · · ⊗ log(a
(i)
1 x+ b

(i)
1 ) + non maximal tensors. (3.142)

Let us construct the linear map:

ϕ(1)x : log(a(i)n x+ b(i)n )⊗ · · · ⊗ log(a
(i)
1 x+ b

(i)
1 ) →

{
G(− bn

an
, . . . ,− b1

a1
;x) if all ai ̸= 0

0 otherwise,
(3.143)

which maps each maximal tensor to a canonical form MPL with a matching maximal tensor. We can

then build

T1 = T −∆1,...,1ϕ
(1)
x (T ), (3.144)

which only contains non maximal tensors. Let us look at next-to-maximal tensors in T1, which by

Equation 3.141 must come from functions of the form c(1)G(a1, . . . , an−1;x). There are few possible

weight-one functions: they will be either π or some log(χ) for some number χ. In the case when c = π,

a single tensor is generated:

∆1,...,1πG(a1, . . . , an−1;x) = π ⊗∆1,...,1G(a1, . . . , an−1;x), (3.145)

while logarithms will be shuffled to every position:

∆1,...,1 log(χ)G(a1, . . . , an−1;x) = log(χ)�∆1,...,1G(a1, . . . , an−1;x) (3.146)

= log(χ)⊗∆1,...,1G(a1, . . . , an−1;x) + . . . (3.147)

As a result, to fix these functions, it is always sufficient to consider tensors t such that

t = c⊗ (a1x+ b1)⊗ (an−1x+ bn−1). (3.148)

Indeed, we can build the map

ϕ(2)x :


log(c)⊗ log(a1x+ b1)⊗ · · · ⊗ log(an−1x+ bn−1) 7→

log(c)ϕ
(1)
x (log(a1x+ b1)⊗ · · · ⊗ log(an−1x+ bn−1))

all other tensors 7→ 0.

(3.149)

and use it to eliminate all next-to-minimal tensors from the symbol of our function:

T2 = T1 −∆1,...,1ϕ
(2)
x (T1). (3.150)

In physically relevant situations, these two steps are more than enough and one usually finds that T1 or

T2 is zero, therefore stopping the iteration. In general, this does however not fix the function entirely,

as wemust remember that the iterated coproduct has a non-zero kernel which contains all the ζ values,

which we must fix by taking other parts of the iterated coproduct. Let us for example consider the
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function Li3

(
1

x+ iϵ

)
for 0 < x < 1:

∆1,1,1Li3

(
1

x

)
= − log

(
x− 1

x

)
⊗ log

(
1

x

)
⊗ log

(
1

x

)
(3.151)

= − (log(1− x) + iπ)⊗ log(x)⊗ log(x) + log(x)⊗ log(x)⊗ log(x) (3.152)

(3.153)

We can use our maps ϕ(1)x and ϕ(2)x to find that

∆1,1,1Li3

(
1

x

)
= ∆1,1,1 (−G(0, 0, 1;x)− iπG(0, 0;x) +G(0, 0, 0;x)) (3.154)

and indeed, the recursion ends there. However, if we apply∆2,1 to the difference of these two functions,

we find that there is a leftover−1
3π

2 ⊗ log(x). We can build further maps in general to deal with such

terms and their higher weight equivalents, but in this case, we can trivally find that

∆2,1Li3

(
1

x

)
= ∆2,1

(
−G(0, 0, 1;x)− iπG(0, 0;x) +G(0, 0, 0;x)− π2

3
G(0;x)

)
. (3.155)

By catching ever higher weight constants in the leftmost term of the iterated coproduct, we can fix the

canonical form of functions up to irreducible constants. These can be obtained numerically by evalu-

ating the functions for enough values of x, as we did in the case of Li2(1/x). This generates a linear

system with rational solutions, which can be found very efficiently using the PSLQ algorithm [172]. In

the particular case of Li3(1/x), no such constant arises and indeed

∆2,1Li3

(
1

x

)
= −G(0, 0, 1;x)− iπG(0, 0;x) +G(0, 0, 0;x)− π2

3
G(0;x). (3.156)

Note that not all constants are in the kernel of the iterated coproduct. For example, ∆1,1Li2 (1/2) =

− log(2)⊗ log(2). However, this example shows that there is a high degree of degeneracy among con-

stants in∆1,...,1 and it is therefore a a better choice to leave them aside and fix all the c(k) constants of

the canonical expression using∆k,1,...,1 since all such constants appear explicitly in the leftmost entry.

As this technique is used to compute integrals over many Feynman parameter, it is by design very

easily generalizable to the multivariate case [171]. Let us considerN variables x1, . . . , xN with this or-

der. A function is said to be in a canonical formwith respect to this ordering if it is a linear combination

of functions

G(⃗a1;x1)G(⃗a2;x2) . . . G(⃗aN ;xN ), (3.157)

such that a⃗i is independent of the xj for j ≤ i. A sufficient condition for the algorithm to work is that

the symbol of the function considered be of degree one with respect to all the xi. Let us buildmaps that
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work recursively to construct these products:

ϕxkxk+1...xN :



log(a1xk + b1)⊗ · · · ⊗ log(anxk + bn) 7→ G(− b1
a1
, . . . ,− bn

an
;xk)

...

log(b1)⊗ · · · ⊗ log(bp)⊗ log(ap+1xk + bp+1)⊗ log(anxk + bn) 7→

ϕxk+1...xN (log(b1)⊗ . . . log(bp))G(−
bp+1

ap+1
, . . . ,− bn

an
;xk)

...

(3.158)

where the ai, bi are independent ofxj for j ≤ i. Indeed, ϕx1...xN will matchmaximal tensors toMPLs in

canonical formwith respect tox1 andnon-maximal tensors as products involving onlymaximal tensors.

If the functions admits a canonical form, this removes all tensors that depend on at least one variable

in each entry. We can deal with constants as in the single variable case, by using ∆k,1,...,1, which will

catch order k constants in its leftmost entry.

A critical point in this algorithm is that indeed the iterated coproduct be expressed in terms of linear

functions of the variables. While this does not cover all MPLs that appear when integrating loop inte-

grals, we could apply it to all relevant situations in this thesis to simplify expressions, which allowed us

to perform integrals explicitly.
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4
Matching the decayH → bb̄ between the Standard Model

and the Higgs Effective FieldTheory

T he bottom quark plays an interesting role in Higgs physics. Despite having a relatively low cou-

pling (yb ≃ 0.025), the decay H → bb̄ is the dominant channel for a SM Higgs boson with a

125 GeVmass due to kinematics and phase space effects. Observing this decay is however challenging

because of the large backgrounds generated by QCD, especially in the gluon-fusion production mode

[7], and has for now only been probed in weak production modes: vector boson fusion [173, 174] and

associated production [175, 176], which is themost sensitive channel, yielding a signal strength for the

decay µbb = 0.7± 0.3. Instead of studying this decay, the interaction of the Higgs boson with bottom

quarks can be tested using production mechanisms in which it plays a role. The main such process is

gluon fusion, where around 5% of the total cross section is contributed by bottom quarks [177–180],

meaning that precisemeasurements of this cross section canput constraints onHbb̄ couplings. Another

possible avenue is to study the associated production of the Higgs boson and bottom quarks, which has

a comparable total production cross section to associated production with top quarks (around 0.5 pb at

13 TeV) making it a minor production mode in the SM [181]. Furthermore, selection cuts that could

isolate this mode would drastically reduce the cross section: requiring two b-jets harder than 20 GeV

yields an efficiency of less than 5% [44, 182]. While a direct observation is not yet possible with the

current data, it is still a useful handle to constrain modified Higgs sectors that could make this process

more important, such as the MSSM with a sizeable tanβ [181, 183].

The cross section for bb̄H associated production has been calculated to NLO QCD accuracy by [44].

At LO in QCD (O
(
α2
s

)
), the production is mediated by the bottom Yukawa coupling, as shown in Fig-

ure 4.1a, while at NLO (O
(
α3
s

)
), contributions from both the bottom and top Yukawa couplings ap-

pear, as shown in Figures 4.1b-4.1d, both of which have the same numerical impact on the prediction,
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(a) LO -A(0)
b (b) NLO -A(1V )

b (c) NLO -A(1R)
b (d) NLO -A(0)

t

Figure 4.1: Examples of Feynman diagrams for bb̄H production at LO and at NLO, which contain virtual and real bottom-
induced diagrams and Born-level top-induced diagrams. The corresponding amplitudes are namedA(0)

b ,A(1V )
b ,A(1R)

b and

A(0)
t .

(a)A(1V )
t

g

g

b̄

b

g

H

1

(b)A(1R)
t

Figure 4.2: Virtual
(
A(1V )

t

)
and real emission

(
A(1R)

t

)
diagrams contributing to associated bb̄H production at

O
(
ytybα

4
s

)
through their interference withA(0)

b andA(1R)
b .

as shown in Table 4.1. While NLO corrections improve the scale dependence of the prediction, the

LO NLO (y2b ) NLO (y2b + ybyt)

σ 0.478+60%
−35% 0.448+20%

−20% 0.411+25%
−28%

δσ/σLO – 6% 14%

Table 4.1: Cross sections for the associated production bb̄H at LO and NLO, including and excluding top quark effects.

contribution generated by the top Yukawa coupling itself suffers from a large scale dependence, which

makes the full NLO QCD prediction more scale dependent than when excluding top quark effects. It

would therefore be desirable to improve the prediction for the top Yukawa coupling dependence of the

cross section by deriving and extra order in QCD, i.e. calculating the O
(
ytybα

4
s

)
part of the cross sec-

tion, which is generated by the interference of the diagrams shown in Figure 4.2b with the LO diagrams

of Figure 4.1a, as well as by real emission intereference of the diagrams shown in Figure 4.2b with those

in Figure 4.1c. In order tomake it easier to follow the discussion, let us write down the elementary cross
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(a) Â(0)
t (b) Â(1V )

t

Figure 4.3: Examples of Born-level and virtual correction diagrams for top-induced bb̄H production in the infinite top mass
limit.

section explicitly

dσ ∝ α2
sy

2
b

∣∣∣A(0)
b

∣∣∣2 + α3
s

[
y2b

(
2Re

(
A(0)

b A(1V )
b

)
+

∫
dΦ
∣∣∣A(1R)

b

∣∣∣2)+ 2ybytRe
(
A(0)

b A(0)
t

)]
+ 2α4

sytybRe
(
A(0)

b A(1V )
t +A(1V )

b A(0)
t +

∫
dΦA(1R)

b A(1R)
t

)
,

(4.1)

where the amplitudes have been defined in Figures 4.1 and 4.2 and the integrals are taken over the real

emission phase space. The first line of Equation 4.1 is what has been calculated in [44]. While an exact

calculation of the O
(
ytybα

4
s

)
contribution is still out of reach at the moment due to the complicated

two loop calculation with four external particles and three different masses required for the evalua-

tion of A(1V )
t , the calculation can be performed in the HEFT, in which all top loops would be reduced

to contact interactions, making the most complicated amplitude a one-loop calculation, as shown in

Figure 4.3. However, this calculation cannot readily be performed as the infinite top mass limit of the

HEFT also yields power suppressed corrections to SM parameters and in particular, as we shall soon

see, the bottom quark Yukawa coupling is corrected in the following way:

yHEFTb = yb +
ytα

2
s

mt
δyb, (4.2)

and these corrections generate terms of order O
(
ytybα

4
s

)
through the squares of the diagrams shown

in Figure 4.1a. As a result, in the HEFT, the elementary cross section can be decomposed as

dσHEFT ∝ α2
sy

2
b

∣∣∣A(0)
b

∣∣∣2 + α3
s

[
y2b

(
2Re

(
A(0)

b Â(1V )
b

)
+

∫
dΦ
∣∣∣A(1R)

b

∣∣∣2)+ 2ybytRe
(
A(0)

b Â(0)
t

)]
+ α4

sytyb

(
2Re

(
A(0)

b Â(1V )
t +A(1V )

b Â(0)
t +

∫
dΦA(1R)

b Â(1R)
t

)
+
δyb
mt

∣∣∣A(0)
b

∣∣∣2) ,
(4.3)

where, in contributions with a hat, top quark loops have been replaced by theHEFT contact interaction.

In this cross section, the only contribution that cannot be readily calculated using automated tools is

the power suppressed bottom Yukawa correction. We derive this correction in this chapter, and thus

provide the last missing piece necessary for the improvement of the associated bb̄H production cross

section prediction.
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One of the advantages of using EFTs to make approximations is that they are universal. That is to

say that they have a finite set of parameters in their Lagrangian (at each order) that can be determined

once and for all and be used for arbitrarily many predictions. We can make use of this universality to

extract the value of the parameter we are interested in by matching its contribution to the simplest

observable possible with the prediction of the SM. The easiest process we can use to this end happens

to be a scalar form factor contributing to the decayH → bb̄. We will calculate in each theory

A =
∑
σσ′ij

v̄σ
′

b̄ (p2)u
σ
b (p1)δ

ijAH→bb̄ = CATr
(
( ̸ p1 +mb)Aamp

H→bb̄
( ̸ p2 −mb)

)
, (4.4)

where u(p1) (v̄(p2)) is the conjugate of the wavefunction of the (anti) b-quark, the sums go over their

colors and helicities,AH→bb̄ is the complete amplitude for the decayH → bb̄, and

AH→bb̄ = ūσb (p1)δijA
amp
H→bb̄

vσ
′

b̄ (p2). (4.5)

In order to obtain a SM Feynman diagram for this process that has power-suppressed terms, we

need to go to the two-loop level, as shown in Fig. 4.4. We need to compute the 1/mt expansion of these

diagrams and match them to the relevant HEFT diagrams in order to extract the desired correction to

the bottom Yukawa.

Figure 4.4: The twoO
(
ytg

4
s

)
diagrams that contribute toH → bb̄

In the first section of this chapter, we will perform the easier HEFT calculation, which involves both

a tree-level and a one-loop diagram. Section 4.2.3 will then be dedicated to the calculation of the corre-

sponding two-loop process in the SM in a 1/mt expansion and in Section 4.3, we will compare the two

results to extract the first power-suppressed correction to the bottom Yukawa in the HEFT.

. Higgs-to-bottom decay in the Higgs Effective Field Theory

In the HEFT, two diagrams will be necessary to match that in Figure 4.4. The first one is shown in

Figure 4.5a and is the contribution that intuitively comes to mind when one thinks of integrating out

top quarks from the SM diagrams. This one-loop diagram is divergent and its pole will be cancelled

through the renormalization of the bottom Yukawa, which appears in the tree-level diagram shown in

Figure 4.5b. This already shows that it receives power-suppressed corrections of order O
(
ytα

2
s

)
, but

the HEFT calculation alone will only allow us to find the divergent piece of this correction. The finite

part of this correction, which we will obtain at the end of this chapter, can only be extracted from the
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(a) (b)

Figure 4.5: The two Feynman diagrams that contribute toH → bb̄ in the HEFT. We denote the HEFT bottom Yukawa with a
crossed dot to highlight the fact that it is not equal to the SM Yukawa.

matching with the SM.

Another way to understand the presence of these two contributions will appear in the next section:

the most complicated of the loop integrals that appear in the SM two-loop amplitude will have two

regions in the 1/mt expansion, which correspond to routing hard momenta through the top loop only

or through the complete diagram. These respectively have a diagramatical interpretation as shrinking

the top loop in Figure 4.4 to obtain Figure 4.5a and shrinking the two loops to obtain Figure 4.5b.

Since we wish to extract the power-suppressed corrections to a coupling that is present in the SM,

it is important that our notation makes a proper separation between the couplings in the SM and the

HEFT to avoid confusion. The interactions relevant for our calculation are shown in Table 4.2

Coupling Value Feynman Rule

Lyb = −Cyb√
2
hb̄b Cyb = yb +O

(
1

mt

)
−iCyb√

2

LHgg = −1

4
CHggGµνG

µνh CHgg =
αs

3πv
iCHgg (g

µνp1 · p2 − pν1p
µ
2 )

LbG = gsG
µ
a b̄T aγµb Fixed by gauge invariance igsγ

µT a

Table 4.2: HEFT interactions relevant for the calculation of theO(g4syt) contribution toH → b̄b and their leading-order
values in the 1/mt expansion.

The part ofA coming from Fig 4.5b is trivial to evaluate;

Ab = −iCybCA√
2

(
s− 4m2

b

)
. (4.6)

We can now move on to the calculation of the one-loop diagram Agf. Reading the Feynman rules,

the expression for this diagram in dimensional regularization is

Agf = iCHgg (igs)
2
∫

ddk

(2π)d
Tr ((−i)(̸ p1 +mb)γµi( ̸ k +mb)γν(−i)(̸ p2 −mb))

(k + p2)
2 (k2 −m2

b

)
(k − p1)

2 (gµνp1 · p2 − pν1p
µ
2 ) .

(4.7)

Until Subsection 4.1, all parameters are understood to be bare, d-dimensional quantities and we will
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not use super/subscripts to separate them from renormalized parameters.

WhileAgf is a relatively simple amplitude, it is a good opportunity to illustrate themodern approach

to loop calculations. Wewill describe howwematched the scalar integrals of our amplitude to a topology

and reduced them to master integrals, which we will then evaluate.

Since there is only one diagram, choosing the topology is easy:

I (n1, n2, n3) =
∫

ddk

(2π)d
1

Dn1
1 Dn2

2 Dn3
3

=

∫
ddk

(2π)d
1(

(k − p1)
2
)n1

(
(k + p2)

2
)n2 (

k2 −m2
b

)n3

(4.8)

Which is summed up in Figure 4.6.

Figure 4.6: Graphical definition of the topology, defined as the set of denominators appearing in this diagram.

Reducing the integrals with numerators can be done using the following rules

k · k = D3 +m2
b , k · p1 =

D3 −D1

2
+m2

b , k · p2 =
D2 −D3

2
−m2

b . (4.9)

In practice, the generation of the amplitude and its reduction was handled by the chain of tools de-

tailed in Appendix B.Thediagramswere generatedwith QGRAF and translatedwith qgraf-xml-parser
into FORM input files to perform the index contractions and Dirac algebra traces. These contracted ex-

pressions were then imported in Mathematica for further treatment. The integrals were matched to

the defined topology using SAIF.
The result of these operations yields:

Agf =− 4ds2 I (1, 1, 1)mbCHgg g
2
s − 4d I (−1, 1, 1)mbCHgg g

2
s + 8d I (0, 0, 1)mbCHgg g

2
s

− 8d I (0, 1, 0)mbCHgg g
2
s + 8ds I (0, 1, 1)mbCHgg g

2
s + 8d I (1, 0, 0)mbCHgg g

2
s

− 8ds I (1, 0, 1)mbCHgg g
2
s − 4d I (1, 1,−1)mbCHgg g

2
s + 8ds I (1, 1, 0)mbCHgg g

2
s

+ 8s2 I (1, 1, 1)mbCHgg g
2
s − 32 I (0, 1, 1)m3

bCHgg g
2
s − 32 I (1, 1, 0)m3

bCHgg g
2
s

+ 32s I (1, 1, 1)m3
bCHgg g

2
s + 8 I (−1, 1, 1)mbCHgg g

2
s − 24 I (0, 0, 1)mbCHgg g

2
s

+ 16 I (0, 1, 0)mbCHgg g
2
s − 16s I (0, 1, 1)mbCHgg g

2
s + 16 I (1,−1, 1)mbCHgg g

2
s

− 24 I (1, 0, 0)mbCHgg g
2
s + 40s I (1, 0, 1)mbCHgg g

2
s + 8 I (1, 1,−1)mbCHgg g

2
s

− 16s I (1, 1, 0)mbCHgg g
2
s

(4.10)

This is a one-loop topology, so we knowwhat themaster integrals will look like: there can be triangle,

bubble and tadpole integrals¹, and we will see this appear when reducing the family to a basis. For this

¹Boxes are excluded because we only have three propagators
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topology, we used FIRE5 to derive the IBP identities and reduce all the integrals in the amplitude to a

set of three master integrals:

I(1, 1, 1) I(1, 1, 0)

I(0, 0, 1)

(4.11)

These integrals can be directly evaluated by integrating their Feynman parameter representations.

They are of course well-known and can be found in a number of references, but there is a pedagogic

interest in illustrating how they can be evaluated.

Direct integration of the master integrals

Evaluation of the tadpole integral The easiest integral is the tadpole integral I(0, 0, 1). We

first need to evaluate its Feynman parametrization:

I(0, 0, 1) =
∫

ddk

(2π)d
1

k2 −m2
b

=

∫ 1

0
dxδ (1− x) i(4π)−

d
2x1−dΓ

(
1− d

2

)(
x2m2

b

) d
2
−1 (4.12)

No further work is required to find

I(0, 0, 1) = i(4π)−
d
2Γ

(
1− d

2

)(
m2

b

) d
2
−1 (4.13)

Evaluationof the bubble integral Thebubble integral I(1, 1, 0) requires slightlymore work and

in particular is a nice opportunity to showcase the role of the Cheng-Wu theorem in doing this kind of

evaluation.

Let us first convert it to Feynman parametrization:

I(1, 1, 0) =
∫ ∞

0
dx1dx2δ (1− x1 − x2) i(4π)

− d
2 (x1 + x2)

2−d Γ

(
2− d

2

)
(−sx1x2)

d
2
−2 (4.14)

This integrand is well-defined in the Euclidean region s < 0. We will always perform integrations

in this region and then analyticaly continuate to the region s > 0 after integration. We can use the

Cheng-Wu theorem to replace δ (1− x1 − x2) by δ (1− x2) and yield

I(1, 1, 0) =
∫ ∞

0
dx1i(4π)

− d
2 (1 + x1)

2−d Γ

(
2− d

2

)
(−sx1)

d
2
−2. (4.15)
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In which we can immediately identify an Euler beta function:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ ∞

0
dz za−1(1 + z)−a−b, (4.16)

and therefore

I(1, 1, 0) =
i(4π)−

d
2 (−s)

d
2
−2Γ

(
2− d

2

)
Γ
(
d
2 − 1

)2
Γ(d− 2)

. (4.17)

Evaluationofthetriangle integral Thetriangle integral I(1, 1, 1) requires usingmore technol-

ogy as itwill involvemultiple polylogarithms. It is important thatwe clearly identify this integral for the

upcoming two-loop calculation we will perform in the SM: we will see that in themt → ∞ expansion,

some two loop integrals appearing in the diagrams of Figure 4.4 will reduce to a form tadpole×triangle.

The Feynman parametrization of this integral is

I(1, 1, 1) =
∫
dx1dx2dx3δ

(
1−

∑
i∈ν

xi

)
i(4π)−

d
2Γ

(
3− d

2

)
(x1 + x2 + x3)

3−d
(
x23m

2
b − sx1x2

) d
2
−3

(4.18)

We can use the Cheng-Wu theorem to specify ν = {3} and define the form of the triangle integral

that we will match in further calculations

I(1, 1, 1) =
∫ ∞

0
dx1dx2i(4π)

− d
2Γ

(
3− d

2

)
(1 + x1 + x2)

3−d
(
m2

b − sx1x2
) d

2
−3

=

∫ ∞

0
dx1dx2i(4π)

− d
2Γ

(
3− d

2

)
md−6

b (1 + x1 + x2)
3−d (1 + rx1x2)

d
2
−3

=i(4π)−
d
2Γ

(
3− d

2

)
md−6

b T(r)

(4.19)

Where we defined r = −s/m2
b and the function

T(r) =
∫ ∞

0
dx1dx2 (1 + x1 + x2)

3−d (1 + rx1x2)
d
2
−3 (4.20)

which we will now evaluate as a series in powers of our dimensional regularization parameter ϵ:

T(r) = T0(r) + ϵT1(r) + ϵ2T2(r) +O
(
ϵ3
)
. We find

T0 =

∫ ∞

0
dx1dx2

1

(x1 + x2 + 1) (rx1x2 + 1)

T1 =

∫ ∞

0
dx1dx2

2 log (x1 + x2 + 1)− log (rx1x2 + 1)

(x1 + x2 + 1) (rx1x2 + 1)

T2 =

∫ ∞

0
dx1dx2

log2 (rx1x2 + 1)− 4 log (x1 + x2 + 1) log (rx1x2 + 1) + 4 log2 (x1 + x2 + 1)

2 (x1 + x2 + 1) (rx1x2 + 1)
(4.21)

The evaluation of these integrals can be handled in an algorithmic way, which we will illustrate on
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T0 and the first term of T1. Since we expect the result to be expressed in terms of polylogarithms, the

key element is to obtain integrals of the form
∫ a
0 dx

G(...,x)
x−b = G(. . . , b, a). This is done using repeated

partial fractioning of the denominators. Let us start with the simplest case:

T0 =

∫ ∞

0
dx1dx2

1

(x1 + x2 + 1) (rx1x2 + 1)

=

∫ ∞

0
dx1dx2

rx2

(rx1x2 + 1)
(
rx22 + rx2 − 1

) − 1

(x1 + x2 + 1)
(
rx22 + rx2 − 1

)
=

∫ ∞

0
dx2

G (−x2 − 1, x1)

−rx22 − rx2 + 1
+
G
(
− 1

rx2
, x1

)
rx22 + rx2 − 1

∞

0

(4.22)

Evaluating the primitive at the bound x1 = 0 is easy in this case:

lim
x1→0

G
(
− 1

rx2
, x1

)
−G (−x2 − 1, x1)

rx22 + rx2 − 1
= 0, (4.23)

Which results from the fact that lim
x→0

G(⃗a, x) = 0 if a⃗ ̸= 0⃗. In the other terms, we can encounter cases

in which there is a logarithmic divergence at 0, i.e. polylogarithms of the formG(⃗0, x). These are han-

dled using a series expansion instead of simply taking the limit, which then makes it obvious whether

these logarithmic terms vanish in the limit ( lim
x→0

xG(⃗0, x) = 0) or are an actual divergence. Because the

integrals are regularized and therefore overall convergent, all such divergences are generated by indi-

vidual terms and cancel when combining them all. Evaluating the primitive at x1 = ∞ is equivalent to

taking the limit x̄1 = 1/x1 → 0. To obtain this limit, we use the algorithm described in Section 3.3.3

to reduce all polylogarithms of the formG
(
. . . , 1

x̄1

)
into the canonical formG(. . . , x̄1) , where taking

the limit and extracting logarithmic divergences is straightforward. This yields the equalities:

G
(
−x2 − 1, 1

x̄1

)
= −G (−1, x2)−G (0, x̄1) +G

(
− 1

x2+1 , x̄1

)
G
(
− 1

rx2
, 1
x̄1

)
= G (−rx2, x̄1) +G(0, r)−G (0, x̄1) +G (0, x2)

(4.24)

Each polylogarithm yields a logarithmic divergence, which cancel against each other when combined

into T0. We therefore find

T0 =

∫ ∞

0
dx2

G(0, r) +G (−1, x2) +G (0, x2)

rx22 + rx2 − 1
(4.25)

Integrating this function into polylogarithms requires partial fractionning, which would generate un-

wieldy expressions with this choice of variables as the roots of the polynomial in the denominator of

Equation 4.25 have a complicated relation to r:

rx22 + rx2 − 1 = r

(
x2 −

−r −
√
r + 4

√
r

2r

)(
x2 −

√
r
√
r + 4− r

2r

)
. (4.26)

We can however make a better choice by replacing r with r =
√
r
√
r+4−r
2r , the root of the denominator
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that is positive in the Euclidean region. Indeed, the irreducible polynomials are then linear in r:

rx22 + rx2 − 1 = −(r− x2) (r+ x2 + 1)

r(r+ 1)
. (4.27)

We can therefore rewrite T0 in a form where the integration becomes straightforward:

T0 =

∫ ∞

0
dx2

r(r+ 1)
(
G
(
0, 1

r(r+1)

)
+G (−1, x2) +G (0, x2)

)
(2r+ 1) (x2 − r)

−
r(r+ 1)

(
G
(
0, 1

r(r+1)

)
+G (−1, x2) +G (0, x2)

)
(2r+ 1) (r+ x2 + 1)

(4.28)

Here the polylogarithms which depend on 1/(r(1+ r)) can be simplified easily because they are simple

logarithms:

G

(
0,

1

r(r + 1)

)
→ −G(−1, r)−G(0, r), (4.29)

but in general, it is a better choice to replace r by r before applying the reduction to canonical basis and

make it the last of the variables considered so that higher polylogarithms depending on 1/(r(1 + r))

be simplified directly, which is what we do when performing the complete integration. In any case, we

reach the following form for T0, for which we only need to repeat our trick to evaluate the primitive at

infinity:

T0 =

[
r2G(−1, r)G (−r− 1, x2)

2r+ 1
+

r2G(0, r)G (−r− 1, x2)

2r+ 1
− r2G(−1, r)G (r, x2)

2r+ 1

− r2G(0, r)G (r, x2)

2r+ 1
− r2G (−r− 1,−1, x2)

2r+ 1
− r2G (−r− 1, 0, x2)

2r+ 1
+

r2G (r,−1, x2)

2r+ 1

+
r2G (r, 0, x2)

2r+ 1
+

rG(−1, r)G (−r− 1, x2)

2r+ 1
+

rG(0, r)G (−r− 1, x2)

2r+ 1

− rG(−1, r)G (r, x2)

2r+ 1
− rG(0, r)G (r, x2)

2r+ 1
− rG (−r− 1,−1, x2)

2r+ 1

−rG (−r− 1, 0, x2)

2r+ 1
+

rG (r,−1, x2)

2r+ 1
+

rG (r, 0, x2)

2r+ 1

]∞
0

(4.30)

At x2 = 0, we can directly take the limit and find that the whole primitive evaluates to 0, since there are

no logarithmic divergences. Replacing x2 by x̄2 = 1/x2 and reducing the polylogarithms to canonical

form, we can easily take the limit x2 → ∞ and find:

T0 =
1

3(2r+ 1)

(
−3r2G(−1, r)2 + 3r2G(0, r)2 + 3r2G(−1,−1, r)

− 3r2G(−1, 0, r) + 3r2G(0,−1, r)− 3r2G(0, 0, r)

− 3rG(−1, r)2 + 3rG(0, r)2 + 3rG(−1,−1, r)

−3rG(−1, 0, r) + 3rG(0,−1, r)− 3rG(0, 0, r) + 2π2r2 + 2π2r
)
,

(4.31)
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which we can further simplify using the shuffle algebra:

T0 =− r(r+ 1)G(−1,−1, r)

2r+ 1
− r(r+ 1)G(−1, 0, r)

2r+ 1
+

r(r+ 1)G(0,−1, r)

2r+ 1

+
r(r+ 1)G(0, 0, r)

2r+ 1
+

2π2r(r+ 1)

6r+ 3

(4.32)

Of course, following this procedure by hand for all terms in T(r) would be long and painstaking, but

it is easy to streamline it once the algorithm for the reduction to the canonical form is implemented.

For this, we used the private Mathematica package PolyLogTools [184]. The only other possible issue

is that of having expressions linear in the mass scale ratio appearing in the polylogarithms so that the

partial fractioning and the reduction algorithm can operate, but in our case, the replacement r → r is

always sufficient. Here is the algorithm we applied to compute the triangle integral up to orderO
(
ϵ2
)
,

which is essentially the method described in [159, 171]:

1. Start with T , an expression containing MPLs involving the variables {x1, . . . , xN} and r. Set

j = 1.

2. ReduceT to canonical formwith respect to the variables{xj , xj+1, . . . , xN , r} (c.f. Section3.3.3).

3. Partial fraction the coefficient of each polylogarithm in T with respect to xj .

4. Find a primitive Tj of T with respect to xj using
∫
G(⃗a, xj)

b− xj
= G(⃗a, b, xj). The integral of T is

T∞
j − T 0

j , the difference of the limits of Tj in∞ and 0.

5. T0 can be obtained as the series expansion of T in 0 up toO
(
x0j

)
6. To obtain T∞, we will take the limit 1/xj = x̄j → 0. Set T∞ = T (x̄j , xj+1, . . . ).

7. Reduce T∞ to canonical form with respect to x̄j , xj+1, . . . , xN , r.

8. Expand T∞ as a series up toO
(
x̄0j

)
.

9. Replace T by the integrated version T∞ − T0.

10. if j = N , end. Otherwise, set j = j + 1 and go to step 2.

Of course, this algorithm does not work systematically or we could evaluate any loop integral. The two

crucial steps are step 2 and step 3: the set of entries of the polylogarithms and the rational prefactors

in T need fullfill the criterium of linear reducibility discussed in Section 3.3.3 so that a canonical form

can be reached after each variable is integrated.

Renormalized HEFT amplitude

Matching the HEFT to the SM can only be performed at the level of renormalized amplitudes. Indeed,

the two-loop diagrams in Figure 4.4 are UV finite, while our one-loop triangle diagramAgf is UV diver-

gent:

Agf ∋ −i
(αs

π

)2
CACF

(
4m2

b − s
) mb

2v

1

ϵ
, (4.33)
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where we replaced CggH by its value and all the couplings are bare parameters. This is a manifestation

of operator mixing: the Yukawa operator generates a counterterm for the gluon fusion operator.

In this subsection, we will keep using symbols without a superscript for bare couplings and will add a

superscriptR to renormalized parameters. We use theMS renormalization scheme for our calculation:

αs = µ2ϵS−1
ϵ αR

s , v = µ−ϵvR

Cy = µϵ

(
CR
y + yRt

(
αR
s

π

)2(
mR

b

mR
t

)(
CF

2ϵ
+∆F

))
,

(4.34)

where∆F is the finite quantity we wish to obtain using our matching and Sϵ = (4π)ϵe−ϵγ , with γ the

Euler-Mascheroni constant. Note that theHiggs vacuumexpectation value is not actually renormalized,

but we must pay attention to separate the (4 − 2ϵ)-dimensional quantity v to the 4-dimensional one

vR = µϵv to ensure that each piece of the amplitude has the right dimension. Because we work with a

single order in the perturbation theory, there is no need to specify the renormalization of the masses

further than

mt = mR
t +O

(
αR
s

)
, mb = mR

b +O
(
αR
s

)
, (4.35)

and we will suppress the subscript for the renormalized parameters used below.

We can now extract the piece of the HEFT amplitude for H → bb̄ of order O
(
ytα

2
s

)
, which gets a

contribution fromAb and fromAgf:

AHEFT
H→bb̄

∣∣
ytα2

s
= iyRt

(
αR
s
π

)2
CACF

(
mb

mt

)
m2

b

(2r+ 1)

r(r+ 1)18
√
2

(
3G(0,−1, r) + 3G(0, 0, r)

− 3G(−1,−1, r)− 3G(−1, 0, r) + 9(1 + 2r) log

(
m2

b

µ2

)
− 24r+ 2π2 − 12

)
+iyRt

(αs

π

)2(mb

mt

)
CA

m2
b√
2

(2r+ 1)2

r(r+ 1)
∆F .

(4.36)

. Higgs-to-bottom decay at two loops in the Standard Model

Let us now move on to the Standard Model calculation of H → bb̄ at O
(
α2
syt
)
. The two diagrams

entering the calculation are shown in Fig. 4.4. As in the HEFT, we are computing their spin and color

summed contraction with spinors to deal only with scalar quantities. Wewill proceed through the same

steps as in the previous section, defining a topology and reducing the integral to master integrals using

IBP relations, before evaluating the master integrals. The major difference with the previous section

is that we now need to expand this amplitude in the largemt limit. To do so, we will reduce the exact

amplitude to master integrals, compute the expansion of the masters in the large mt limit using the

method of regions and expand their coefficients in the amplitude.

.. Reducing the amplitude to master integrals

For the evaluation of the diagrams in this section, we used QGRAF to generate the diagrams in my XML
format and then translated them into FORM for evaluation of the fermion traces. We then imported

these results in Mathematica, in which we performed the rest of the calculations.
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D5

D6

D4

D2

D3

D1

1

Figure 4.7: Correspondence between the denominators for our topology and the denominator in one of our Feynman dia-
grams.

As in the case of HEFT, the presence of only two diagrams made the choice of a topology straight-

forward. We opted for the following:

D1 = k22 −m2
b , D2 = (k2 − p1)

2, D3 = (k2 + p2)
2,

D4 = (k1 − p1)
2 −m2

t , D5 = (k1 + p2)
2 −m2

t , D6 = (k1 − k2)
2 −m2

t ,

D7 = (k1 + k2)
2 −m2

t .

(4.37)

Their relation to the Feynman diagrams is shown in Figure 4.7. Note that an extra propagator D7

needs to be added to the definition of the topology so as to deal with all possible numerators in integrals:

there are 7 possible scalar products involving k1 or k2 so we need 7 propagators to deal with them all.

Using these definitions, we can derive the rules for the scalar products replacements:

k1 · k1 = −D1 +
1
2D6 +

1
2D7 +m2

t −m2
b , k2 · k2 = D1 +m2

b ,

k1 · p1 = −1
2D4 +

1
4D6 +

1
4D7 − 1

2D1, k2 · p1 = 1
2D1 − 1

2D2 +m2
b ,

k1 · p2 = 1
2D5 − 1

4D6 − 1
4D7 +

1
2D1, k2 · p2 = −1

2D1 +
1
2D3 −m2

b ,

k1 · k2 = 1
4D7 − 1

4D6.

(4.38)

We can now define any integral in our amplitude as a linear combinations of integrals of the form:

J(n1, . . . , n7) =

∫
ddk1
(2π)d

ddk2
(2π)d

1

Dn1
1 . . . Dn7

7

. (4.39)

As in the HEFT calculation, we obtained the expresssion of the two diagrams in terms of topology

integrals going through the chain of QGRAF, qgraf-xml-parser, FORM and SAIF. We used FIRE5 to
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reduce the 28 integrals appearing in these diagrams to 23 master integrals which are listed below:

J(0, 0, 0, 1, 0, 1, 0), J(1, 0, 0, 1, 0, 0, 0), J(0, 0, 1, 1, 0, 1, 0), J(0, 0, 2, 1, 0, 1, 0),

J(0, 0, 1, 2, 0, 1, 0), J(0, 0, 0, 1, 1, 1, 0), J(0, 1, 1, 1, 0, 0, 0), J(2, 0, 0, 0, 1, 1, 0),

J(1, 0, 0, 1, 0, 1, 0), J(2, 0, 0, 1, 0, 1, 0), J(1, 0, 0, 1, 1, 0, 0), J(0, 1, 1, 1, 1, 0, 0),

J(1, 0, 0, 1, 1, 1, 0), J(2, 0, 0, 1, 1, 1, 0), J(1, 0, 0, 1, 1, 2, 0), J(1, 0, 0, 2, 1, 1, 0),

J(1, 0, 1, 1, 0, 1, 0), J(2, 0, 1, 1, 0, 1, 0), J(1, 0, 1, 2, 0, 1, 0), J(1, 1, 1, 1, 0, 0, 0),

J(0, 1, 1, 1, 1, 1, 0), J(1, 1, 1, 1, 1, 0, 0), J(1, 1, 1, 1, 1, 1, 0).

(4.40)

.. Evaluation of the master integrals in the large top mass limit

Our goal is to compute the expansion of the SM amplitude in the limit mt → ∞, so we do not need

to evaluate these integrals exactly. Instead, we expand them in this limit using the method of regions

and integrate the expanded integrals, which simplifies the problem greatly. To this end, we used the

Mathematica package UF to obtain the Feynman parameter expression for each of these integrals and

then used the package ASY to find relevant regions and expand the integrals in each relevant region.

Technically speaking, the expansion is set up by introducing a spurious parameter ρ in which we will

expand integrals and assigning each external parameter a scaling in ρ. Positive powers of ρ are assigned

to parameters that are suppressed in the limit of interest so we will assign positive powers tomb and

s and a trivial scaling to mt. We can always shift the powers of ρ homogeneously, so this choice will

produce exactly the same result as if we had sent mt → ∞ and kept mb and s fixed, but it has the

practical advantage of yielding a series in ρ which starts at a non-negative power. The scaling we chose

is the following:

mt → ρ0mt, mb → ρmb, s→ ρ2s. (4.41)

Each region is then defined by the scaling of each Feynman parameter in ρ: xi → ρκixi. The relative

scaling of the parameters determines whether the corresponding propagator in the integral is hard or

soft. As discussed in Section 3.2.2, this provides a nice diagrammatic representation of the integral in

each region, which will help us understand how the matching works.

The package ASY provides the list of regions that contribute to each integral in the limit we are con-

sidering. For each region, we rescale external and Feynman parameters accordingly and then expand

the rational function in the integrand in powers of ρ without modifying the delta function, which is

rigorous as we discussed in Section 3.2.2.

We have expanded all 23 master integrals and integrated them directly using the methods discussed

in the previous section. Their expressions, which we have checked numerically against FIESTA, are
shown Appendix C, but it is interesting to see on an example how the expansion and integration work.

The techniques used for integrations are the same as the ones presented in Section 4.1, augmented by

another trick: it is often useful to apply changes of variables of the form xi → xixj to make gamma

functions apparent. For example, applying x1 → x1x2,
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∫ ∞

0
dx1dx2 x1(x1 + x2)

α(1 + x2)
β =

∫ ∞

0
dx1dx2 x1(1 + x1)

αxα+2
2 (1 + x2)

β

=
Γ(−α− 2)Γ(α+ 3)Γ(−α− β − 3)

Γ(−α)Γ(−β)
.

(4.42)

Let us consider the most complicated master integral in our basis: J(1, 1, 1, 1, 1, 1, 0), which can be

diagrammatically represented as in Figure 4.7. Having six propagators and three scales, the Feynman

parameter representation of this integral is quite involved:

J(1, 1, 1, 1, 1, 1, 0) = −πdΓ(6− d)∫ ∏
dxi (x1x4 + x2x4 + x3x4 + x6x4 + x1x5 + x2x5 + x3x5 + x1x6 + x2x6 + x3x6 + x5x6)

6− 3d
2

×
(
x21x4m

2
b + x21x5m

2
b + x21x6m

2
b + x1x

2
4m

2
t + x2x

2
4m

2
t + x3x

2
4m

2
t + x1x

2
5m

2
t + x2x

2
5m

2
t + x3x

2
5m

2
t

+x1x
2
6m

2
t + x2x

2
6m

2
t + x3x

2
6m

2
t + x4x

2
6m

2
t + x5x

2
6m

2
t + 2x1x4x5m

2
t + 2x2x4x5m

2
t + 2x3x4x5m

2
t

+x24x6m
2
t + x25x6m

2
t + 2x1x4x6m

2
t + 2x2x4x6m

2
t + 2x3x4x6m

2
t + 2x1x5x6m

2
t + 2x2x5x6m

2
t

+2x3x5x6m
2
t + 2x4x5x6m

2
t − sx2x3x4 − sx2x3x5 − sx1x4x5 − sx2x4x5 − sx3x4x5

−sx2x3x6 − sx3x4x6 − sx2x5x6 − sx4x5x6)
d−6 ,

(4.43)

where xi is the Feynman parameter associated to denominator Di. Processing this integral through

ASY, we find that two regions contribute to our expansion.

Hard region In the first region, the scaling of the Feynman parameters is uniform: xi → ρ0xi. This

corresponds to setting all loop momenta hard. In the diagrammatic picture described in Section 3.2.2,

the complete two loop diagram for the integral (Figure 4.7) is reduced to a single point. The functional

dependence of the integral in this region highlights this fact: the only parameters proportional to some

power of ρ are s andmb. As a result, the contribution from this region takes the form

J(1, 1, 1, 1, 1, 1, 0)
∣∣
hard =

∞∑
n=0

mn
b

k
(n)
max∑

k=k
(n)
min

(
s

m2
b

)k ∫ 6∏
i=1

dxiJ
(nk)
h (xi;mt) (4.44)

Each integrand in the expansion only depends on the topmass, whichmeans that they essentially are

tadpole integrals and they correspond to localized interactions, confirming the picture that this region

generates the part of the amplitude which will bematched to the tree-level part of our HEFT amplitude.

That these integrals are tadpoles also shows in the simplicity of the integration, which can be performed

readily with our list of tricks. Let us derive the first order in the expansion, J (00)
h .

J
(00)
h = −πdΓ(6− d)m

2(d−6)
t δ

(∑
i∈ν

xi − 1

)
(x4 + x5 + x6)

d−6

(x3x4 + x6x4 + x3x5 + x3x6 + x5x6 + x1 (x4 + x5 + x6) + x2 (x4 + x5 + x6))
−d/2 .

(4.45)

We can use the Cheng-Wu theorem to specify ν = {1} and apply the rescalings x4 → x4x6, x5 →
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J(1, 1, 1, 1, 1, 1, 0)
∣∣
soft =

Figure 4.8: Diagrammatic interpretation of the soft contribution to the integral J(1, 1, 1, 1, 1, 1, 0)

x5x6 to factorize x6 out of the first term. The integral over x6 takes the form
∫
dx6 x

a1
6 (b1 + b2x6)

a2 ,

which is a Beta function integral. At this stage, we can directly integrate x2 and x3:

∫ ∏
dxiJ

(00)
h = −16πdm

2(d−6)
t Γ(6− d)

∫ ∏
dxi

(x4 + x5)
3− d

2 (x4 + x5 + 1)d−9

(d− 6)(d− 4)(d− 2) (x2 + x3 + 1)3

= −8πdm
2(d−6)
t Γ(6− d)

∫ ∏
dxi

(x4 + x5)
3− d

2 (x4 + x5 + 1)d−9

(d− 6)(d− 4)(d− 2)
(4.46)

We are now in the same situation as in the first step: by factorizing x5 out of the first term through

the rescaling x4 → x4x5, we make the integral over x5 take the form of a Beta function and leaves the

integral over x4 trivial:

∫ ∏
dxiJ

(00)
h = −8πdm

2(d−6)
t Γ(6− d)

(x4 + 1)3−
d
2 x

4− d
2

5 ((x4 + 1)x5 + 1)d−9

(d− 6)(d− 4)(d− 2)

= 2d−8πd+
1
2m

2(d−6)
t

Γ(6− d)Γ
(
1− d

2

)
Γ
(
9
2 − d

2

) ∫
dx4

1

(x4 + 1)2

=
2d−8πd+

1
2Γ(6− d)Γ

(
1− d

2

)
m

2(d−6)
t

Γ
(
9
2 − d

2

)
(4.47)

Soft region The second region has non uniform scaling in the Feynman parameters:

x1 → ρ2x1 x4 → ρ0x4

x2 → ρ2x2 x5 → ρ0x5

x3 → ρ2x3 x6 → ρ0x6

(4.48)

The diagrammatic interpretation of this scaling is that x1 . . . x3 are soft and therefore unpinched

while x4 . . . x6 are hard and therefore contracted to a point. As a result, we can make a representation

of the soft region contribution J(1, 1, 1, 1, 1, 1, 0)
∣∣
soft of the integral as shown in Figure 4.8.

This description clearly suggests that this soft region part of our integral should contribute to the

part of the HEFT amplitude corresponding to the one-loop diagram in Figure 4.5. We will see that

it is indeed the case as it will actually be proportional to the triangle integral we have computed in

Section 4.1.
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After introducing the scaling inρof theparameters in this region in the expressionofJ(1, 1, 1, 1, 1, 1, 0),

we can expand the integral, which now has a nontrivial dependence on the kinematics of the process:

J(1, 1, 1, 1, 1, 1, 0)
∣∣
soft =

∞∑
n=nmin

mn
b

∫ 6∏
i

J (n)
s (xi;mt, s/m

2
b), (4.49)

which will eventually allow the integrals J (n)
s to see threshold effects when s crosses 4m2

b . The first

nontrivial term is the integral J (−2)
s . This term diverges in the limit mb → 0 so its contribution will

actually cancel against other terms in the integral. This means that we will need to expand this integral

to higher orders in the expansion, which we actually need to do for several integrals. For the purpose

of illustrating the evaluation of integrals in our calculation, it is however still useful to go through the

steps of the derivation.

∫ ∏
dxiJ

(−2)
s = πdm

2(d−7)
t Γ(7− d)

∫ ∏
dxiδ

(∑
i∈ν

xi − 1

)
(x4 + x5 + x6)

d−7

((x2 + x3 + 1) (x4 + x5) + (x2 + x3 + x4 + x5 + 1)x6)
− d

2
−1 [m2

b (x4 + x5 + x6)

−s (x4 (x3x6 + x5 (x3 + x6 + 1)) + x2 (x5 (x4 + x6) + x3 (x4 + x5 + x6)))]

(4.50)

The integration is performed for all parameters save x2, x3 using the usual tricks and we find

∫ ∏
dxiJ

(−2)
s = −1

2π
d (mbmt)

d−6 Γ
(
3− d

2

)2 ∫
dx2dx3 (1 + x2 + x3)

3−d (1 + rx2x3)
d
2
−3

= −1
2π

d (mbmt)
d−6 Γ

(
3− d

2

)2
T(r),

(4.51)

in which the triangle integral we computed in Section 4.1 appears naturally, confirming the intuition

that this is a contribution to the part of the amplitude that will be matched to the one-loop diagram in

the HEFT.

Second order correction to the expansion The leading order contribution from some integral

yields a divergent contribution to the form factor in the limitmt → ∞, all of which cancel against each

other when combined. As a result, several integrals, including J(1, 1, 1, 1, 1, 1, 0), need to be expanded

beyond the leading order in themt → ∞ limit in order to obtain their contribution to the first non-

vanishing order of the expansion of the form factor. Obtaining the integrand for these corrections is

no more complicated as in the leading order: it amounts to taking the second nontrivial term in the

series expansion of the integrand in powers of ρ. All the integrals thus obtained can be easily inte-

grated using the set of tricks layed out in the previous discussion except for the NLO correction to the

soft region of J(1, 1, 1, 1, 1, 1, 0), J (0)
s . As in the leading-order case, all parameters can be integrated
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straightforwardly except x2 and x3, and the remaining integral is the following:

J
(0)
s = − 1

48π
dmd−4

b md−8
t Γ

(
2− d

2

)
Γ
(
4− d

2

) ∫
dx1dx2 (x2 + x3 + 1)−d−1 (rx2x3 + 1)

d
2
−3

[d (r (x2 (2x2 + 3) + (x3 + 1) (2x3 + 1))− 4)

−4r
(
2x22 + (2x3 + 3)x2 + x3 (2x3 + 3)

)
− 4r + 8

]
(4.52)

While this integral is more complicated than T(r), it can be expanded in powers of ϵ = (4 − d)/2

and evaluated using the same algorithm. The result of the integration can be found in Appendix C.

.. The expanded Standard Model amplitude

We now have all the elements necessary for the evaluation of the Feynman diagrams for H → bb̄ at

O
(
α2
syt (mb/mt)

)
in the Standard Model. Since we have performed the reduction to master integrals

in the exact amplitude, inserting their expanded values yields an expression of the form

ASM =
∑
i

Ai(mt,mb, s)

 ni
max∑

n=ni
min

(
mb

mt

)n kmax,i
n∑

k=kmin,i
n

(
s

m2
b

)k

fnki (mt,mb, s)

 , (4.53)

where the Ai are rational functions of the external scales, the fnki have no power-law dependence on

mb and s, and i spans each region of each integral. To obtain ASM as a power series in mb and s, we

now only need to expand the Ai to a sufficient order. We can check for missing orders in the expan-

sion of the master integrals by checking that an extra order in the expansion of the integral would not

modify the expanded form factor ASM. In practice, we add a dummy variable to each master integral,

representing the neglected power suppressed term, and check that these dummy variables vanish when

we expand the form factor. After performing this task using the first order of the expansion for all the

master integrals, we found that we needed the power suppressed terms of some master integrals and

we therefore computed them.

While the amplitude in the SM is finite, it is still relevant to specify a renormalization scheme so that

unwanted factors of log 4π and the Euler-Mascheroni γ constant be removed, and the dimensionality

of the amplitude be respected. In our case we only need specify

αs = µ2ϵS−1
ϵ αR

s , v = µ−ϵvR. (4.54)

As in the HEFT, the renormalization of themasses yields a trivial change so we avoid using superscripts

below.

The final result for the SM amplitude forH → bb̄ at O
(
yRt α

R
s
2 (mb/mt)

)
in terms of renormalized

parameters is

ASM = iyRt
(
αR
s

)2
CACF

(
mb

mt

)
m2

b

36
√
2π2

(2r+ 1)

r(r+ 1)

(
6G(0,−1, r) + 6G(0, 0, r)

−6G(−1,−1, r)− 6G(−1, 0, r) + 36 (2r+ 1) log

(
mb

mt

)
− 78r+ 4π2 − 39

)
.

(4.55)
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. Extraction of themb/mt correction to the bottom Yukawa

We now have all the necessary elements to extract the O(mb/mt) correction to the HEFT bottom

Yukawa coupling by matching the contributions of order O
(
yRt α

R
s
2(mb/mt)

)
to the H → bb̄ ampli-

tude in the SM and in the HEFT. By imposing that the two amplitudes be equal up to corrections sup-

pressed by powers of the top mass, we can fix the value of∆F . Indeed, the difference between the two

contributions we have calculated is

iyRt

(
αR
s

π

)2(
mb

mt

)
CAm

2
b

(2r+ 1)2

r(r+ 1)

6CF log
(
m2

t
µ2

)
+ 5CF + 12∆F

12
√
2

 . (4.56)

All the parameters in this equations are renormalized parameters evaluated at the renormalization

scale µ. The matching condition for∆F is therefore:

∆F (µ) = −CF

12

(
5 + 6 log

(
m2

t

µ2

))
, (4.57)

which we can translate to the value of the bottom Yukawa coupling in the HEFT at NLO in the 1/mt

expansion:

Cy(µ) = yRb − yRt

(
αR
s

π

)2(
mb

mt

)
CF

12

(
5 + 6 log

(
m2

t

µ2

))
. (4.58)
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5
Gluon fusion in the SMEFT at two loops

The experimental collaborations at the LHC have delivered a comprehensive account of the properties

of the boson discovered in 2012, showing that it behaves as expected from a Standard Model Higgs

bosonwithin uncertainties: it has the right spin and parity [80, 81], as well as the right interactions [7].

The current experimental precision leaves room for substantial deviations in the couplings of the Higgs

boson to other StandardModel particle and it is our job as theorists to provide the tools that will enable

us to extract either the most useful information from a signal, or the most meaningful constraints if

we find no new physics.

The information extracted from theRun I onHiggs boson couplings byATLAS andCMS is formulated

in theκ-framework [45], whichwediscussed in Section2.3.1. Theκparameters are fit parameterswhich

can be intuitively interpreted asmodified couplings and their definitions are based on the leading-order

parametric dependence of Higgs production and decay on Higgs couplings. While this is an intuitive

approach to putting constraints on possible new physics effects on Higgs couplings, the fact that the

κ are not field-theoretic parameters makes their link to actual BSM models complicated. Extracting

a precise relation between the κ and the parameters of a BSM model essentially requires calculating

all the processes considered in the experimental signal fits to a sufficient degree of accuracy. This in-

volves making many calculations in each BSM model at least at NLO, as experience has shown that LO

predictions fall far from the mark in Higgs physics.

An alternative approach to describe possible newphysics effects in amodel-independentway is to use

the SMEFT [60–62]. Thismakes the relation between the signal and themodel-independent description

more complicated, but the relation of BSM parameters to SMEFT parameters is much simpler than to

κ parameters. This is a desirable trade-off as the SMEFT calculation needs only be done once: we can

expand the effort to provide precise SMEFT predictions for key processes and extract experimental

constraints on SMEFT parameters which can then be translated into constraints on BSM models.
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Anumber of LHCprocesses has been studied in the SMEFTalready, in particular in topphysics, where

NLO QCD predictions are available for tt̄ [185], single top [117] and tt̄H [118] productions, as well as

decays [120]. Precise predictions also exists in Higgs physics, for decays [121, 122, 186] and associated

production [124], but so far only parts of the gluon fusion cross-section are known at NLO [123, 187].

As we have already stressed, NLO corrections in Higgs physics are particularly important [51, 52] and

the LO prediction in the SMEFT is potentially unreliable. We therefore undertook the calculation of

the NLO corrections to Higgs boson production in gluon fusion in the SMEFT.

Gluon fusion is a loop-induced process in the SM, dominated by loops of top quarks. We set up

our calculation in order to be sensitive not only to the effects of heavy particles coupling gluons and

Higgs bosons, but also to new interactions involving top quarks, Higgs bosons and gluons which could

modify the top loop. As a result, the LO process in the SMEFT is also loop-induced and the virtual

corrections to this process are two-loop diagrams. This chapter will describe how we performed the

calculation of these virtual corrections using modern multi-loop techniques and the next will discuss

the phenomenology of the gluon fusion process at NLO. The discussion of the calculation is organized

as follows: Section 5.1 details how we set up the calculation in the SMEFT and discusses the relevant

operators, Section 5.2.3 explains how we evaluated the two-loop diagrams, Section 5.3 discusses the

divergence structure of the amplitude andpresents the final, renormalized and IR-subtracted result. We

then derive the renormalization group evolution of the Wilson coefficients in Section 5.4 and perform

the analytic continuation to the physical regions in Section 5.5.

. The gluon fusion process in the SMEFT

The SMEFT is the extension of the Standard Model by the tower of higher dimensional operators in-

volving SM fields:

LSMEFT = LSM +
∞∑
i=1

Ni∑
j=0

c
(i)
j

Λi
O

(i)
j , (5.1)

where the operators O(i)
j have an energy dimension of 4 + i, Λ is an energy scale larger than typical

LHC energies and c(i)j are dimensionless couplings. While non-renormalizable in general, the SMEFT

Lagrangian can be safely truncated at some order 1/Λn and the resulting set of operators is stable un-

der renormalization as long as observables are also truncated at that order [86]. For most practical

purposes, it is sufficient to work at the order 1/Λ2: it is the first non-trivial order which features op-

erators that affect virtually all aspects of LHC physics. A dimension 5 operator exists but is related to

neutrino physics [60] and bears little effect on collider observables. Since we will work at a fixed order

in the expansion in 1/Λ, we will absorb it in the definition of our Wilson coefficient and work with the

dimensionful coupling

Ci =
ci
Λ2
. (5.2)

In this chapter, wewill always discuss the case of operators involving the topquark. It shouldhowever

be clear that in principle we should consider the contribution of operators involving up- and down-type

quarks of all three generations as our goal is to provide a result to be used in global fits of the SMEFT

and we cannot arbitrarily choose to set any operator to 0. Nevertheless, the analytic calculation of the
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Figure 5.1: Sample diagrams in the leading order contribution to gluon fusion forO1,O2, andO3. The blobs indicate the
dimension-6 operators.

two-loop amplitude is independent of the nature of the quark running in the loop so we will take it to

be the top quark by default throughout this chapter and leave the discussion of the physical relevance

of each quark flavor to Chapter 6, in which we discuss the phenomenology of the process. The only

section where flavor plays a role is in the analytic continuation of the amplitude from the Euclidean

region to either of the two possible physical region: below the quark pair-production threshold (for the

top quark) and above the threshold (for the light flavors), which will be discussed in Section 6.4.

Three CP-conserving, dimension-six operators affect gluon fusion by modifying the top loop [187]:

O1 = Q̄LϕtR(ϕ
†ϕ− v2

2
) + h.c. , (5.3)

O2 = g2sG
a
µνG

µν
a (ϕ†ϕ− v2

2
) + h.c. , (5.4)

O3 = gsQ̄LTaσ
µνtRG

a
µνϕ+ h.c. , (5.5)

where σµν = i [γµ, γν ] /
√
2. Their leading-order contribution to this process is exemplified in Fig-

ure 5.1. These operators are normalized so that their first contribution to gluon fusion appears at the

same order in αs as the SM LO. We subtract vacuum expectation values from the operators to avoid

redefining SM fields and couplings and we add the Hermitian conjugate of all operators, even to O2

which is already Hermitian, to match the conventions of [118].

The contribution of these operators has been studied at LO in [187], and the NLO+NLL contribution

from O1 and O2 was computed in [123]. The LO result underlined the complexity associated with O3,

which generates an intricate UV divergence structure. Indeed, already at leading order, the diagrams

generated byO3, exemplified in Figure 5.1c, are UV divergent and requires a counterterm in C2:

CB
2 ∋ CR

3

δZ23

ϵ
, (5.6)

as illustrated schematically in Equation 5.7 which describes the structure of the part of the amplitude

generated by the EFT operators MEFT. This is the a manifestation of operator mixing which also ap-
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peared in the previous chapter.

MEFT = C1 ×

Diagrams

November 28, 2016

1

+C3 ×

Diagrams

November 28, 2016

1

+C2 ×

Diagrams

November 28, 2016

1

Finite UV divergent Finite

+δ
Z23

ϵ
C3 ×

Diagrams

November 28, 2016

1

Counter-term

(5.7)

. Calculation of the amplitude

.. Structure of the amplitude

The gg → H process has a very simple tensor and color structure that makes it easy to go from the full

amplitude to a scalar quantity that we can efficiently deal with. The amplitude takes the form

A(p1, σ1, c1, p2, σ2, c2) = εµ(p1, σ1)εν(p1, σ1)Aµν
amp c1c2

= εµ(p1, σ1)εν(p1, σ1)δc1c2T
µνM,

(5.8)

where the ε are the polarization vectors of the gluons, the pi are their momenta, σi are their helicities

and ci are their colors. The tensor structure is Tµν = (p1 · p2gµν − pν1p
µ
2 ). We will use the scalar in-

variant s = (p1 + p2)
2 = 2p1 · p2 throughout this calculation to cleanly disentangle the physical Higgs

boson mass mH = 125 GeV and the variable s we use in our calculation. Until we discuss the ana-

lytic continution in Section 5.5, we will always assume to be in the Euclidean region (s < 0,m2
t > 0).

We regularize the amplitudes with dimensional regularization and use the regularization parameter

ϵ = (4− d)/2 where d is the number of spacetime dimensions.

We can obtain the scalar amplitudeM by applying a projector Pc1c2
µν to the amplitude amputated of

its external statesAamp. The required projector is

Pc1c2
µν =

2

s2(1− ϵ)
Tµν δc1c2

N2
c − 1

. (5.9)

We will decompose the bare amplitudeMB as follows:

MB(s,mB
t ) =

αB
s

π
µ−2ϵSϵ

(
1

vB
MB

SM + CB
1

(
vB
)2
MB

1 + CB
2 v

BMB
2 + CB

3 M
B
3

)
+

(
αB
s

π
µ−2ϵSϵ

)2(
1

vB
MB

SM + CB
1

(
vB
)2

MB
1 + CB

2 v
BMB

2 + CB
3 MB

3

)
,

(5.10)

where αB
s is the bare strong coupling parameter, mB

t is the bare top mass, vB is the d-dimensional

vacuum expectation value of the Higgs field, and CB
i are the bare Wilson coefficients. We also define

Sϵ = exp (−ϵγ) (4π)ϵ, the usualMS factorwith γ the Euler-Mascheroni constant andµ is the renormal-
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Operator Vertex Feynman Rule

O1 t̄tH iC1
v2√
2

O2 g1g2H −8ig2svC2H
µ1µ2δc1,c2

O3 t̄1t2g3 igsC3v

√
2

2
T a3
i1i2

[̸ p3, γ
µ3 ]

O3 t̄1t2g3H igsC3

√
2

2
T a3
i1i2

[̸ p3, γ
µ3 ]

O3 t̄1t2g3g4 ig2sC3

√
2

2
vfa3a4a5T

a5
i1i2

[γµ4 , γµ3 ]

O3 t̄1t2g3g4H ig2sC3

√
2

2
fa3a4a5T

a5
i1i2

[γµ4 , γµ3 ]

Table 5.1: The new Feynman rules introduced in qgraf-xml-parser. The index of each particle is defined to correspond
to the indices and momenta in the Feynman rules. The gluon fusion operator contains the transverse tensorHµ1µ2 =
(pµ2

1 pµ1

2 − p1p2g
µ1µ2)

ization scale. In the subsequent sections and until Section 5.3, we will only work with bare parameters

and omit the superscript.

.. LO amplitude

The evaluation of the known result for the LO amplitude for gluon fusion in the SMEFT is a necessary

step for the calculation of the NLO corrections. Not only does this amplitude provide a check of our im-

plementation, but it is necessary for the renormalization and the subtraction of infrared divergences.

Similarly, our choice of subtracting Higgs vacuum expectation values from the operators has a conse-

quence on the SM renormalization in that the bare strong coupling constant and the bare top mass will

include counterterms proportional toC3. As a result, we need to compute the complete LO amplitude,

including the SM contribution.

We generated diagrams using QGRAF to generate diagrams in XML format. We defined the new inter-

actions generated by the dimension-six operators in qgraf-xml-parser to generate FORM expressions

forM which could be processed to evaluate fermion traces and index contractions. The new Feynman

rules generated by operatorsO1,O2 andO3 are listed in Table 5.1.

One-loop diagrams

The integrals in the one-loop diagrams generated in the SMand byO1 andO3 all fall in the same triangle

topology. We defined the following set of denominators:

D1 = k21 −m2
t , D2 = (k1 − p1)

2 −m2
t , D3 = (k1 + p2)

2 −m2
t , (5.11)
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where k1 is the loop momentum. Numerators are handled with the following rules:

k21 = D1 +m2
t , k1 · p1 =

1

2
(D1 −D2) , k1 · p2 =

1

2
(D3 −D1) . (5.12)

Integrals in the family are defined as

I(n1, n2, n3) = µ2ϵS−1
ϵ

∫
ddk1

(2π)d
1

Dn1
1 Dn2

2 Dn3
3

. (5.13)

We used SAIF to reduce all the scalar integrals appearing in the one-loop diagrams into linear com-

binations of I integrals and found the following expressions:

• SM contribution:

MSM =4π2
m2

t

(d− 2)s

(
4 I(1, 1, 1)

(
(d− 2)s− 8m2

t

)
− 16 I(−1, 1, 1)

s

+
16 I(0, 0, 1)

s
+

16 I(0, 1, 0)

s
− 16 I(1, 0, 0)

s
+ 8(d− 5) I(0, 1, 1)

) (5.14)

• Contribution fromO1:

M1 =4π2
mt√

2(d− 2)s

(
4 I(1, 1, 1)

(
(d− 2)s− 8m2

t

)
− 16 I(−1, 1, 1)

s

+
16 I(0, 0, 1)

s
+

16 I(0, 1, 0)

s
− 16 I(1, 0, 0)

s
+ 8(d− 5) I(0, 1, 1)

) (5.15)

• Contribution fromO3

M3 =4π2
√
2mt

(d− 2)s

(
16(d− 3)sJ(1, 1, 1)m2

t + 8(d− 4)sJ(0, 1, 1)

+ 2(d− 2)sJ(1, 0, 1) + 2(d− 2)sJ(1, 1, 0)− 4(d− 6)J(0, 0, 1)

−4(d− 6)J(0, 1, 0) + 8(d− 4)J(1, 0, 0)− 16J(−1, 1, 1))

(5.16)

We reduced the scalar integrals appearing in these amplitudes to master integrals using LiteRed
and obtained the expected tadpole ( I(0, 0, 1)), bubble ( I(0, 1, 1)) and triangle ( I(1, 1, 1)).

These integrals are of course well known and we used their expressions provided in [51]. These inte-

grals are expressed in terms ofmultiple polylogarithm of the variable x defined by s = −m2
t (1−x)2/x.

In the Euclidean region in which s < 0, the expression for x is

x =

√
4m2

t − s−
√
−s√

4m2
t − s+

√
−s

. (5.17)

We will discuss the analytic continuation of x and of the MPLs to the physical region in Section 5.5.

We can now express the one-loop diagrams appearing at LO in our calculation. We obtained each

piece of the amplitude up toO
(
ϵ2
)
, as needed to calculate the IR divergences of the NLO amplitude in
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the Catani-Seymour formalism [188]. Here we present the result up toO
(
ϵ0
)
:

MB
SM = −i

x
(
(x+ 1)2G(0, 0, x)− 2(x− 1)2

)
(x− 1)4

(5.18)

MB
1 = − i√

2mt

x
(
(x+ 1)2G(0, 0, x)− 2(x− 1)2

)
(x− 1)4

(5.19)

MB
3 =

i2
√
2mt

ϵ

−
i
√
2mt

((
x2 − 1

)
G(0, x) + 2xG(0, 0, x)− (x− 1)2

((
2 log

(
µ2

m2
t

)
+ 1
)))

(x− 1)2

(5.20)

As we discussed in Section 5.1, the diagrams generated byO3 have a UV divergence. The calculation

of the tree-level contribution fromO2 will show that it can be absorbed by the renormalization of C2.

Tree-level diagram

The trivial contribution generated by O2 is very simple to calculate. Applying the relevant Feynman

rule in Table 5.1, we find

MB
2 = −32iπ2. (5.21)

As we discussed earlier,CB
2 contains a countertermCR

3 δZ23/ϵ, which cancels the pole in Equation 5.20

by setting

δZ23 =
mt

8
√
2π2v

, (5.22)

in agreementwith the literature [112, 114, 115]. Wewill discuss in detail in Section 5.3 the full one-loop

renormalization matrix for our set of three operators.

.. NLO amplitude

Wewill now calculate theO
(
α2
s

)
virtual corrections to gluon fusion generated by the SM and our set of

three operators. The SM diagrams and those generated by O1 and O3 are two-loop diagrams, and the

diagrams generated byO2 are one-loop diagrams which we will handle separately.

Using the now standard chain of tools, we generated independently the two-loop and the one-

loop diagrams using QGRAF, which we then transformed to FORM expressions for MSM, Mi, using

qgraf-xml-parser whose indices were contracted and gamma matrix traces evaluated. The resulting

expressions were then imported into Mathematica for further processing.

One-loop diagrams

There is only one one-loop diagrams generated byO2 at one loop, as shown in Figure 5.2. It is therefore

straightforward to define a topology to evaluate the loop integral in this diagram. Let us define the
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2

Figure 5.2: The one-loop diagram contributing toMB
2

family

j(n1, n2, n3) = S−1
ϵ µ2ϵ

∫
ddk1
(2π)d

1

(k21)
n1((k1 − p1)

2)n2((k1 + p2)
2)n3

(5.23)

We used SAIF to reduce all the scalar integrals appearing in MB
2 to linear combinations of j integrals.

We then used LiteRed to reduce these integrals to a basis of only one master integral, j(0, 1, 1), a

massless bubble. This integral is trivial to evaluate using the techniques described in Section 4, but in

practicewe simply used the expression provided in [51], as we had already imported their definitions for

the two-loop part of our calculation. Inserting the expression for j(0, 1, 1) intoMB
2 , we get a somewhat

complicated expression which hides the actual simplicity of the amplitude:

MB
2 = 16iπ2

[
3

ϵ2
+

1

ϵ

(
3G(0, x)− 6G(1, x) +

β0
2

+ 3 log

(
µ2

m2
t

))
+ 3G(0, 0, x)− 6G(0, 1, x)− 6G(1, 0, x) + 12G(1, 1, x)− π2

4

+ 3G(0, x) log

(
µ2

m2
t

)
− 6G(1, x) log

(
µ2

m2
t

)
+

3

2
log2

(
µ2

m2
t

)] (5.24)

This is due to the fact that our choice of variables (x,mt) is not well-suited to this result, which is

entirely independent ofmt. We can however simplify this expression greatly by reverting to s. To this

end, we can use the fact that harmonic polylogarithms have known values at x = 1/2 which can be

computed by PolyLogTools using the technique proposed in [160]. We can evaluate each polyloga-

rithm in our expression in terms of ζ-values and log 2 and use the fact that, at this point,m2
t = −2s to

expressMB
2 in terms of s. We find the much simpler result

MB
2 = 16iπ2

(
3

ϵ2
+

1

ϵ

(
β0
2

+ 3 log

(
−µ

2

s

))
+

3

2
log2

(
−µ

2

s

)
− π2

4

)
, (5.25)

which we checked numerically against Equation 5.24.

Two-loop diagrams

The calculation of the two-loop diagrams generated by the SM and the operators O1 and O3 is signif-

icantly more complex than the evaluation of the one-loop diagrams generated by O2, in part because

there are many more diagrams, which require several different topologies.

It is easy to see that the set of topologies defined in the SM calculation of Higgs production at
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NLO [51, 52] is sufficient for all the integrals we need to evaluate. Indeed, in our calculation, O1 only

brings a correction to the value of theHtt̄ vertex, meaning that there is a one-to-one matching of the

SM diagrams to those generated by O1. Furthermore, of the four vertices generated by O3, one is al-

ready present in the SM, and three can be viewed as pinchings of SM diagrams, as shown in Figure 5.3.

Therefore, we use the same three families as [51], which we call T1, T2, T3, and whose integrals are

Figure 5.3: The vertices introduced byO3 can be seen as (pinched) SM interactions.

JTi(n1, . . . , n7) = S−2
ϵ µ4ϵm

4ϵ+2
∑

nk
t

∫
ddk1
(2π)d

ddk2
(2π)d

1(
D

(i)
1

)n1

· · ·
(
D

(i)
7

)n1
, (5.26)

where the factors ofmt ensure that the integrals don’t have a mass dimension, which will make the IBP

relations simpler, and the denominatorsD(i)
j are:

Ti T1 T2 T3

D
(i)
1 k21 k21 −m2

t k21 −m2
t

D
(i)
2 (k1 + p1)

2 (k1 + p2)
2 −m2

t (k1 − k2 − p1)
2

D
(i)
3 (k1 + p1 + p2)

2 (k1 + p1 + p2)
2 −m2

t (k1 + p1 + p2)
2 −m2

t

D
(i)
4 (k2 + p1 + p2)

2 −m2
t (k2 + p1 + p2)

2 −m2
t (k2 + p1 + p2)

2 −m2
t

D
(i)
5 (k2 + p1)

2 −m2
t (k2 + p2)

2 −m2
t (k2 + p1)

2 −m2
t

D
(i)
6 k22 −m2

t k22 −m2
t (k1 + p1)

2 −m2
t

D
(i)
7 (k1 − k2)

2 −m2
t (k1 − k2)

2 (k1 − k2)
2.

(5.27)

The fact that we can use the same topologies as the existing SM calculations provides a tremendous

simplification of the calculation of our two-loop diagrams. Indeed, as a result, all the master integrals

in each topology are known analytically and were computed in [51], and in [52]. We decided to use

the results from [52] for all integrals that do not factorize into products of one-loop integrals for very

practical purposes: they provided their results in the formof electronic files whichwere straightforward

to convert to Mathematica. Since we had already implemented the one-loop integrals provided by [51],

we used these results for the factorized master integrals. The set of non-factorized integrals whose

explicit values we use is denoted Inta…Intk and shown in Figure 5.4. We provide the explicit definition

of the integrals with numerators as momentum-space integrals in Appendix D.1. The factorizedmaster

integrals are denoted Intxy = IntxInty, where x, y are picked from {b, mb, t, tri}, which correspond
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Intg Inth Inti Intj Intk

Figure 5.4: The set of master integrals from [52].

respectively to a massless bubble integral, a massive bubble, a tadpole integral, and a massive triangle

integral. Each of these integrals has been obtained as a series in ϵ and each term in the series is a linear

combination of harmonic polylogarithms of x.

We used SAIF to sort all the scalar integrals in the 21 SM diagrams, the 21O1 diagrams and the 75

O3 diagrams. In total, we found thatMB
SM,MB

1 andMB
3 can be expressed in terms of 821 T1 integrals,

635 T2 integrals and 513 T3 integrals. We then used LiteRed to express these integrals in terms of

master integrals for each topology and insert these expressions into MB
SM, MB

1 and MB
3 . As could be

expected, the reduction in LiteRed resulted in a different set of master integrals than that of [52]. We

therefore needed to express each master integral found by LiteRed as a linear combination of known

integrals.

To this end, we used SAIF to sort the 18 masters from the literature into our topologies. We ex-

pressed each known integral as an explicit momentum space integral and tried to sort it into T1, T2 and

T3. Because there is some overlap between the bases of each family, some integrals were matched to

more than one family, but for each family the number of matching integrals was exactly that of master

integrals in the basis found by LiteRed. For each family, we could then reduce the integrals from the

literature as linear combinations of the LiteRed bases to generate a linear system equations which we

could then solve to find the expression of the three LiteRed bases in terms of the known integrals.

Using the solution of this system, we could express our scalar amplitudes MSM, M1 and M3 as a

series in ϵ up to order ϵ0 where each term is a linear combinations of harmonic polylogarithms of x.

We checked that our implementation of the analytic formulae found in the literature and our change

of basis to the master integrals defined by LiteRed were correct numerically. We evaluated directly

each of the integrals in the bases defined by LiteRed (see Appendix D.2 for the list of integrals) using

FIESTA and SecDec and compared this result with the evaluation of these integrals expressed as linear

combinations of harmonic polylogarithms using Ginac and found good agreement for several choices

of x andmt both in the Euclidean (s < 0) and in the physical (4m2
t > s > 0) regions. The expressions

forM1 andM3 are provided in Appendix D.4.
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. Structure of UV and IR divergences

In this section, we discuss the divergence structure of our NLO amplitude. We will first describe the

1-loop and 2-loop UV divergences that appear in our calculation and then discuss the IR structure of

the NLO amplitude.

For the renormalization of UV divergences, we use a modified MS scheme for the parameters, setup

so that top quark and dimension-six operator effects decouple from SM parameters [189]. The precise

set of rules governing this scheme is layed out in Appendix D.3.

The relation between the bare amplitudeM and the renormalized amplitudeMR is:

ZgM(αB
s ,m

B
t , C

B
i , v

B) = MR(αR
s ,m

R
t , C

R
i , v

R), (5.28)

where Zg is the gluon field renormalization constant, αR
s , mR

t and CR
i are the renormalized strong

coupling constant, the renormalized top mass and the renormalized Wilson coefficients, which we will

assume to be evaluated at the renormalization scale µ. As in the previous chapter, we must separate

the d-dimensional Higgs vacuum expectation value vB from the 4-dimensional parameter vR = µϵvB

to preserve the homogeneity of the amplitude.

The renormalized parameters are related to the bare parameters by

αB
s = S−1

ϵ µ2ϵZαα
R
s , (5.29)

mB
t = Zmm

R
t , (5.30)

CB
i = µκiϵ (ZC)ij C

R
j , (5.31)

where κ⃗ = (3, 0, 1).

The one-loopUV counterterms for the strong coupling constant and the gluon field are given by [118]

Zg = 1 + δZg,SM +
αs

π
C3

1

ϵ

(
µ2

m2
t

)ϵ√
2 vmt +O

(
α2
s

)
,

Zαs = 1 + δZαs,SM − αs

π
C3

1

ϵ

(
µ2

m2
t

)ϵ√
2 vmt +O

(
α2
s

)
,

(5.32)

where δZg,SM and δZαs,SM denote the one-loop UV counterterms in the SM,

δZg,SM =
αs

π

1

6ϵ

(
µ2

m2
t

)ϵ

+O
(
α2
s

)
,

δZαs,SM = −αs

4π

β0
ϵ

− αs

π

1

6ϵ

(
µ2

m2
t

)ϵ

+O
(
α2
s

)
,

(5.33)

where β0 is the one-loop QCD β function,

β0 =
11Nc

3
− 2

3
Nf , (5.34)

where Nc = 3 is the number of colours and Nf = 5 is the number of massless flavours. Our choice

to decouple the top quark from the running of the strong coupling constant shows in the factors of
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(µ2/m2
t )

ϵ that appears in the terms coming from top loops, whose effect is to cancel top quark effects

in the running of αs.

Similarly, the renormalisation of the top mass is modified by the presence of the effective opera-

tors [118],

Zm = 1 + δZSM
m − αs

π
C3

1

ϵ

(
µ2

m2
t

)ϵ

2
√
2 vmt +O

(
α2
s

)
, (5.35)

where the SM constribution is

δZSM
m = −αs

π

1

ϵ
+O

(
α2
s

)
. (5.36)

Note that in Equation 5.35 we also include the
(
µ2/m2

t

)ϵ into the counterterm in order to decouple the

effects from operators of dimension six from the running of the top mass.

The renormalisation of the effective couplings CB
i is more involved, because the Wilson coefficients

mix under renormalisation. The matrix ZC of counterterms can be written in the form

ZC = 1+ δZ
(0)
C +

αs

π
δZ

(1)
C +O

(
α2
s

)
. (5.37)

We have already mentioned that the amplitude M3 requires renormalisation despite contributing at

leading-order in the strong coupling, and the UV divergence is proportional to the leading order ampli-

tudeM2, as was illustrated in Equation 5.7. As a consequence, δZ(0)
C is non-trivial:

δZ
(0)
C =


0 0 0

0 0

√
2mt

16π2 ϵ v
0 0 0

 . (5.38)

At NLO, we also need the contribution δZ(1)
C to eq. (5.37). We have [112, 114, 115]

δZ
(1)
C =


−1

ϵ
0 −8mt

2

ϵ v2

0 0 z23

0 0
1

6 ϵ

 . (5.39)

The quantity z23 denotes the counterterm that absorbs the two-loop UV divergence of the operatorO3,

which is proportional to the tree-level amplitudeM2 in our case. This counterterm is not available in the

literature, butwe can extract it fromour computation. In order to do so, we need to construct a quantity

that is finite in the limit ϵ → 0, which our renormalized amplitude at NLO is not because it contains

IR divergences. By subtracting these infrared divergences from the amplitude, we construct a finite

remainder that still has a dependence on z23, whose value we can fix by imposing that all divergences

cancel.

If we consider a renormalized amplitude AR = (αs/π)
k (MR + (αs/π)M

R
)
, the NLO correction

to the amplitude has IR divergences which take the form [188]

MR = MR
F + I1M

R, (5.40)
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whereMR
F is finite and I1 is the universal dipole operator that depends only on the external kinematics

and color (and not on the details of the hard scattering). In general,

I1 =
1

2

eϵγ

Γ(1− ϵ)

∑
i

1

T2
i

(
T2

i

1

ϵ2
+ γi

1

ϵ

)∑
j ̸=i

Ti ·Tj

(
µ2

−2 pi · pj

)ϵ

, (5.41)

where the sums run over the colored external states of the amplitude, the Ti are the generator of the

representation of the corresponding parton and

γq = γq̄ =
3
2 CF , γg = 11

6 CA − 1
3 Nf , (5.42)

respectively for quarks, anti-quarks and gluons. In the case of the production of a colourless state from

the scattering of two gluons, I1 simplifies to

I1 = −1

2

e−γϵ

Γ(1− ϵ)

(
−s12
µ2

)−ϵ ( 3

ϵ2
+
β0
2ϵ

)
. (5.43)

We subtracted the IR divergences from the NLO amplitudes in our calculations to build

MR
F,SM = MR

SM − I1M
R
SM (5.44)

MR
F,i = MR

i − I1M
R
i i = 1, . . . , 3, (5.45)

out of the amplitudes we have calculated in the previous section. We checked for all the amplitudes

butMR
3 that they had the correct IR divergence structure and that, indeed, the subtracted remainders

MR
F,SM, MR

F,1 and MR
F,2 are finite in the ϵ → 0 limit. On MR

F,3, we used Equation 5.45 as a constraint

to fix the value of z23 by imposing that all poles cancel. We find

z23 =
mt

16π2 v
√
2

(
− 5

6 ϵ2
+

23

4 ϵ

)
. (5.46)

The value of the double pole is in principle fixed by imposing that the O(αs) anomalous dimension

matrix for ourWilson coefficients is finite. We have checked that this criterion is satisfied by our result,

which provides a strong check of our calculation.

A remark about the divergence structure ofM3M3M3 The folk wisdom about QCD radiative cor-

rections tells us what to expect of the degree of divergence of NLO virtual corrections to amplitudes.

Indeed, because in the Standard Model, LO calculations are always UV finite, we know from the renor-

malization structure of the amplitude that the NLO corrections will contain 1/ϵ poles of UV and IR

origin and 1/ϵ2 poles of IR origin. However, in our SMEFT calculation, this picture is perturbed by the

fact that we can freely assign the scaling in αs of the Wilson coefficients, which in our case leads to UV

divergences at LO. This is not an issue because our choice also ensured that the divergences in the LO

loop-induced diagrams can be absorbed by the tree-level diagram. Onceweworkwith renormalized am-

plitudes, the structure of IR divergences described in [188] is respected. This is easily understandable

from the fact that the remaining IR divergences in the NLO correction to the amplitude after renormal-

ization have to be cancelled by the real emissions, which entirely factorize from the hard scattering and
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therefore are agnostic of whether the LO diagrams are tree-level or one-loop, or if divergences appear

in the UV. We found indeed that our renormalized amplitudes have at most 1/ϵ2 poles and that they

have exactly the structure predicted by Equation 5.40. It is however interesting to look at the diver-

gences of the bare amplitude. The bare amplitude generated by O3, M3 contains poles up to 1/ϵ3. Let

us schematically decomposeM3 in terms of its UV and IR divergences to understand their origin:

M3 = MR
3,F + I1

Diagrams

November 28, 2016

1

− δZSM
αs

Diagrams

November 28, 2016

1

−mtδZ
SM
m

∂

∂mt

Diagrams

November 28, 2016

1

−mtδZ
C
m

∂

∂mt

2

− (δZC)
(1)
33

Diagrams

November 28, 2016

1

− (δZC)
(1)
13

Diagrams

November 28, 2016

1

− (δZC)
(0)
23

2

− (δZC)
(1)
23

Diagrams

November 28, 2016

1

(5.47)

The source of the 1/ϵ3 divergence is the term (δZC)
(0)
23

2

= (δZC)
(0)
23 M2. Indeed, the coun-

terterm (δZC)
(0)
23 contains a 1/ϵ pole, while the amplitudeM2 verifies

M2 = MR
2 + (1/ϵ UV poles) = MR

2,F + I1M
R
2 + (1/ϵ UV poles). (5.48)

Because I1 contains 1/ϵ2 poles, the overal divergence of (δZC)
(0)
23 M2 is 1/ϵ3. This is a result of the

mixing of loop orders and of the LO renormalization of the amplitude. It still fits the general picture

of UV and IR divergences of NLO amplitudes perfectly, but contradicts the common wisdom that they

should at most contain 1/ϵ2 poles because this expectation is based on the fact that LO amplitudes are

usually UV finite.

. Renormalization group evolution of the parameters

Our renormalized amplitude depends explicitly on the renormalization scale µ, which we identify with

the factorization scaleµF whichwill be used in the PDF for the evaluation of the hadronic cross-section.

It will however be useful to understand the evolution of our parameters when we change the scale at

which they are evaluated, first because it might be desirable to evaluate the cross section with different

choices of scales for the strong parameter, the top mass and the Wilson coefficients, but also because

it will allow us to evaluate the scale dependence of our result to give an estimate of the importance

of missing logarithms at higher orders - which is our best guess for the importance of the next QCD

corrections.

Because we work in a decoupling scheme, neither the running of the strong coupling constant nor

that of the top mass differ from the SM case with 5 flavors in MS. We have checked explicitly that this

is indeed the case. Note that in our case we need to take into account the running of the Higgs vacuum

expectation value v, which vanishes in the limit ϵ → 0. We find the renormalization group equation
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(RGE) for v using the fact that the bare parameter does not depend on µ

0 =
∂vB

∂ logµ2
=
∂vRµ−ϵ

∂ logµ2
(5.49)

=⇒ ∂vR

∂ logµ2
=

1

2
ϵvR. (5.50)

The extraction of the RGE for the other parameters is obtained in the same manner. We exploited

the fact that none of the bare parameters depend on µ to generate a coupled system of differential

equations that involve αR
s , mR

t , and the Wilson coefficients Ci. Our scheme choice ensures however

that up to order O(αs), neither the derivative of αs or that of mt depend on the derivatives of the

Wilson coefficients – while the reverse is of course true. Solving these equations in an expansion in ϵ

and αs, find that in the limit ϵ→ 0

C1(µ
2) = C1(Q

2)− αs(Q
2)

π
log

µ2

Q2

(
C1(Q

2) + 8C3(Q
2)
m2

t (Q
2)

v2

)
+O

(
αs(Q

2)2
)
, (5.51)

C2(µ
2) = C2(Q

2) +
√
2
C3(Q

2)

16π2
log

µ2

Q2

mt(Q
2)

v
(5.52)

−
√
2
αs(Q

2)

192π3
C3(Q

2) log
µ2

Q2

mt(Q
2)

v

(
5 log

µ2

Q2
− 69

)
+O

(
αs(Q

2)2
)
, (5.53)

C3(µ
2) = C3(Q

2) + C3(Q
2)
αs(Q

2)

6π
log

µ2

Q2
+O

(
αs(Q

2)2
)
. (5.54)

Note thatC1 andC3 are renormalized at one loop and therefore only contain a simple logarithm, while

C2 is renormalized at two loops, meaning that it contains a simple logarithm in the first order term in

its evolution, and a squared logarithm as well as a simple logarithm in the second order correction.

. Analytic continuation of the amplitude to the physical regions

Up to this point, the entirety of our calculation has been performed in the Euclidean region inwhich s <

0, whichwe can translate into 0 < x < 1. In this section, wewill discuss the analytic continuation of the

amplitude to the physical regions. We have used the top quark by default throughout this chapter, but

in this section we will discuss the general case of the analytic continuation, which depends on whether

the Higgs mass is above or below the quark pair production threshold. As a result, we will revert to

discussing a generic quark of massm running in the loop. The relation between x and s in this region

is

x =

√
4m2 − s−

√
−s√

4m2 − s+
√
−s

, (5.55)

and our amplitude is expressed in terms of functions of x that can have branch cuts. As a result, we

first need to understand the analytic continuation of x(s) and of functions of xs to the regions

R1 : 4m
2 > s > 0

R2 : s > 4m2.
(5.56)
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Figure 5.5: The path of x(s) in C for s going from−∞ to+∞.

The region R1 is relevant for calculations of the amplitude in which the Higgs mass is below twice the

quark mass, i.e. for top loops, andR2 is relevant for the other quark flavors.

For anymultivalued functionF (s)which has a branch cut starting at some s0 ∈ R+, the physical an-

alytic continuation along the branch is obtained by approaching the limit by the upper half-plane [190]

Fphysical(s)
∣∣
s∈R+ = lim

ε→0
F (s+ iϵ). (5.57)

In particular, log (−s) is analytically continued to log s− iπ for s > 0 and
√
−s is continued to−i

√
s.

In our case, it is now easy to find the analytic continuation for x inR1:

x(s)|4m2>s>0 =

√
4m2 − s+ i

√
s√

4m2 − s− i
√
s
, (5.58)

which means that inR1, x(s) is on the upper-half complex plane. In the region above thresholdR2,

x(s)|s>4m2 =

√
s− 4m2 −

√
s√

s− 4m2 +
√
s
, (5.59)

and as a result−1 < x < 0. The path of x in the complex plane as s goes from−∞ to+∞ is described

in Figure 5.5

Analytically continuing x is not the end of the story. Indeed, our amplitude is expressed in terms of

harmonic polylogarithms of x, which can have branch cuts. The possible branch cuts of a polylogarithm

G(a1, . . . , an, x) start at the points ai ∈ {−1, 0, 1}. Branch cuts starting at x = 0 and x = −1 extend

to x = −∞ and those starting at x = 1 extend to x = +∞ [160]. As a result, two types of issues can

arise:

• individual polylogarithms in the amplitude can have divergences at two physical points: x = 1

and x = −1. The amplitude is of course finite and all such divergences have to cancel against

each other. If we wanted to evaluate our amplitude at either point, we would need to extract

the relevant logarithmic divergences from each function and cancel them explicitly. As the two

physical regions of interest are not located at these points, we do not need to worry about this

issue.
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• Evaluating the amplitude inR2, however, means evaluating some polylogarithms along a branch

cut since we have x < 0. Let us discuss how to solve this issue below. Note that because there

is no branch cut on the upper unit circle, we can evaluate the amplitude inR1 by using the value

for x given by Equation 5.58.

We know that harmonic polylogarithms whose last entry is not a 0 do not have a branch cut along

R−. In such a case, we have the relation

G(a1, . . . , an,−x) = (−1)nG(−a1, . . . ,−an, x) (if an ̸= 0). (5.60)

The condition that the amplitudemust be analytic and the knownpath ofx in the complex plane gives

us a simple way to analytically continue simple logarithms. As shown in Figure 5.5, below threshold,

x is a unit complex number in the upper half plane so log(x) = iθ for some θ ∈ [0, π]. In particular,

lim
s→4m2

log(x) = iπ so the continuity of the amplitude imposes that the right branch to analytically

continue log(x) to−1 < x < 0 is

log(x)
∣∣
−1<x<0

:= log(−x) + iπ (5.61)

Generalizing this to arbitrary functions F (x) with a branch cut along x < 0, the physical branch of F

above threshold is

Fphys(x)
∣∣
−1<x<0

= lim
ε→0

F (x+ iϵ). (5.62)

While we could perform this procedure on each polylogarithm that has a 0 in its rightmost entry, there

is a more algorithmic way of finding their analytic continuation above threshold. Indeed, we know how

to factorize logarithmic divergences out of polylogarithms, i.e. how to recast any G(. . . , 0, x) into a

linear combination of products of poylogarithms where the only functions with branch cuts along the

line x < 0 are functions of the form G(0, . . . , 0︸ ︷︷ ︸
n

, x) = 1/n! logn x, which we know how to analytically

continue toR2.

Algorithmically, this means that we transform our expression in three steps:

• Extract the G(0, . . . , 0, x) from the polylogarithms in the amplitude (this is done using the

PolyLogTools function ExtractZeroes)

• Replace allG(a1, . . . ,±1, x) byG(−a1, . . . ,∓1,−x)

• Replace allG(0, . . . , 0, x) by

1

n!
(log(−x) + iπ)n =

n∑
k=0

(iπ)n−k

(n− k)!
G(0, . . . , 0︸ ︷︷ ︸

k

,−x). (5.63)

After these operations, all the polylogarithms in the amplitude have−x as argument and are therefore

defined without ambiguities in the regionR2.
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6
Gluon fusion in the SMEFT at NLO

. Calculation setup

The results presented in the previous chapter can be used for a phenomenological study of Higgs pro-

duction in the SMEFT. We combined the virtual corrections to gluon fusion obtained analytically with

the real emission diagrams generated automatically with MadGraph5_aMC@NLO. We built on the imple-

mentation developped for the calculation of Higgs boson production in association with one jet at LO

in the SMEFT [118], which is described by the same Feynman diagrams as the real emission corrections

for inclusive gluon fusion at NLO. In MadGraph5_aMC@NLO, the virtual corrections and the real emis-

sions are combined to evaluate the partonic cross section numerically using the Monte Carlo method,

which is then integrated over the PDF of the proton. The calculation is matched to the parton shower

generator PYTHIA8 that deals with further parton emissions.

To match the scheme used in MadGraph5_aMC@NLO, we changed the mass scheme for the top quark

to the on-shell scheme. Let us show howwe can relate themass we have used in our decoupling scheme

mt
dec(µ) to the on-shell massmos

t . They are both related to the bare mass:

mB
t = Zmmt

dec(µ) = Ẑmm
os
t , (6.1)

where Zm and Ẑm are respectively the top mass renormalization constants in our scheme and in the

on-shell scheme. Taking the value for Ẑm from [118], we have

mt
dec(µ) = mos

t

Ẑm

Zm
= mos

t

(
1− αs

π

(
4

3
+ log

(
µ2

m2
t

)
+ C3

2
√
2

3
vmt

))
. (6.2)

The Standard Model results presented here have been cross-checked with the NLO+PS implementa-

tion of aMCSusHi [191]. Results are obtained with MMHT2014 LO/NLO PDFs [192], for LO and NLO
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results respectively; input parameters are

mt = 173 GeV , mh = 125 GeV , mZ = 91.1876 GeV , (6.3)

α−1
EW = 127.9 , GF = 1.16637× 10−5 GeV−2 . (6.4)

The factorization and renormalization scales are set atmh/2. We introduce a new scale µEFT at which

we evaluate the Wilson coefficients, also set at µ = mh/2, which we will use to assess uncertainties

related to the running of these couplings, as discussed in the next section. The running of the Wilson

coefficients is controlled by a running operator

Ci(µ
2) = Γij(µ

2, µ2EFT)Cj(µ
2
EFT). (6.5)

Cross sections from dimension-six operators can be parametrized as

σ(µ) = σSM (µ2) +
∑
i

1TeV2

Λ2
Ci(µ

2)σi(µ
2) (6.6)

= σSM (µ2) +
∑
i

1TeV2

Λ2
Ci(µ

2
EFT)σ̃i(µ

2, µ2EFT) (6.7)

where the σi are built from the interference of the SM with the EFT amplitudes and

σ̃i(µ
2, µ2EFT) = Γij(µ

2, µ2EFT)σj(µ
2) (6.8)

Wewill also consider the distributions of theHiggs boson transversemomentum and rapidity, which

can be parametrized in a similar fashion.

. Theoretical uncertainties

ConsideringNLO corrections to SMEFT observables provides away to reliably estimate the size ofmiss-

ing radiative corrections by considering the dependence of our result on the renormalization and fac-

torization scale. As our predictions are expressed in a double expansion in αs and in 1/Λ, there are two

main classes of uncertainties associated to truncating these expansions. We consider three sources of

uncertainties related to the missing orders in the perturbative QCD expansion

• Missing orders in the calculation of the cross section. These are estimated by varying the renor-

malization and factorization scale by a factor of 2 around the central scale.

• Missing orders in the running of the Wilson coefficients. We estimate this uncertainty by vary-

ing µEFT around the central value by a factor of 2. By separating this running uncertainty from

the missing orders the cross section itself, we ensure that no cancellations happen in the global

variation. This is especially relevant if we consider global fits, which will use measurements at

different scales: the RGE evolution will constitute a major source of uncertainty, which must not

be underevaluated.
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• PDF uncertainties, which we evaluate using the the procedures provided with our PDF set of

choice.

The evaluation of uncertainties associated to the missing orders in the SMEFT expansion are noto-

riously more difficult to evaluate reliably. A number of discussions and studies have been produced on

this topic [108, 193–195]. Let us write down the SMEFT expansion of the cross section up to 1/Λ4:

σ = σSM +
1 TeV

Λ2

∑
i

C
(6)
i σi +

(1 TeV)2

Λ4

∑
ij

C
(6)
i C

(6)
j

(
σi|j + σ|ij

)
+
∑
k

C
(8)
k sk

 , (6.9)

where we restored the dimension label of the Wilson coefficients, the σi|j are the dimension-8 contri-

bution coming from the square of the EFT amplitudes with one dimension-6 operator insertion, which

we have calculated, the σ|ij come from the interference of the SM amplitude with the SMEFT diagrams

with two insertions of dimension six operators and the sk are the interference of the SM amplitude

with the SMEFT diagrams with one insertion of a dimension eight operator. Using our calculation, we

can explicitly evaluate the σi|j but not the two other contributions. It has been shown using explicit

examples that there can be no general arguments based on the σi|j to estimate the size of the other

contributions of the same order [194] as this is a model dependent quantity.

. Numerical results in the top sector

.. Total cross sections

Here we present numerical results for gluon fusion at the LHC at 13 TeV for σSM and the σi. The

numbers are quoted with three uncertainties corresponding to the renormalization and factorization

scale dependence, the EFT scale dependence, and the PDF uncertainties in that order. Our results are

shown in Table 6.1

13 TeV LO (pb) NLO (pb) K-factor

σ1 −2.87+34.0%+1.5%
−25.0%−1.5% −4.615+24.8%+1.9%

−20.0%−1.6% 1.61

σ2 2630+34.0%+1.5%
−25.0%−1.5% 4080+23.9%+1.9%

−19.6%−1.6% 1.55

σ3 50.2+34.0%+1.5%
−25.0%−1.5% 83.0+26.0%+1.9%

−20.6%−1.6% 1.65

Table 6.1: Results for the total rates at LO and at NLO. The two quoted uncertainties are the scale and PDF uncertainties

We see that the contributions from effective operators haveK-factors that are very similar, with a

residual scale dependence that is almost identical to the SM. In the following we present an argument

which explains this observation. We can describe the total cross section for Higgs boson production

to a good accuracy by taking the limit of an infinitely heavy top quark, because most of the production

happens near threshold. In this effective theory where the top quark is integrated out, all contribu-

tions from SMEFT operators can be described by the same contact interaction κGa
µνG

µν
a H . TheWilson
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coefficient κ can be written as

κ = κ0 +
∑

Ciκi , (6.10)

where κ0 denotes the SM contribution and κi those corresponding to each operatorOi in the SMEFT.

As a result each σi is generated by the same Feynman diagrams both at LO and NLO in the infinite top-

mass EFT. The effect of radiative corrections is, however, not entirely universal as NLO corrections to

the infinite top-mass EFT amplitudes come both from diagrammatic corrections and corrections to the

Wilson coefficientsκi, which can be obtained bymatching the SMEFTamplitude to the infinite topmass

amplitude, as illustrated in fig. 6.1. Indeed, each κi can be expressed in terms of SMEFT parameters as

Figure 6.1: Diagrammatic description of the matching between the SMEFT and the infinite top mass EFT at LO (left) and at
NLO (right). The NLO amplitude in the infinite top-mass EFT contains two elements: diagrammatic corrections, which con-
tribute universally to theK-factors and Wilson coefficient corrections, which are non-universal.

a perturbative series κi = κ
(0)
i + αsκ

(1)
i +O(α2

s). In the infinite top mass EFT, eachK-factorKi can

be decomposed as

Ki = KU + αs
κ
(1)
i

κ
(0)
i

, (6.11)

whereKU is the universal part of theK-factor, which is exactly equal toK2. By subtractingK2 to each

Ki in the infinite top mass limit numerically (settingmt = 10TeV), we could extract the ratios αs
κ
(1)
i
κi

and check explicitly that these non-universal corrections are subdominant compared to the universal

diagrammatic corrections, which explains the similarity of the effects of radiative corrections for each

contribution.

As could be expected, there is a large hierarchy between the contributions of O1 and O3, whose LO

contributions are loop induced, and that ofO2 which appears at tree level.¹

.. Distributions

We have obtained differential distribution at LO andNLO for the transverse momentum and the rapid-

ity of theHiggs boson inMadGraph5_aMC@NLO. Herewepresent the distributions obtained bymatching

our NLO prediction to a parton shower to generate events that could be used for detailed simulations

of experimental conditions. We parametrize the SMEFT distribution for the variable X truncated at

O
(
1/Λ2

)
in same way as the total cross section:

dσ

dX
=
dσSM
dX

+
(1 TeV)2

Λ2

(∑
i

Ci
dσi
dX

)
(6.12)

¹Indeed
σ2

16π2
≃ σ1 + σ3

2
.
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Results for the Higgs transverse momentum (pT ) and rapidity (y) spectra are shown in Figure 6.2. We

show the normalized distributions
1

σi

dσi
dX

and include an insert showing the ratio of each distribution

to the SM distribution. The overall scaling can be obtained from Tables 6.1.
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Figure 6.2: Normalized shapes of the Higgs transverse momentum and rapidity distributions predicted by σSM and σi at
13 TeV including NLO corrections. The bands around the central values show the scale uncertainties of these results (di-
rect sum of the scale dependence and PDF uncertainties). The insert shows the ratio of each SMEFT distribution with the SM
distribution.

As we have discussed in the previous section, the transverse momentum spectrum discriminates

between the SM production and the effects of the SMEFT operators in the tail of the distribution. Fig-

ure 6.2a shows that the internal dynamics of the ggH interaction start to become observable around

250 GeV. On the other hand, Figure 6.2b shows that there is little hope to use the rapidity distribution

of the Higgs boson to probe the effects of SMEFT operators. The differences in shape that appear for

very forward Higgs bosons, around |y| > 3.5, are not statistically significant.

The transverse momentum spectrum of the Higgs boson is only generated by the parton shower at

LO. It is therefore expected that large differences should appear at large transverse momentum when

including NLO corrections. As shown in Figure 6.3, this is indeed the case for each component of the

cross section at transverse momenta above 50 GeV.

While the rapidity distribution is of little phenomenological interest to disentangle possible SMEFT

effects, it is still interesting to observe the effect of the NLO corrections on this distribution since it

is already fully populated at LO even without matching the calculation to a parton shower, contrary to

the transversemomentum spectrum. Thismakes the rapidity differentialK-factor a real measure of an

NLO correction, while our description of the pT spectrum really should be considered a LO prediction

since it is the first order where it is nontrivial at the parton level. As a result, as shown in Figure 6.4, the

shape correction in the rapidity spectrum ismuchmilder than for the transversemomentum spectrum,
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Figure 6.3: Comparison of the LO and NLO shapes of the transverse momentum spectra of σSM and the σi. The inserts show
the ratios of the differential cross sections at LO and at NLO.

although the NLO rapidity spectra are noticeably more central.

. Discussion of the effects of light quarks

It was natural as a first step to consider the SMEFT operators that minimally modify the gluon fusion

process, i.e. those that modify the top loop. However, the SMEFT approach is successful due to its

universality and we should not make assumptions by excluding operators that seem less natural. We

should therefore investigate whether it would be relevant to include the effects of the variantsO(f)
1 and

O
(f)
3 of operatorsO1 andO3 for other quark flavors.

The constraints on the top-quark O1 and O3 have been shown to be set in a complementary way by

gluon fusion and t̄tH associated production in [118]. This statement would however not carry on to
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Figure 6.4: Comparison of the LO and NLO shapes of the transverse momentum spectra of σSM and the σi. The inserts show
the ratios of the differential cross sections at LO and at NLO.

the lighter flavors and we canmake the argument that any values of theWilson coefficients ofO(f)
1 and

O
(f)
3 that would yield an observable effect in gluon fusion through a light quark loopwould already have

been constrained by their contribution to other production modes. Indeed, ifO(f)
1 brings a significant

contribution to gluon fusion, it would bring amuch stronger contribution through the quark-antiquark

annihilation channel. Similary, if O(f)
3 is relevant for gluon fusion, it also generates several new pro-

duction modes happening at tree level (qq̄ → Hg, gq → Hq, gg → Hqq̄) which would be much more

constraining. The contribution of all quark initiated processes would be suppressed in the case of the

bottom quark, but both operators would yield a significant contribution toHb̄b. A dedicated study of

the contribution of the bottom-quark related operators would still be interesting and might warrant

their inclusion in our prediction, but we can already safely neglect all other flavors.
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7
Conclusion

In this thesis, we have presented two original results that expand the existing theoretical toolbox for

the study of the properties of the Higgs boson at the LHC.Themotivation for this work is rooted in the

challenges of modern particle physics, in which the absence of new physics signals combined with the

ever expanding body of BSM models makes a compelling case for precision measurements as a way to

study the SM and to constrain BSM effects in the most model-independent way possible. As theorists,

playing our part in this enterprise today implies tackling multi-loop calculations to make precise pre-

dictions. To this end, we used modern mathematical techniques that are interesting in their own right

but have also very pragmatic applications for the world of particle physics. Using these tools, we have

been able to provide results that we hope will help shed more light on the Higgs sector.

The first result presented in this thesis was the extraction of the power-suppressed correction to the

bottom quark Yukawa in the HEFT, which corresponds to the infinite top mass limit of the SM. This

correction is needed to perform the complete calculation of the O
(
α4
sytyb

)
correction to the produc-

tion cross section of a Higgs boson in association with two bottom quarks in the HEFT, which, while

subleading, is expected to reduce the large theoretical uncertainties in the state-of-the-art calculation.

To this end, we calculated the O
(
α2
syt
)
contribution to a form factor contributing to the decay of a

Higgs boson to a pair of bottom quarks in the SM and in the HEFT, which allowed us to match the

two theories and extract the desired correction. TheHEFT calculation was the combination of one-loop

diagrams and of a tree-level diagram which was proportional to the HEFT bottom quark Yukawa and

we performed the calculation by reducing the one-loop diagram tomaster integrals which we evaluated

exactly using the Feynman parametrization. One of the masters was a triangle integral which is ex-

pressed in terms of MPLs and we used techniques exploiting their Hopf algebra structure to perform

the integration and obtain the HEFT form factor. We then turned to the SM form factor, which is the

sum of two two-loop diagrams, whose Feynman integrals we also reduced as linear combinations of a
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basis of two-loopmaster integrals. We then evaluated these integrals in an expansion in inverse powers

of the top quark mass using the expansion by regions, using simple tricks for the majority of integrals

and exploiting Hopf-algebra-based techniques again for the most complicated cases. This calculation

showed in particular that these complicated integrals are in fact proportional to the triangle integral

that appeared in the HEFT in the infinite top mass limit. Using the values for our master integrals, we

could obtain the form factor in the SM and compare it to the value obtained in the HEFT. This showed

indeed that the two form factors have the same structure up to power-suppressed terms after renor-

malization and we could determine the value of the power-suppressed correction to the bottom quark

Yukawa in the HEFT in terms of SM parameters. This calculation was of course a means to an end and

we now plan to use it to improve the theoretical prediction forHbb̄ associated production in the SM.

A second set of results presented in this thesis correspond to our study of the gluon fusion pro-

cess at NLO in the SMEFT. We evaluated the two-loop Feynman diagrams that correspond to the vir-

tual corrections to this process in terms of seventeen master two loop integrals. We used the expres-

sions of these integrals provided in the literature to obtain the expression of the two-loop bare ampli-

tude and exploited the fact that its one-loop UV divergences as well as the infrared divergences could

readily be determined to fix the value of a two-loop counterterm that mixes the gluon fusion oper-

ator and the chromomagnetic operator. Using this result, we could express the renormalized ampli-

tude and use its IR subtracted combined with automatically generated real emission corrections in the

MadGraph5_aMC@NLO framework to numerically evaluate cross sections and kinematic distributions.

We presented the results of this numerical calculation and discussed the effects of the NLO corrections

on physical observables. In particular, we highlighted the universality of these corrections for each

piece of the total cross section and proposed an explanation for this observation based on the infinite

topmass limit of the amplitude. As this region of phase space is phenomenologically relevant if wewant

to disentangle the effects of each operator, this shows that the exact evaluation of the NLO corrections

was indeed important. These results provide tools to constrain new physics in the Higgs sector using

total and differential cross section measurements.

As the LHC is only at the beginning of its data taking period, wehave exciting times ahead inwhichwe

will put the elementary interactions and particles under unprecedented scrutiny and probe the details

of electroweak symmetry breaking. There is much we can do as theorists to be part of this endeavor

as we further expand our work at the precision frontier, which also provides an amazing opportunity

to better understand the perturbative structure of the quantum field theories that are the basis of our

understanding of the microscopic world.
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A
Shortcomings of∆Φ

Let us give an example of why the coproduct∆Φ defined in Section 3.3.2 is not well defined beyond the

simplest case where we consider a single variable and only constant entries. Let us consider the MPL

G( 1x , 1;x). We can use the full technology provided by the Goncharov coproduct to put this function

into canonical form:

G

(
1

x
, 1;x

)
= G(−1, 1;x)−G(0,−1;x)−G(0, 1;x) +G(1,−1;x) +G(1, 1;x). (A.1)

Let us now evaluate the coproduct∆Φ on each side of the equation:

∆Φ

(
G

(
1

x
, 1;x

))
= 1⊗G(−1, 1;x)− 1⊗G(0,−1;x)− 1⊗G(0, 1;x) + 1⊗G(1,−1;x)

+ 1⊗G(1, 1;x) +G(−1;x)⊗G(1;x) +G(1;x)⊗G(1;x) +G(−1, 1;x)⊗ 1

−G(0,−1;x)⊗ 1−G(0, 1;x)⊗ 1 +G(1,−1;x)⊗ 1 +G(1, 1;x)⊗ 1,

(A.2)

while

∆Φ

(
G(−1, 1;x)−G(0,−1;x)−G(0, 1;x) +G(1,−1;x) +G(1, 1;x)

)
= 1⊗G(−1, 1;x)

− 1⊗G(0,−1;x)− 1⊗G(0, 1;x) + 1⊗G(1,−1;x) + 1⊗G(1, 1;x)

+G(−1;x)⊗G(1;x) +G(1;x)⊗G(−1;x) +G(1;x)⊗G(1;x) +G(−1, 1;x)⊗ 1

−G(0,−1;x)⊗ 1−G(0, 1;x)⊗ 1 +G(1,−1;x)⊗ 1 +G(1, 1;x)⊗ 1,

(A.3)
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which is to say

∆Φ

(
G

(
1

x
, 1;x

))
−∆Φ

(
G(−1, 1;x)−G(0,−1;x)−G(0, 1;x) +G(1,−1;x) +G(1, 1;x)

)
= −G(1;x)⊗G(−1;x).

(A.4)
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B
Details of code implementation

B. Generating diagrams with QGRAF and qgraf-xml-parser

One of the most popular tools available for Feynman diagram generation is the program QGRAF [125].

This code lets the user specify Feynman rules as diagrammatic rules and builds the diagrams as an

abstract representation of the diagram. It is then up to the user to specify how to output this represen-

tation and to translate it to analytic expressions. To this end, we designed an output format for QGRAF
that encodes feynman diagrams as XML objects describing the vertices and the propagators. These XML
files were then read by our Python program qgraf-xml-parser to translate the diagrams into FORM
expressions. The XML format was chosen because it is both human-readable, meaning that we could

look at it and understand the diagrams described in the code, and the machine-readable, meaning that

the files could be imported into Python directly as structured objects, allowing for efficient processing.

Each diagram is imported into qgraf-xml-parser as an object containing a list of vertices and a list of

propagator, where each propagator contains information about the vertices it is connected to and vice

versa. The program contains FORM [127] expressions for the Feynman rules of each vertex and propaga-

tor in the form of strings and builds the expression for the diagram by first building the expression for

fermion lines, following them vertex-by-vertex, and then multiplying all the chains of Dirac matrices

by the bosonic vertices and propagators. The output FORM file can then be processed by FORM, which can

very efficiently calculate all the index contractions in the amplitude as well as calculate the Dirac matrix

traces. The FORM output was formatted to correspond to Mathematica syntax andwas imported in this

program for the further steps of processing.

More anecdotically, as qgraf-xml-parser already had all the necessary structure to represent Feyn-

man diagrams abstractly in Python, we developed a small spinoff called qgraf-xml-drawer [196],

which automatically writes (Lua)LaTeX files to draw Feynman diagrams specified in our XML format

using the package TikZ-Feynman [197].
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B. Family reduction in practice: SAIF

The integrals I(n1, . . . , nN ) defined above for a given family provide us with very useful tools for cal-

culating loop integrals as we shall see in the next section. We therefore developped the Mathematica
package SAIF (Sorting Amplitudes Into Families) to assign a topology to our diagrams and express

all integrals as linear combinations of I(n1, . . . , nN ). There are two main functions in this package,

FindTopology, andToTopology. Thefirst function takes as argument the expression for the integrand

of a loop amplitude and a list of possible topologies that need to be determined by hand. Topologies

are defined as lists of propagators along with kinematic information on the external legs. The package

contains helper functions to find the replacement rules to express numerators as linear combinations

of denominators, as well as to generate all the possible permutations of identical legs for a given topol-

ogy. The FindTopology function works by extracting the denominators from a Feynman diagram and

trying tomatch them to the list of topologies (including all permutations of legs) by looping over them.

Of course, the choice of loop momenta is not unique so for each topology due to shift invariance in

dimensional regularization, so for each topology, we consider all shifts of our loop momenta ki of the

form

ki → Aj
ikj + ckpk, (B.1)

where the pk are the external momenta and Aj
i , ck are taken from {0,±1} with |det(A)| = 1. This

is sufficient to cover all momentum shifts arising in practice. Once a match is found, the function

outputs the corresponding topology as well as the required loop momentum shift to put the diagram

propagators into the same form as the family. The function ToTopology takes as input a Feynman

diagram and the output of FindTopology. It applies the loop momentum shift to the diagram, then

the numerator reduction rules, which transforms the diagram into a linear combination of integrals

with only denominators. It is then only amatter of matching each term in the sum as anαDn1
1 . . . DnN

N

to express the diagram as a linear combination of I(n1, . . . , nN ).
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C
Two-loop master integrals in theH → bb̄ calculation

In this appendix, we show the results for the 23 master integrals that appear in the calculation of the

two-loop form factor expanded in the infinite top mass limit that we evluated in Section 4.2.3. The

integrals showed here are defined with a MS prefactor

J(n1, . . . , n7) = (4π)−2ϵe2ϵγ
∫

ddk1
(2π)d

ddk2
(2π)d

1

Dn1
1 . . . Dn7

7

, (C.1)

where
D1 = k22 −m2

b , D2 = (k2 − p1)
2, D3 = (k2 + p2)

2,

D4 = (k1 − p1)
2 −m2

t , D5 = (k1 + p2)
2 −m2

t , D6 = (k1 − k2)
2 −m2

t ,

D7 = (k1 + k2)
2 −m2

t .

(C.2)
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We express our integrals in terms of t = m2
b/m

2
t

J(0, 0, 0, 1, 0, 1, 0) =

(
− 1

256π4

)
1

ϵ2
+

(
− 1

128π4

)
1

ϵ
− 1

1536π2
− 3

256π4

J(1, 0, 0, 1, 0, 0, 0) =
1

ϵ2

(
t

(
− 1

256π4

))
+

1

ϵ

(
t
log(t)− 2

256π4

)
+ t

(
−3 log2(t)− 12 log(t) + π2 + 18

1536π4

)
J(0, 0, 1, 1, 0, 1, 0) =

(
− 1

256π4

)
1

ϵ2
+

1

ϵ

(
t

(
− 1

1024π4r(r + 1)

)
− 3

256π4

)
+

1

9216π4r2(r + 1)2
t2 +

1

2048π4r(r + 1)
t− 1

1536π2
− 7

256π4

J(0, 0, 2, 1, 0, 1, 0) =
1

512π4
1

ϵ2
+

1

ϵ

(
t2

1

15360π4r2(r + 1)2
+ t

(
− 1

1536π4r(r + 1)

)
− 1

512π4

)
+

17

115200π4r2(r + 1)2
t2 +

1

9216π4r(r + 1)
t+

18 + π2

3072π4

J(0, 0, 1, 2, 0, 1, 0) =

(
− 1

512π4

)
1

ϵ2
+

(
− 1

512π4

)
1

ϵ
+

(
− 1

18432π4r2(r + 1)2

)
t2

+
1

1024π4r(r + 1)
t+

−6− π2

3072π4

J(0, 0, 0, 1, 1, 1, 0) =

(
− 1

256π4

)
1

ϵ2
+

1

ϵ

(
t2
(
− 1

15360π4r2(r + 1)2

)
+ t

1

1536π4r(r + 1)
− 1

256π4

)
+

(
− 1

7680π4r2(r + 1)2

)
t2 +

1

1536π4r(r + 1)
t+

−6− π2

1536π4

J(0, 1, 1, 1, 0, 0, 0) =

(
− 1

256π4

)
1

ϵ2
+

1

ϵ

− log(r(r + 1)) + log(t)− 3

256π4

+
2 log(r(r + 1)) log(t)− log2(r(r + 1))− 6 log(r(r + 1))− log2(t) + 6 log(t)− 14

512π4

J(2, 0, 0, 0, 1, 1, 0) =

(
− 1

512π4

)
1

ϵ2
+

1

ϵ

2 log(t)− 1

512π4
+ t2

6 log(t)− 5

9216π4

+
−6 log2(t)− π2 + 18

3072π4
+ t

2 log(t)− 3

1024π4

J(1, 0, 0, 1, 0, 1, 0) =
1

ϵ2

(
t

(
− 1

512π4

)
− 1

256π4

)
+

1

ϵ

(
t3
(
− 1

3072π4

)
+ t

4 log(t)− 5

1024π4
− 3

256π4

)
+ t3

10 log(t)− 21

30720π4
+ t2

6 log(t)− 11

4608π4
+ t

−12 log2(t) + 24 log(t)− 2π2 + 9

6144π4
+

−42− π2

1536π4

J(2, 0, 0, 1, 0, 1, 0) =

(
− 1

512π4

)
1

ϵ2
+

1

ϵ

2 log(t)− 1

512π4
+ t2

6 log(t)− 5

9216π4

+
−6 log2(t)− π2 + 18

3072π4
+ t

2 log(t)− 3

1024π4

J(1, 0, 0, 1, 1, 0, 0) =
1

ϵ2

(
t

(
− 1

256π4

))
+

1

ϵ

(
t3
(
− 1

15360π4r2(r + 1)2

)
+ t2

1

1536π4r(r + 1)
+ t

log(t)− 1

256π4

)
+ t3

log(t)− 2

15360π4r2(r + 1)2
+ t2

(
− log(t)− 1

1536π4r(r + 1)

)
+ t

(
−3 log2(t)− 6 log(t) + π2 + 6

1536π4

)
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J(0, 1, 1, 1, 1, 0, 0) =

(
− 1

256π4

)
1

ϵ2
+

1

ϵ

(
− log(r(r + 1)) + log(t)− 2

256π4

+t2
(
− 1

15360π4r2(r + 1)2

)
+ t

1

1536π4r(r + 1)

)
+ t2

− log(r(r + 1)) + log(t)− 3

15360π4r2(r + 1)2

+
2 log(r(r + 1)) log(t)− log2(r(r + 1))− 4 log(r(r + 1))− log2(t) + 4 log(t)− 8

512π4

+ t
log(r(r + 1))− log(t) + 2

1536π4r(r + 1)

J(1, 0, 0, 1, 1, 1, 0) =

(
− 1

512π4

)
1

ϵ2
+

1

ϵ

(
t2
(
− 1

15360π4r2(r + 1)2

)
+ t

1

1536π4r(r + 1)

+t3
30r4 + 60r3 + 23r2 − 7r + 2

92160π4r2(r + 1)2
− 1

512π4

)
+ t

18r2 − 12(r + 1) log(t)r + 18r − 1

6144π4r(r + 1)

+ t3
78r4 + 156r3 + 61r2 − 17r −

(
30r4 + 60r3 + 23r2 − 7r + 2

)
log(t) + 5

92160π4r2(r + 1)2

+ t2
300r4 + 600r3 + 215r2 − 90

(
4r3 + 8r2 + 3r − 1

)
log(t)r − 85r − 43

552960π4r2(r + 1)2
− 1

3072π2
− 1

512π4

J(2, 0, 0, 1, 1, 1, 0) = t

(
−
(
6r2 + 6r − 1

)
(2 log(t)− 1)

12288π4r(r + 1)

)

+ t2

(
−
(
30r4 + 60r3 + 25r2 − 5r + 1

)
(3 log(t)− 1)

138240π4r2(r + 1)2

)
− log(t)

512π4
+

1

512π4

J(1, 0, 0, 1, 1, 2, 0) =
1

ϵ

(
t3
(
−90r4 + 180r3 + 77r2 − 13r + 2

215040π4r2(r + 1)2

))
+ t

(
−2r2 − 12(r + 1) log(t)r + 2r + 5

18432π4r(r + 1)

)
+ t3

(
−
792r4 + 1584r3 + 686r2 − 106r − 3

(
90r4 + 180r3 + 77r2 − 13r + 2

)
log(t) + 17

645120π4r2(r + 1)2

)

+ t2

(
−
168r4 + 336r3 + 172r2 − 90

(
8r3 + 16r2 + 7r − 1

)
log(t)r + 4r − 47

1382400π4r2(r + 1)2

)
+

1

256π4

J(1, 0, 0, 2, 1, 1, 0) =
1

ϵ

(
t2

1

15360π4r2(r + 1)2
+ t

(
− 1

3072π4r(r + 1)

)
+t3

(
−10r4 + 20r3 + 7r2 − 3r + 1

35840π4r2(r + 1)2

)
+

1

512π4

)
+ t

3r(r + 1) log(t)− 2
(
r2 + r + 1

)
4608π4r(r + 1)

+ t3

(
−
176r4 + 352r3 + 126r2 − 50r − 6

(
10r4 + 20r3 + 7r2 − 3r + 1

)
log(t) + 17

215040π4r2(r + 1)2

)

+ t2
−36r4 − 72r3 − 19r2 + 30

(
3r3 + 6r2 + 2r − 1

)
log(t)r + 17r + 29

230400π4r2(r + 1)2

J(1, 0, 1, 1, 0, 1, 0) =

(
− 1

512π4

)
1

ϵ2
+

1

ϵ

(
log(t)

256π4
− 5

512π4

)
+ t

−26r2 − 26r + 6
(
2r2 + 2r − 1

)
log(t) + 19

18432π4r(r + 1)

+ t2

(
−
37r4 + 74r3 + 23r2 − 14r − 5

(
6r4 + 12r3 + 4r2 − 2r + 1

)
log(t) + 12

230400π4r2(r + 1)2

)

− log2(t)

512π4
+

log(t)

128π4
− 1

3072π2
− 5

512π4
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J(2, 0, 1, 1, 0, 1, 0) =
1

ϵ2

(
1

t

(
− 1

512π4

))
+

1

ϵ

(
t

(
− 1

30720π4r2(r + 1)2

)
+ t2

10r4 + 20r3 + 7r2 − 3r + 1

107520π4r2(r + 1)2
+

1

t

log(t)

512π4
+

1

3072π4r(r + 1)

)
+

3110r4 + 6220r3 + 1967r2 − 1143r + 486

22579200π4r2(r + 1)2
t2

+ t

(
−
81r4 + 162r3 + 49r2 − 32r − 15

(
6r4 + 12r3 + 4r2 − 2r + 1

)
log(t) + 60

460800π4r2(r + 1)2

)

− log(t)

3072π4r(r + 1)
+

1

1536π4r(r + 1)
+

1

t

(
−3 log2(t) + π2

3072π4

)
log(t)

1536π4
− 5

4608π4

J(1, 0, 1, 2, 0, 1, 0) = t
14r2 + 14r − 6

(
2r2 + 2r − 1

)
log(t)− 13

36864π4r(r + 1)

+ t2
44r4 + 88r3 + 26r2 − 18r − 10

(
6r4 + 12r3 + 4r2 − 2r + 1

)
log(t) + 19

460800π4r2(r + 1)2

− log(t)

512π4
+

3

512π4

J(1, 1, 1, 1, 0, 0, 0) =
1

ϵ

(
1

t

r(r + 1)
(
−3G(−1,−1, r)− 3G(−1, 0, r) + 3G(0,−1, r) + 3G(0, 0, r) + 2π2

)
768π4(2r + 1)

)

+
1

t

1

1536π4(2r + 1)

(
r(r + 1)

(
π2G(−1, r) + 8π2G

(
−1

2
, r

)
− π2G(0, r)− 6G(−1,−1, r)− 6G(−1, 0, r)

+6G(0,−1, r) + 6G(0, 0, r)− 6G(−1,−1,−1, r)− 6G(−1,−1, 0, r)− 6G(−1, 0,−1, r)− 6G(−1, 0, 0, r)

−12G

(
−1

2
,−1,−1, r

)
− 12G

(
−1

2
,−1, 0, r

)
+ 12G

(
−1

2
, 0,−1, r

)
+ 12G

(
−1

2
, 0, 0, r

)
+6G(0,−1,−1, r) + 6G(0,−1, 0, r) + 6G(0, 0,−1, r) + 6G(0, 0, 0, r) + 6G(−1,−1, r) log(t)

+6G(−1, 0, r) log(t)− 6G(0,−1, r) log(t)− 6G(0, 0, r) log(t)− 4π2 log(t) + 30ζ(3) + 4π2
))

J(0, 1, 1, 1, 1, 1, 0) = t2
log(r(r + 1))− log(t) + 1

46080π4r2(r + 1)2
+ t

−2 log(r(r + 1)) + 2 log(t)− 3

12288π4r(r + 1)

+
log(r(r + 1))

512π4
− log(t)

512π4
+

3

512π4
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J(1, 1, 1, 1, 1, 0, 0) =
1

ϵ

(
1

t

r(r + 1)
(
−3G(−1,−1, r)− 3G(−1, 0, r) + 3G(0,−1, r) + 3G(0, 0, r) + 2π2

)
768π4(2r + 1)

)

+
1

t

1

1536π4(2r + 1)

(
r(r + 1)

(
π2G(−1, r) + 8π2G

(
−1

2
, r

)
− π2G(0, r)

−6G(−1,−1,−1, r)− 6G(−1,−1, 0, r)− 6G(−1, 0,−1, r)− 6G(−1, 0, 0, r)− 12G

(
−1

2
,−1,−1, r

)
−12G

(
−1

2
,−1, 0, r

)
+ 12G

(
−1

2
, 0,−1, r

)
+ 12G

(
−1

2
, 0, 0, r

)
+ 6G(0,−1,−1, r)

+6G(0,−1, 0, r) + 6G(0, 0,−1, r) + 6G(0, 0, 0, r) + 6G(−1,−1, r) log(t)

+6G(−1, 0, r) log(t)− 6G(0,−1, r) log(t)− 6G(0, 0, r) log(t)− 4π2 log(t) + 30ζ(3)
))
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−3G(−1,−1, r)− 3G(−1, 0, r) + 3G(0,−1, r) + 3G(0, 0, r) + 2π2

46080π4r(r + 1)(2r + 1)

+
rG(−1,−1, r)

1536π4(r + 1)(2r + 1)
+

rG(−1, 0, r)

1536π4(r + 1)(2r + 1)
− rG(0,−1, r)

1536π4(r + 1)(2r + 1)

− rG(0, 0, r)

1536π4(r + 1)(2r + 1)
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G(−1,−1, r)

1536π4(r + 1)(2r + 1)

+
G(−1, 0, r)
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− G(0,−1, r)

1536π4(r + 1)(2r + 1)
− G(0, 0, r)

1536π4(r + 1)(2r + 1)
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2304π2(r + 1)(2r + 1)
− 1

2304π2(r + 1)(2r + 1)

J(1, 1, 1, 1, 1, 1, 0) =
1

ϵ

(
t

(
− r2 + r − 1

15360π4r(r + 1)

))
+

1

t

(
−
r(r + 1)

(
−3G(−1,−1, r)− 3G(−1, 0, r) + 3G(0,−1, r) + 3G(0, 0, r) + 2π2

)
1536π4(2r + 1)

)

− G(−1,−1, r)

6144π4(2r + 1)
− G(−1, 0, r)

6144π4(2r + 1)
+

G(0,−1, r)

6144π4(2r + 1)
+

G(0, 0, r)

6144π4(2r + 1)

+
−86r2 − 86r + 91

921600π4r(r + 1)
t− r log(t)

1536π4(2r + 1)
− log(t)

3072π4(2r + 1)
+

1

9216π2(2r + 1)
+

1

1152π4
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D
Details of the gg → H calculation

D. Definition of the master integrals

Three of the master integrals used in the calculation of the two loop amplitude for gluon fusion in

the SMEFT are ambiguous because they contain numerators, which requires choosing an explicit

parametrization. Here we provide their definitions:

Intc =
∫

ddk1
(2πd)

ddk2
(2πd)

k1 · k2
(k21 −m2

t )k
2
2

(
(p1 − k1)2 −m2

t

)
(p1 − k1 + k2)

2 −m2
t

(
(p2 + k1 − k2)2 −m2

t

)
Inth = int

ddk1
(2πd)

ddk2
(2πd)

k1 · k2
(k21 −m2

t )(k
2
2 −m2

t )
(
(p1 − k1 + k2)2 −m2

t

)
(p2 + k1 − k2)2

Intk =
ddk1
(2πd)

ddk2
(2πd)

k1 · k2
k22(k1 −m2

t )
(
(p1 + p2 − k1 − k2)2 −m2

t

)

D. Basis rotation at two loops

In Section 5.2.3, we dicussed the reduction to master integrals of the two-loop scalar integrals that

appeared in the calculation of the two-loop diagrams relevant for the calculation of the cross-section of

Higgs production through gluon fusion at NLO in the SMEFT. We expressed the set of master integrals

that was produced by LiteRed to the basis used in the calculation of the SM cross-section for gluon

fusion at two loops by using SAIF to reduce the knownmasters in our LiteRed basis and inverting the

linear system. Here we show the relation between the bases shown in Equations D.1, D.3, and D.5. We
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use the variable s = s/mt2.

Basis rotation for T1 All the diagrams whose integrals fall in T1 can be expressed as a linear com-

bination of 12 master integrals forming the basisB1:

JT1(0, 0, 0, 0, 0, 1, 1), JT1(0, 0, 0, 1, 0, 1, 1), JT1(0, 0, 0, 1, 1, 1, 1), JT1(0, 0, 1, 0, 0, 1, 1),

JT1(0, 0, 1, 0, 1, 1, 1), JT1(0, 0, 2, 0, 0, 1, 1), JT1(0, 1, 0, 1, 0, 1, 1), JT1(0, 1, 0, 2, 0, 1, 1),

JT1(0, 2, 0, 1, 0, 1, 1), JT1(1, 0, 1, 0, 0, 0, 1), JT1(1, 0, 1, 1, 0, 1, 0), JT1(1, 0, 1, 1, 0, 1, 1),

(D.1)

which we could express in linear combinations of the following 12 known masters:

Intbmb, Inte, Intf , Intg, Inth, Inti,

Intj , Intk, Inttb, Inttmb, Inttt, Intttri.
(D.2)

Basis for T2 All the diagrams whose integrals fall in T2 can be expressed as a linear combination of

14 master integrals forming the basisB2:

JT2(0, 0, 1, 0, 0, 1, 0), JT2(0, 0, 1, 0, 0, 1, 1), JT2(0, 0, 1, 0, 1, 1, 1), JT2(0, 0, 1, 1, 0, 1, 0),

JT2(0, 0, 1, 1, 1, 1, 0), JT2(0, 0, 2, 0, 0, 1, 1), JT2(0, 1, 0, 1, 0, 1, 1), JT2(0, 1, 0, 2, 0, 1, 1),

JT2(0, 1, 1, 0, 1, 1, 1), JT2(0, 1, 1, 1, 0, 1, 1), JT2(0, 2, 0, 1, 0, 1, 1), JT2(0, 2, 1, 1, 0, 1, 1),

JT2(1, 0, 1, 1, 0, 1, 0), JT2(1, 0, 1, 1, 1, 1, 0),

(D.3)

which we could express in linear combinations of the following 14 known masters:

Intb, Intc, Intd, Intf , Intg, Inth, Inti,

Intj , Intk, Intmbmb, Intmbtri, Inttmb, Inttt, Intttri.
(D.4)

Basis for T3 All the diagrams whose integrals fall in T3 can be expressed as a linear combination of

11 master integrals forming the basisB3:

JT3(0, 0, 0, 0, 1, 1, 0) JT3(0, 1, 1, 0, 1, 0, 0) JT3(0, 1, 1, 0, 1, 1, 0)

JT3(0, 2, 1, 0, 1, 0, 0) JT3(1, 0, 1, 0, 1, 0, 0) JT3(1, 0, 1, 0, 1, 0, 1)

JT3(1, 0, 1, 0, 2, 0, 1) JT3(1, 0, 1, 1, 1, 0, 1) JT3(1, 1, 1, 1, 1, 0, 1)

JT3(2, 0, 1, 0, 1, 0, 1) JT3(2, 0, 1, 1, 1, 0, 1) 0

(D.5)

which we could express in linear combinations of the following 11 known masters:

Inta, Intb, Intc, Intf , Intg, Inth, Inti, Intj , Intk, Inttmb, Inttt. (D.6)
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Basis rotation for T1

JT1(0, 0, 0, 0, 0, 1, 1) = Inttt

JT1(0, 0, 0, 1, 0, 1, 1) = Inttmb

JT1(0, 0, 0, 1, 1, 1, 1) = Intttri

JT1(0, 0, 1, 0, 0, 1, 1) = Intj

JT1(0, 0, 1, 0, 1, 1, 1) = Intf

JT1(0, 0, 2, 0, 0, 1, 1) = Intj
((−7s2+14s−16)d2+(37s2−74s+88)d−24(2s2−4s+5))

(d−4)(s−4)2s

+Intk
24(d2−5d+6)(s−1)

(d−4)(s−4)2s
+ Inttt

(d−2)(−22s+d(7s−4)+16)
(d−4)(s−4)2s

JT1(0, 1, 0, 1, 0, 1, 1) = Intg

JT1(0, 1, 0, 2, 0, 1, 1) = −Inttt
(−4s+d(s+2)−6)(d−2)2

4(d−3)(2d−7)(s−4)s

+Intg
((s2−2s+4)d2+(−7s2+15s−24)d+4(3s2−7s+9))

(2d−7)(s−4)s

−Inth
(3d−8)(−4s+d(s+2)−6)

(2d−7)(s−4)s − Inti
2(s−2)

(2d−7)(s−4)

+Inttmb
(d−3)(3sd+2d−10s−8)

2(2d−7)(s−4)s

JT1(0, 2, 0, 1, 0, 1, 1) = Intg
(s+2)(d−3)2

(2d−7)s + Inttmb
(d−4)(d−3)
2(2d−7)s + Inth

(3d2−17d+24)
7s−2ds

+Inti
(20−6d)

2d2−15d+28
+ Inttt

(d2−4d+4)
28s−8ds

JT1(1, 0, 1, 0, 0, 0, 1) = Inttb

JT1(1, 0, 1, 1, 0, 1, 0) = Intbmb

JT1(1, 0, 1, 1, 0, 1, 1) = Inte,
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Basis rotation for T2

JT2(0, 0, 1, 0, 0, 1, 0) → Inttt
JT2(0, 0, 1, 0, 0, 1, 1) → Intj
JT2(0, 0, 1, 0, 1, 1, 1) → Intf
JT2(0, 0, 1, 1, 0, 1, 0) → Inttmb

JT2(0, 0, 1, 1, 1, 1, 0) → Intttri
JT2(0, 0, 2, 0, 0, 1, 1) →

(2(s+3)−d(s+2))
2(s−4) Intj +

3(d−2)
s−4 Intk +

(d−2)
s−4 Inttt

JT2(0, 1, 0, 1, 0, 1, 1) → Intg

JT2(0, 1, 0, 2, 0, 1, 1) →
(d2(s2−2s+4)+d(−7s2+15s−24)+4(3s2−7s+9))

(2d−7)(s−4)s Intg − (3d−8)(d(s+2)−4s−6)
(2d−7)(s−4)s Inth

− 2(s−2)
(2d−7)(s−4) Inti +

(d−3)(3ds+2d−10s−8)
2(2d−7)(s−4)s Inttmb − (d−2)2(d(s+2)−4s−6)

4(d−3)(2d−7)(s−4)s Inttt
JT2(0, 1, 1, 0, 1, 1, 1) → Intd
JT2(0, 1, 1, 1, 0, 1, 1) → Intb

JT2(0, 2, 0, 1, 0, 1, 1) →
(3d2−17d+24)

7s−2ds Inth −
(d2−7d+12)

14s−4ds Inttmb +
(d2−4d+4)
28s−8ds Inttt

+ (d−3)2(s+2)
(2d−7)s Intg + 2

2d−7 Inti

JT2(0, 2, 1, 1, 0, 1, 1) → −1
2(d− 4)2Intb +

2(d2−7d+12)
s Intc +

(d2−7d+12)
2s Intf

−(d2−7d+12)((d−3)s+1)

(2d−7)s Intg +
3(d2−7d+10)

(s−4)s Intk +
(−3d3+29d2−92d+96)

7s−2ds Inth

+
(d−2)(2d3(s−4)+d2(76−15s)+d(35s−276)−26s+384)

8(2d−7)(s−4)s Inttt

+
(d4−10d3+33d2−37d+4)

7s−2ds Inttmb +
2(d−3)
2d−7 Inti − (d−5)(d(s+2)−2(s+3))

2(s−4)s Intj
JT2(1, 0, 1, 1, 0, 1, 0) → Intmb2

JT2(1, 0, 1, 1, 1, 1, 0) → Intmbtri
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Basis rotation for T3

JT3(0, 0, 0, 0, 1, 1, 0) → Inttt

JT3(0, 1, 1, 0, 1, 0, 0) → Intj

JT3(0, 1, 1, 0, 1, 1, 0) → Intf

JT3(0, 2, 1, 0, 1, 0, 0) →
(−7s2+14s−16)d2+(37s2−74s+88)d−24(2s2−4s+5)

(d−4)(s−4)2s
Intj

+
24(d2−5d+6)(s−1)

(d−4)(s−4)2s
Intk +

(d−2)(−22s+d(7s−4)+16)
(d−4)(s−4)2s

Inttt

JT3(1, 0, 1, 0, 1, 0, 0) → Inttmb

JT3(1, 0, 1, 0, 1, 0, 1) → Intg

JT3(1, 0, 1, 0, 2, 0, 1) → 3d2−17d+24
7s−2ds Inth −

(
d2−7d+12
14s−4ds

)
Inttmb +

d2−4d+4
28s−8ds Inttt

+ (d−3)2(s+2)
(2d−7)s Intg + 2

2d−7 Inti

JT3(1, 0, 1, 1, 1, 0, 1) → Intb

JT3(1, 1, 1, 1, 1, 0, 1) → Inta

JT3(2, 0, 1, 0, 1, 0, 1) →
(s2−2s+4)d2+(−7s2+15s−24)d+4(3s2−7s+9)

(2d−7)(s−4)s Intg −
(
(3d−8)(−4s+d(s+2)−6)

(2d−7)(s−4)s

)
Inth

−
(

2(s−2)
(2d−7)(s−4)

)
Inti +

(d−3)(3sd+2d−10s−8)
2(2d−7)(s−4)s Inttmb

−
(
(d−2)2(−4s+d(s+2)−6)
4(d−3)(2d−7)(s−4)s

)
Inttt

JT3(2, 0, 1, 1, 1, 0, 1) → −Intc
(
4(d−3)
(s−4)s

)(
(d−2)((7s+20)d2−2(23s+64)d+76s+200)

4(d−3)(2d−7)(s−4)2s

)
Inttt

+4d3−25d2+43d−16
2(2d−7)(s−4)s Inttmb +

d(s−4)−2(s−6)
2(s−4)s Intf + (d−3)(d(s−2)−3s+8)

(2d−7)(s−4)s Intg

+
(
− (d−3)(3d−8)

(2d−7)(s−4)s

)
Inth + 2

(2d−7)(s−4) Inti +
d(s2+s+16)−2(s2+s+22)

2(s−4)2s
Intj

+
(
−3(d−2)(s+2)

(s−4)2s

)
Intk

D. Renormalization scheme

Let us give the precise definition of our renormalization scheme.

• The gluon field is renormalized on-shell

• The strong coupling is renormalized inMSwith the top quark effects decoupled from the running

by subtracting them at 0 momentum.

• The top mass corrections are subtracted in MS. The corrections generated by C3 are decoupled

from the running by multiplying them by (µ2/m2
t )

ϵ (which yields a piece of the on-shell mass).

• The Wilson coefficients are renormalized in MS

This scheme choice ensures that the running of αs and the top mass are exactly identical to the SM

running with five light flavors. To keep expressions simple in the analytic calculation, we have not used

the extra finite pieces from the on-shell top mass which would give the same result for the running.
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D. Two-loop amplitudes

Here we present the results for the two-loop subtracted amplitudesMF
1 andMF

3 which we described in

Section 5.1. Note thatMSM
1 is proportional toMF

1 .

MF
1 = − ix

90
√
2(x− 1)5mt

(
G(0, x)

(
−180(x+ 1)(x− 1)2 log

(
µ2

m2
t

)
− 10(x+ 1)

(
2π2

(
x2 − 1

)
−3
(
x2(43ζ(3) + 4)− 8x− 11ζ(3) + 4

))
− 90β0(x− 1)3

)
+G(0, 0, x)

(
45(x− 1)

(
4
(
x2 + 6x+ 1

)
+ β0(x+ 1)2

)
log

(
µ2

m2
t

)
+ 5

(
75x3 + 411x2 + π2

(
17x3 + 17x2 − x− 1

)
− 411x− 75

))
−30(x− 1)

(
−47x2 + 3β0(x+ 1)2 − 66x− 47

)
G(1, 0, 0, x)

+15
(
9β0(x− 1)(x+ 1)2 − 2

(
33x3 + 58x2 + 59x+ 6

))
G(0, 0, 0, x)

−480
(
x3 + x2 + x+ 1

)
G(0,−1, 0, 0, x) + 60

(
25x3 + 25x2 + 7x+ 7

)
G(0, 0,−1, 0, x)

+15
(
13x3 + 13x2 − 5x− 5

)
G(0, 0, 0, 0, x) + 240

(
x3 + x2 + x+ 1

)
G(0, 0, 1, 0, x)

−840
(
x3 + x2 + x+ 1

)
G(0, 1, 0, 0, x)− 90β0(x+ 1)2(x− 1)G(0, 0, 1, x)

−30 (3β0 + 4) (x+ 1)2(x− 1)G(0, 1, 0, x) + 180(x− 1)G(1, x)
(
β0(x− 1)2 − 9(x+ 1)2ζ(3)

)
−90π2(x+ 1)2(x− 1)G(1, 0, x)− 480(x+ 1)2(x− 1)G(0,−1, 0, x)

−1080(x+ 1)2(x− 1)G(1, 0,−1, 0, x) + 540(x+ 1)2(x− 1)G(1, 0, 0, 0, x)

−90 (β0 + 4) (x− 1)3 log

(
µ2

m2
t

)
+6
(
5(x− 1)

(
x2(31ζ(3)− 63) + 2x(17ζ(3) + 63) + 31ζ(3)− 63

)
+ π4

(
3x3 + 3x2 − x− 1

)))
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MF
3 = − imt

540
√
2(x− 1)5(x+ 1)

(
5760(x+ 1)G(0,−1, 0, x)(x− 1)5 − 180(x+ 1) log2

(
µ2

m2
t

)
(6β0 + 5) (x− 1)5

−5760(x+ 1)2G(−1, 0, x)(x− 1)4 − 1080(x+ 1)2G(0, 1, x)β0(x− 1)4

−5760
(
x3 + x2 + x+ 1

)
G(−1, 0, 0, x)(x− 1)3 − 25920x(x+ 1)G(1, 0,−1, 0, x)(x− 1)3

+14940x(x+ 1)G(1, 0, 0, 0, x)(x− 1)3 − 1800x(x+ 1)G(1, 0, 1, 0, x)(x− 1)3

−2160x(x+ 1)G(1, 1, 0, 0, x)(x− 1)3 − 2160x(x+ 1)G(0, 0, 1, x)β0(x− 1)3

−180(x+ 1) log

(
µ2

m2
t

)(
3β0(x− 1)2 + 62x2 − 76x+ 62

)
(x− 1)3

−60(x+ 1)G(1, 0, x)
(
31π2x+ 27

(
x2 − 1

)
+ 18

(
x2 − 1

)
β0
)
(x− 1)3

−720(x+ 1)G(1, 0, 0, x)
(
4x2 + (3β0 − 71)x+ 4

)
(x− 1)3

+360(x+ 1)G(0, 1, 0, x)
(
8x2 − (6β0 + 1)x+ 8

)
(x− 1)3 − 11520x

(
x2 + 1

)
G(0,−1, 0, 0, x)(x− 1)2

+1440x
(
25x2 + 7

)
G(0, 0,−1, 0, x)(x− 1)2 + 720x

(
7x2 − 3

)
G(0, 0, 0, 0, x)(x− 1)2

+180x
(
37x2 + 27

)
G(0, 0, 1, 0, x)(x− 1)2 − 360x

(
53x2 + 59

)
G(0, 1, 0, 0, x)(x− 1)2

+
(
−210π2

(
x2 − 1

)2
+ 180

(
(−238 + 24ζ(3))x2 + 3(135 + 64ζ(3))x+ 24ζ(3)− 238

) (
x2 − 1

)
+π4x

(
395x2 − 107

))
(x− 1)2 + 360x(x+ 1)G(0, 0, 0, x)

(
9β0(x− 1)3 − 152x3 + 117x2 − 210x− 43

)
+G(0, 0, x)

(
360x

(
x2 − 1

)
log

(
µ2

m2
t

)(
3β0(x− 1)2 + 29x2 − 10x+ 29

)
+30(x− 1)

(
114x5 + 3

(
368 + 21π2

)
x4 − 3

(
68 + 21π2

)
x3 +

(
288 + π2

)
x2

−
(
−1350 + π2

)
x+ 36(x− 1)3(x+ 1)2β0 − 132

))
+G(1, x)

(
2160(x+ 1) log

(
µ2

m2
t

)
β0(x− 1)5 + 360(x+ 1)

(
3(x− 1)2β0 − 104xζ(3)

)
(x− 1)3

)
+G(0, x)

(
90(x− 1)2

(
213x4 +

(
62− 10π2 + 336ζ(3)

)
x3 − 302x2

+2
(
31 + 5π2 − 40ζ(3)

)
x− 6(x− 1)3(x+ 1)β0 + 213

)
−180(x− 1)4(x+ 1) log

(
µ2

m2
t

)
(3(x− 3)β0 − 5(x+ 1))

))
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