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Prof. Vincent Lemâıtre (chairman) UCL, Belgium

Prof. Jean-Marc Gérard (advisor) UCL, Belgium

Prof. Fabio Maltoni UCL, Belgium

Prof. Christophe Delaere UCL, Belgium

Prof. Michel Tytgat ULB, Belgium

Prof. Christopher Smith Université Grenoble Alpes, France
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Abstract

Refined measurements of the new scalar discovered during the first run of the

LHC through more accumulated data have shown an impressive consistency

with the Standard Model (SM) Higgs boson and its spontaneous symmetry

breaking mechanism. However, there are numerous theoretical and experimen-

tal motivations to study alternative scenarios such as the Two Higgs Doublet

Model (2HDM).

The approach taken in this work falls in the context of the current success of

the SM. While studying physics beyond the SM, one needs to ponder about

the properties of the latter that make it so succesful and to think about the

advantages or solutions the New Physics model might offer.

On the one hand, while concentrating in the implications of a 2HDM in the

flavour sector and in order to provide predictions that could be experimentally

observed in the near future, we assume a Minimal Flavour Violation (MFV)

hypothesis for the new flavour structures beyond the SM. In this way, addi-

tional fine-tuning, mass hierarchies or CP violating phases absent in the SM

are avoided. On the other hand, the custodial symmetry that rises acciden-

tally in the SM is hardly maintained in New Physics models with a broader

scalar sector. Its experimental test is given by the ρ parameter that can be

determined through electroweak precision tests. In this work, we consider a

particular case in the 2HDM class where the custodial symmetry is preserved.

The study of the phenomenology concerning flavour quantities coming from

the neutral strange B mesons system, such as the mass diference or the two

muons rare decay, or from CP violation in the neutral kaon system, provides

then interesting constraints in the framework of this custodial invariant 2HDM

with MFV.
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Introduction

The last few years have been a very exciting period for the field of particle

physics. After decades of imposing itself, both mathematically and experi-

mentally, as the most consistent model in order to describe the behaviour of

elementary particles and fundamental interactions, the success of the Standard

Model (SM) has certainly reached a peak with the discovery of the new scalar

at the LHC.

During the previous decades, although being used as the most reliable way

to describe particle physics phenomena, the SM was hardly considered as the

definite theory to describe high energy physics and this for several reasons.

One of the main reasons was due to the fact that the mechanism able to ac-

count for gauge bosons and fermion masses, known as the Brout-Englert-Higgs

(BEH) mechanism, predicted the existence of a scalar particle that had not

been detected for almost fourty years. Moreover, despite this mechanism being

able to provide masses to the elementary particles of the SM in a consistent

way, it introduced additional questions concerning naturalness. First, the BEH

mechanism seems unable to account for the fermion masses striking hierarchy

that is especially manifest when considering the small neutrino masses and

the very heavy top quark. Second, the BEH mechanism does not introduce a

principle that accounts for the fact that the Higgs boson mass is so light com-

pared to the Planck scale. This fine-tuning problem, known as the hierarchy

problem, as well as other sectors of the SM that were considered problematic

either theoretically or experimentally have motivated an abundant research in

1



2 Introduction

phenomenology during the past few decades by studying alternative theoreti-

cal models. Countless attempts Beyond the Standard Model (BSM) have been

proposed with the aim of both solving the previously mentioned unconsisten-

cies and providing new predictions to be tested by the high energy experiments,

while waiting for the potential observation of the Higgs boson.

The new boson discovered during the first run of the LHC [1,2] seems to have

confirmed the SM as the correct theory at the electroweak scale with a scalar

particle associated to the spontaneous symmetry breaking of the gauge theory.

The refinement of the measurements of the new scalar properties through more

accumulated data shows an impressive consistency with the SM and its spon-

taneous symmetry breaking mechanism. Such a discovery is not only historical

in how it accurately confirms a theory developped four decades beforehand but

also because of the technology, the experimental precision and the human effort

needed to provide it.

Besides the search for the Higgs boson, other important results have been

brought to us in the past few years. The observation of the very rare decays

Bs → µ+µ− by the LHCb and CMS experiments at the LHC [3] has opened

the way for the indirect observation (or constraint) of new physics through loop

effects. The impressive improvement in the determination of flavour physics

observables, both in the theoretical field and in the experimental one, have

provided us with the unitarity triangle fit [4] that also confirms the SM and

its Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix as the best the-

oretical framework in order to explain flavour and CP violation. Progress in

the lepton sector mixing has also been made and many improvements in the

precision of the parameters involved are expected in the following years.

Together with the success of the SM, it is undeniable that BSM models suffer

from serious constraints that go from almost ruling out the model as a whole

to allowing for a surviving parameter space that is no longer appropriate to

account for the physics problems these models were supposed to solve in the

beginning. In that sense, these past few years have been very exciting from the

experimental point of view, but have become tougher in the phenomenological

field. It is worth to mention that data from the second run of the LHC in 2015

showed an excess of events in the Higgs analysis of the diphoton decay channel

at around 750 GeV [5, 6] and brought back some excitement in the theoretical
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community with the possibility of a not SM-like scalar. However, later results

from data taken during 2016 by CMS combined with the previous data show

no significant excess [7]. Therefore, there are no significant hints on new scalar

(or other) bosons for now.

In the flavour sector, some unexpected experimental results have also drawn

the attention of many during the past few years. The protagonist has been

the inconsistency between the LHCb measurement of one of the angular ob-

servables (P ′
5) of the B → K∗µ+µ− decay and its SM prediction. A first local

discrepancy of 3.7σ was observed in [8] and it has been supported by the more

recently observed 3.4σ deviation with respect to the SM [9]. This result has al-

ready encouraged numerous studies on possible NP contributions to P ′
5 [10–12].

It is in such a context that our work falls. Its very first aim is to study models

with an additional scalar doublet compared to the SM, known as Two Higgs

Doublet Models (2HDM). This kind of models have been widely studied in

the literature and have even motivated direct searches analyses at colliders.

Some popular BSM models like Supersymmetry (SUSY) contain a restricted

two Higgs doublet scalar sector. The amount of parameters introduced by this

class of models can be reduced through several hypotheses. The approach we

have taken for this work falls in the context of the current success of the SM.

While studying BSM models one needs to ponder about what are the prop-

erties of the SM that make it so succesful and think about the advantages or

solutions the NP model might offer. While concentrating in the implications

of a 2HDM in the flavour sector in order to provide predictions that could be

experimentally observed in the near future, we have tried to keep what makes

the SM flavour description so successful, i.e. the CKM mixing matrix. This

paradigm accurately accounts for the observations concerning both flavour and

CP violation by introducting a mixing matrix with a single complex phase in

the case of three flavour generations. When studying a model with two scalar

doublets, new flavour structures beyond the SM ones are allowed. We have

therefore constrained our model in such a way that the new flavour structures

do not introduce additional fine-tuning, mass hierarchies or CPV phases with

respect to the SM. In order to do so, we have considered the Minimal Flavour

Violation (MFV) hypothesis.

Another property of the SM that is hardly maintained in BSM models with a
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broader scalar sector is the experimental test of its custodial symmetry given

by the ρ parameter that can be determined through EW precision tests. When

introducing additional scalars, corrections to this parameter are in principle

sizable and the current precision in this sector is very high. This constitutes

the main reason why, in this work, we have considered a particular case in the

2HDM class where the custodial symmetry, that in the SM rises accidentally,

is preserved.

This work is divided in three main chapters. The first one introduces the SM

while focalizing on the properties we have mentioned before and that are going

to be exploited in the next chapters. The second chapter focuses on the 2HDM

and the possible cases one can study following the different SM properties

one desires to keep. In the third chapter, we study a particular 2HDM that

conserves custodial symmetry and whose flavour structure follows the MFV

prescription. We study the phenomenology of this model mainly concerning

three flavour quantities ǫK , ∆MBs
and B(Bs → µ+µ−) to finally draw the

main conclusions about the status of the model.



Chapter1

The Standard Model

Relativistic processes and collision phenomena involving the elementary parti-

cles take place at too high energies and momenta to be described by ordinary

Quantum Mechanics. In this regime, the most suitable framework to account

for these processes is Quantum Field Theory, where the dynamical variables

that describe a given physical system are fields, i.e. variables labelled by the

space-time coordinates, and independent of each other. The Standard Model is

the Quantum Field Theory describing the electroweak and strong interactions

between the elementary particles of nature. Based on Gauge invariance, that

means, symmetries where the parameters can depend on space-time. These

local symmetries will give rise to conservation laws that can be verified by ex-

periments.

In this chapter, we will describe the SM with a particular emphasis on elec-

troweak interactions. We do not intend to give an exhaustive description of

the model, but rather to state the formalism and main features that will be of

interest in the following chapters.

5



6 Chapter 1. The Standard Model

1.1 The Standard Model basics

1.1.1 Fermions, Bosons and electroweak interactions

To begin with, let us take a look at the interaction Lagrangian that describes

weak interactions at low energies, the so-called Fermi Lagrangian1. The terms

responsible for neutron beta decay and muon decay are given by the following

terms of the Lagrangian

L = −Gβ

√
2
p̄γα(1−aγ5)nēγα(1−aγ5)νe−

Gµ

√
2
ν̄µγ

α(1−γ5)µēγα(1−γ5)νe. (1.1)

The value a = 1.239 ± 0.09 can be extracted from hyperon decays while the

experimental values of the neutron and muon lifetimes [14]:

τn = 880.3± 1.1s τµ = (2.1969811± 0.0000022)× 10−6s, (1.2)

allow us to determine the constants Gβ and Gµ

Gβ = Gµ = GF = (1.16637± 0.00001)× 10−5GeV−2. (1.3)

Such a result suggests the universality of weak interactions. This theory is

manifestly non-renormalizable since the Lagrangian in (1.1) generates opera-

tors of dimension 6. Therefore, it breaks the unitarity of the S matrix since

the cross-sections of the related processes grow endlessly with energy. How-

ever, the Fermi theory already contains the physical information to build a

well defined theory of weak interactions. The gauge theory that we want to

build has to reduce to the form (1.1) in the low-energy limit such that the

Fermi four-fermion interaction can be interpreted as the effective interaction

vertex that arises from the exchange of a very massive vector compared to its

momentum. Such an approach solves the problem of renormalizability, since

gauge theories are renormalizable. It also partially solves the unitarity prob-

lem, since the charged vector boson mass acts as a cut-off to avoid the growth

of cross-sections with energy. However, the massive vector theory is not unitary

without an underlying Higgs mechanism. A famous example is given by the

WW → WW scattering that needs the Higgs contribution to show its unitary

1This section is based on notes of an introductury course to the Standard Model of Elec-

troweak Interactions by Giovanni Ridolfi [13].
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behavior, but we will introduce said mechanism later on.

The succesful gauge theory of weak interactions proposed by Glashow, Wein-

berg and Salam [15–17] is based on the local symmetry group SU(2)L×U(1)Y .

To each generator of the symmetry we can associate a vectorial field that will

mediate the corresponding interaction. The Bµ field will be associated to the

Y generator of the U(1)Y symmetry while the W 1,2,3
µ fields will be associated

to the SU(2)L generators T1,2,3 that are defined by the relation

[T a, T b] = iǫabcT c. (1.4)

A coupling constant will be associated to each gauge group, g for SU(2)L and

g′ for U(1)Y . The strength tensors of these fields are respectively:

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gǫabcW b

µW
c
ν (1.5)

Bµν = ∂µBν − ∂νBµ, (1.6)

giving rise to the following gauge interaction Lagrangian

LG = −1

4
W a

µνW
µν
a − 1

4
BµνB

µν . (1.7)

Let us now move on to the matter fields. The theory contains three generations

of left and right-handed chiral quarks and leptons. The left-handed fermions

transform as SU(2)L doublets

QL =

(

uL

dL

)

LL =

(

νℓL

ℓL

)

, (1.8)

and the right-handed fermions uR, dR, and ℓR transform as SU(2)L singlets

while right-handed neutrinos νℓR do not enter the theory. Building the covariant

derivative

Dµ = ∂µ − igTaW
a
µ − ig′

Y

2
Bµ, (1.9)

the SU(2)L × U(1)Y invariant matter Lagrangian is therefore given by

L = iQ̄LDµγ
µQL + iūRDµγ

µuR + id̄RDµγ
µdR

+iL̄LDµγ
µLL + iℓ̄RDµγ

µℓR (1.10)

= Lk + Lc + Ln. (1.11)

The complete kinetic component of the Lagrangian reads:

Lk = iQ̄L /DQL + iūR /DuR + id̄R /DdR + iL̄L /DLL + iℓ̄R /DℓR. (1.12)
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Therefore, making use of the definitions

W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ) T± ≡ 1

2
(T 1 ± iT 2), (1.13)

the charged sector of the Lagrangian becomes

Lc =
g√
2
Q̄Lγ

µT+QLW
+
µ +

g√
2
Q̄Lγ

µT−QLW
−
µ

+
g√
2
L̄Lγ

µT+LLW
+
µ +

g√
2
L̄Lγ

µT−LLW
−
µ . (1.14)

Since the matrix T3 is diagonal, the W 3
µ field is neutral and so is the Bµ field.

We can actually perform a θW (tan θW = g′/g) rotation in the neutral fields

space
(

Bµ

W 3
µ

)

=

(

cos θW − sin θW

sin θW cos θW

)(

Aµ

Zµ

)

. (1.15)

This way, the neutral sector of the Lagrangian is given in terms of the elec-

tromagnetic field currents, associated to Aµ, and the weak neutral currents,

associated to Zµ:

Ln = Ψ̄γµ

(

g sin θWT 3 +
Y

2
g′ cos θW

)

ΨAµ

+Ψ̄γµ

(

g cos θWT 3 − Y

2
g′ sin θW

)

ΨZµ (1.16)

with Ψ representing all the matter fields of the theory. The electromagnetic

charge is therefore given by:

eQ = g sin θWT 3 +
Y

2
g′ cos θW . (1.17)

Since the hypercharge Y always appears combined with the coupling constant

g′, we have the freedom of rescaling the hypercharge by a factor and hide it

in g′. Therefore, the lepton hypercharge is conventionally fixed to Y (L) = −1.

From this convention and from (1.17), we then obtain the relations:

g sin θW = g′ cos θW = e → T 3 +
Y

2
= Q. (1.18)

This gauge theory has proved itself succesful not only to provide a renor-

malizable Lagrangian for the weak interactions, but also to account for the

electromagnetic interactions. However, an issue concerning the bosons masses



1.1. The Standard Model basics 9

remains. The photon, mediator associated to the Aµ field, is most probably

massless since the current experimental bound [14] reads

mγ < 1× 10−18eV. (1.19)

However, in order for the weak interactions gauge theory to match the Fermi

Lagrangian in (1.1) both the Fermi effective theory

− GF√
2
ūγµ(1− γ5)dēγµ(1 − γ5)νe, (1.20)

and the gauge theory where the process is induced by the exchange of a virtual

W boson of momentum q

(

g√
2
ūLγ

µdL

)

1

q2 −m2
W

(

g√
2
ēLγµν

e
L

)

. (1.21)

In the low-energy limit, q2 → 0, the Fermi theory is recovered only if the W

has a mass that verifies
GF√
2
=

(

g

2
√
2

)2
1

m2
W

. (1.22)

Using (1.18), we obtain a lower bound for mW :

mW ≥ 37.3 GeV. (1.23)

The weak interaction mediators are therefore quite heavy. However, intro-

ducing a gauge boson mass term in the SU(2)L × U(1)Y Lagrangian would

explicitely break the gauge symmetry and spoil the renormalizability and uni-

tarity of the theory once again. A mechanism must be provided in order to

introduce mass terms for the gauge bosons without losing these properties.

1.1.2 The Spontaneous Symmetry Breaking mechanism

The Spontaneous Symmetry Breaking (SSB) mechanism will allow us to solve

the problem we encountered at the end of the last section. The main idea of

this mechanism, known as the Brout-Englert-Higgs (BEH) mechanism [18–20],

consists in keeping the Lagrangian invariant under gauge symmetry transfor-

mations while allowing the vacuum to break the symmetry.
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The abelian case

In order to illustrate the principle let us begin with a simple abelian case,

mainly a U(1) gauge theory (like quantum electrodynamics), coupled with a

single complex scalar field φ. The Lagrangian concerning the scalar field reads:

Lφ = (Dµφ)
†(Dµφ)− V (φ) with Dµ = ∂µ − ieAµ. (1.24)

V (φ) is the scalar field potential which, after imposing gauge invariance and

renormalizability, takes the form

V (φ) = −µ2φ2 + λφ4, (1.25)

with µ and λ being real positive parameters. The condition on λ ensures that

the potential is grounded from below in order to have a ground state. Let us

now explain the condition on µ. As we have mentioned previously the prin-

ciple of spontaneously broken symmetries consists in keeping the Lagrangian

invariant under gauge symmetry transformations while allowing the vacuum to

break the symmetry. This can be achieved if the potential has a degenerate set

of states with minimal energy, which transform under the gauge symmetry as

the members of a given multiplet. If one of those states is arbitrarily selected

as the ground state of the system, the symmetry is said to be spontaneously

broken. This condition is achieved with the choice of µ being real positive

since it ensures that the minimum of the potential V is not given by a single

minimum φ = 0 but it is given by an infinite number of degenerate minima

with a non-zero value verifying the relation:

|φ|2 =
µ2

2λ
≡ 1

2
v. (1.26)

All these vacua are connected by gauge transformations that change the phase

of the field φ but conserve the modulus. The system will choose one of these

degenerated vacuum configurations spontaneously breaking the symmetry. Af-

ter acquiring a vacuum expectation value (vev), that we chose to be real, we

can expand the scalar field in terms of two real fields such as:

φ(x) =
1√
2
[v +H(x) + iG(x)]. (1.27)

After making use of the relation (1.26), the potential (1.25) becomes:

V (φ) = λv2H2 + λvH(H2 +G2) +
λ

4
(H2 +G2)2. (1.28)
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The H field has therefore acquired a mass m2
H = 2λv2 while the G field is kept

massless. Actually, the G field could have been removed from the beginning

with an appropriate choice of gauge transformation, meaning that this field is

actually unphysical in the unitary gauge. Regarding the scalar kinetic part of

the Lagrangian, after SSB, it contains a mass term for the gauge boson of the

form:
1

2
e2v2AµA

µ. (1.29)

This shows how the SSB mechanism is actually able to provide mass terms to

the gauge bosons of the theory, at scales below v, without explicitly breaking

the gauge invariance of the theory. For each massive gauge boson, a Goldstone

scalar disappears (in this case the G field) from the physical spectrum in order

to conserve the number of degrees of freedom. As a consequence of the BEH

mechanism, only one physical scalarH state appears, the so-called Higgs boson.

The SU(2)L × U(1)Y SSB mechanism

The first requirement to be imposed to the scalar field responsible for the spon-

taneous breaking of the SM symmetry is that it transforms non-trivially under

the gauge group. Furthermore, it must leave the U(1) part of the symmetry

unbroken since the photon needs to stay massless. The simplest way to do so

is to assign the scalar field to a doublet representation of SU(2)

φ =

(

φ1

φ2

)

. (1.30)

In analogy with the previous case, the most general scalar potential is given

by:

V (φ) = −µ2|φ|2 + λ|φ|4. (1.31)

It has a minimum at

|φ|2 =
µ2

2λ
≡ 1

2
v. (1.32)

Since we want the vacuum configuration

〈φ〉 = 1√
2

(

v1

v2

)

with |v1|2 + |v2|2 = v (1.33)
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to preserve the electric charge, we can already fix the value of the hypercharge.

Indeed, the invariance of the vacuum under U(1)em transformations requires
(

Q1 0

0 Q2

)(

v1

v2

)

=

(

1
2 + Y

2 0

0 − 1
2 + Y

2

)(

v1

v2

)

=

(

0

0

)

, (1.34)

where we used the result in (1.18). We have therefore two possible configura-

tions:

1) v1 = 0; |v2| = v; Y = 1 2) v2 = 0; |v1| = v; Y = −1. (1.35)

We chose the first configuration and, similar to the abelian case, we expand

the scalar doublet around its vacuum through the parametrization

φ(x) =
1√
2

(

0

v +H(x)

)

. (1.36)

Unlike our discussion in the abelian case, here, we have made a gauge choice

in order to eliminate the unphysical Goldstone Boson from the beginning. The

scalar potential becomes:

V (φ) =
1

2
(2λv2)H2 + λvH3 +

λ

4
H4. (1.37)

Replacing (1.36) in the (Dµφ)
†(Dµφ) term, we obtain:

(Dµφ)
†(Dµφ) =

1

2
∂µH∂µH +

[

1

4
gW+µW−

µ +
1

8
(g2 + g′2)ZµZµ

]

(H + v).

(1.38)

As a result, there are no mass terms for the photon, while the W and Z bosons

have both acquired a mass:

m2
W =

g2v2

4
(1.39)

m2
Z =

v2

4
(g2 + g′2). (1.40)

From these two last equations, we can derive the quite interesting tree-level

mass relation:

m2
Z =

m2
W

cos2 θW
(1.41)

which will be discussed later on. Finally, the value of the vacuum v can be

obtained from the experimental value of GF and the relation (1.22)

v2 =
1

GF

√
2
≃ (246.22 GeV)2. (1.42)
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1.1.3 Fermion masses and flavour mixing

So far, we have been able to construct a gauge invariant theory of electroweak

interactions with a scalar field whose vacuum spontaneously breaks the symme-

try allowing the generation of masses for the W and Z gauge bosons. However,

there are still two issues that need to be solved. On the one hand fermion mass

terms are also forbidden by the gauge symmetry of the theory. On the other

hand, we should still specify how does the scalar field φ couple to the fermions.

In this section we will show how these two problems can be solved together.

The most general, renormalizable, gauge invariant Lagrangian which couples

the scalar field to the fermions of the theory is a Yukawa sector that reads:

LY = −Q̄′
LφY

′
Dd′R−Q̄′

Lφ̃Y
′
Uu

′
R−L̄′

LφY
′
ℓ ℓ

′
R+h.c. with φ̃ = iτ2φ

∗. (1.43)

Note that, since the theory does not account for right-handed neutrinos, the

lepton Yukawa sector contains only one term and its hermitian conjugate. Tak-

ing the parametrization for the Higgs field in (1.36) it is easy to notice that

the left handed neutrinos do not couple to the scalar field either. The primes

assigned to the fermions and their couplings are due to the fact that the Y ′
D,U,ℓ

couplings are arbitrary 3× 3 matrices mixing the quark and lepton of different

families. These matrices can actually be diagonalized by bi-unitary transfor-

mations defined by:

d′L,R = V d
L,RdL,R

u′
L,R = V u

L,RuL,R

ℓ′L,R = V ℓ
L,RℓL,R















⇒















YD = V d†
L Y ′

DV d
R

YU = V u†
L Y ′

UV
u
R

Yℓ = V ℓ†
L Y ′

ℓV
ℓ
R

. (1.44)

After diagonalisation and using the gauge choice in (1.36), the Yukawa La-

grangian becomes:

LY = − 1√
2
(v +H)

3
∑

f=1

(

d̄f (YD)ffd
f + ūf (YU )ffu

f + ℓ̄f (Yℓ)ff ℓ
f
)

, (1.45)

where we sum over the fermion flavours f . We can identify the fermion mass

terms as being those related to the scalar vev v

MD =
v√
2
YD; MU =

v√
2
YU ; Mℓ =

v√
2
Yℓ. (1.46)
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The transformations in (1.44) leave invariant the neutral current Lagrangian

(1.16) due to the unitary nature of the V u,d,ℓ
L,R matrices. We will emphasize this

feature in a later section. Let us, for now, analyse what are the consequences of

such transformations on the charged current Lagrangian (1.14). Since the up

and down quarks couple to the scalar through different Yukawa terms in (1.43),

the general transformations in (1.44) is not the same for both up and down

quarks. As a consequence, the quark charged current Lagrangian becomes:

Lq
c =

g√
2
ūi
Lγ

µ(V u†
L V d

L )ijd
j
LW

+
µ +

g√
2
d̄iLγ

µ(V d†
L V u

L )iju
j
LW

−
µ . (1.47)

The matrix

VCKM ≡ V u†
L V d

L , (1.48)

is known as the Cabibbo-Kobayashi-Maskawa mixing matrix. It is the unitary

matrix responsible for the mixing between the different quark families. Yet, the

values of its entries need to be determined by experiments. It is also responsible

for CP violation in the flavour sector, but we will come back to this feature

later on.

However, in the lepton case, since the neutrinos do not couple to the scalar

field, we have yet to specify a transformation law for the left-handed neutrinos.

We actually have the freedom to choose the same transformation as the charged

leptons. We therefore obtain:

Lℓ
c =

g√
2
ℓ̄iLγ

µ(V ℓ†
L V ℓ

L)ijν
j
LW

+
µ +

g√
2
ν̄iLγ

µ(V ℓ†
L V ℓ

L)ijℓ
j
LW

−
µ . (1.49)

Since the V ℓ
L matrix is unitary (V ℓ†

L V ℓ
L = 1), we conclude that, in the original

formulation of the SM, there is flavour conservation in the lepton charged cur-

rents. However, experiments have long suggested that neutrinos do actually

mix because they have non-zero masses [14]. This constitutes a very important

discovery that has led to the 2015 Nobel Prize, awarded to Takaaki Kajita and

Arthur B. McDonald ”for the discovery of neutrino oscillations, which shows

that neutrinos have mass”2. Although we will not discuss the topic in this

work, let us recall that a succesful theoretical explanation of this phenomenon

is given by the so-called ”see-saw mechanism” [21] that manages to introduce

very small mass terms for the neutrinos in the context of the SU(2)L ×U(1)Y

2The Nobel Prize in Physics 2015 press release.
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symmetry. Mixing between different neutrino flavours is also successfully ac-

counted for in this mechanism.

1.1.4 Quantum Chromodynamics

Before finishing the section about the SM, we briefly introduce Quantum Chro-

modynamics (QCD). QCD is the gauge theory that describes the strong inter-

actions between the quarks and the gluons, which are the QCD mediators.

Given the purpose of this work, we will not give an exhaustive description of

the strong sector of the SM, but rather a short summary of its main features.

Strong interactions are characterized by three basic properties: asymptotic

freedom, confinement and dynamical chiral symmetry breaking. The confine-

ment hypothesis, requires that there are only colour-singlet configurations cor-

responding to meson (qq̄) and baryon (qqq) states. This is among others one of

the main reasons to base the theory of colour interactions on the group SU(3).

The QCD Lagrangian is invariant under SU(3)C colour transformations, with

coulour being the charge associated to the QCD Gauge theory. The quarks

behave as the 3-dimensional fundamental representation of SU(3)C with there-

fore three colour charges, while the gluons transform under the 8-dimensional

adjoint representation generated by the Gell-Mann matrices, that satisfy the

commutation relations

[

λa, λb
]

= 2ifabcλc a = 1, 2, ..., 8, (1.50)

where fabc are real and totally antisymmetric constants. In order to build

an invariant Lagrangian under SU(3) local transformations θa(x), we need

to change the quark derivatives of the free quark Lagrangian into covariant

derivatives, introducing this way the gluon gauge bosons Gµ
a(x)

Dµqf ≡
(

∂µ − igs
λa

2
Gµ

a(x)

)

qf ≡ (∂µ − igsG
µ(x)) qf (1.51)

In order for the Lagrangian to be invariant, the quark and gluon fields transform

as

qαf → (qαf )
′ = qαf − igs

(

λa

2

)

αβ

δθaq
β
f (1.52)

Gµ
a → (Gµ

a)
′ = Gµ

a − ∂µ(δθa) + gsf
abcδθbG

µ
c . (1.53)
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Introducing the gluon field strengths

Gµν
a = ∂µGν

a − ∂νGµ
a + gsf

abcGµ
bG

ν
c , (1.54)

we finally obtain the SU(3)C invariant QCD Lagrangian

LQCD ≡ −1

4
Gµν

a Ga
µν +

∑

f

q̄f (iγµD
µ −mf )qf . (1.55)

The Lagrangian given above looks very simple because of its symmetry prop-

erties, but it contains very rich physics in it. We can actually decompose the

different terms of the Lagrangian to derive some praticular properties of the

strong interactions.

LQCD =− 1

4
(∂µGν

a − ∂νGµ
a)
(

∂µG
a
ν − ∂νG

a
µ

)

+
∑

f

q̄αf (iγµ∂
µ −mf )q

α
f (1.56)

+ gsG
µ
a

∑

f

q̄αf γµ

(

λa

2

)

αβ

qβf − gs
2
fabc (∂µGν

a − ∂νG
µ
a)GbµGcν (1.57)

− g2sf
abcfadeG

µ
bG

ν
cG

d
µG

e
ν (1.58)

The first two terms contain the gluon and quark kinetic terms, which give rise

to the corresponding propagators. The third term contains the interaction be-

tween quarks and gluons. Finally, due to the non-abelian character of SU(3)C ,

the last two terms are generated, containing the cubic and quartic gluon self-

interactions with the same coupling gs as the fermionic piece of the Lagrangian.

Because of the gluonic self-interactions, the QCD coupling becomes smaller at

short distances, leading to an asymptotically-free quantum field theory. Pertur-

bation theory can then be applied at large momentum transfers. The resulting

predictions have achieved a remarkable success, explaining a wide range of

phenomena in terms of a single coupling. The growing of the running coupling

at low-energies is consistent with the confinement of quarks and gluons into

colour-singlet hadronic states. However there is still no rigorous proof of this

property and the dynamical details of hadronization remain unknown.

We have previously mentioned the dynamical symmetry breaking of the chiral

symmetry as one of the three basic properties of strong interactions. Indeed,

the QCD Lagrangian is invariant under SU(nF )L × SU(nF )R in the absence

of quark masses, with nF the number of flavours. However, this chiral sym-

metry, which should be approximately good in the light quark sector (u,d,s),

is not seen in the hadronic spectrum. Although hadrons can be classified in
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SU(3)V representations, degenerate multiplets with opposite parity do not ex-

ist. Besides, the octet of pseudoscalar mesons happens to be much lighter

than all the other hadronic states. To be consistent with this experimental

fact, SU(3)L × SU(3)R spontaneously breaks into SU(3)L+R and an octet of

pseudoscalar massless bosons appears in the theory. These Goldston Bosons

can be identified with the eight lightest hadronic states (π+, π−, π0, η, K+,

K−, K0 and K̄0) whose small masses are generated by the quark-mass matrix,

which explicitly breaks the global chiral symmetry of the QCD Lagrangian.

The Goldstone nature of the pseudoscalar mesons implies strong constraints

on their interactions, which can be most easily analyzed on the basis of an

effective Lagrangian. This has motivated the developpement of the chiral ef-

fective theory.

As a final remark, we underline the fact that just like how electroweak inter-

actions do not couple to colour, strong interactions do not couple to flavour

either, giving rise to the final SM symmetry group

SU(2)L × U(1)Y × SU(3)C . (1.59)

1.2 Accidents and accidental symmetries of the

Standard Model

The SM of electroweak interactions together with its strong interaction exten-

sion has shown an astonishing success in its aim to describe physical phenomena

in particle physics. However, a non-negligible part of this success is due to some

features of the model that do not result from main theoretical foundations. In

fact, the SM presents additional features and global symmetries that show

up accidentally in some sectors. They provide interesting tests of the model

which can be verified experimentally with an impressive accuracy. At the same

time, the SM presents its own problems, pointing to the idea that the SM may

not be the final story concerning the description of elementary particles and

fundamental interactions.
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1.2.1 Flavour Changing Neutral Currents

We have mentioned before that flavour is conserved in the SM neutral current

Lagrangian (1.16) due to the unitarity of the diagonalization matrices in (1.44).

Let us take a deeper look at this feature as well as at its important experimental

consequences. The conservation of flavour by the neutral current Lagrangian

ensures the absence of this kind of currents at tree-level. However, with the

help of the flavour changing charged currents, one can construct one-loop and

higher order diagrams which mediate FCNC processes. Let us illustrate this

feature in the Feynman diagram formalism.

Box diagrams

These diagrams involve the exchange of virtual W± bosons between different

flavoured quarks or leptons. Examples of box diagram contributions toK0−K̄0

transitions are given in fig.1.1.

s̄

d W

W

t t

s

d̄ s̄

d t

t̄

W W

s

d̄

a) b)

Figure 1.1: Box diagrams of the top-quark contribution to the K0 − K̄0 mixing

Similar diagrams to Fig.1.1a), where the outcoming fermions are leptons, con-

tribute to K → πν̄ν rare decays.

Penguin diagrams

The so-called Penguin diagrams concern loops between different flavoured quarks

involving mainly t quarks as well as W± bosons. A penguin diagram contribut-

ing to K → πνν̄ decays is shown in fig.1.2.
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The fact that these decays take place only as loop effects makes them particu-

larly useful for testing possible loop contributions involving new particles Be-

yond the Standard Model (BSM). Decays likeK → πνν̄ are very rare since they

only take place through box and penguin loop diagrams and are therefore very

suppressed. The current measurement of the branching ratio of K+ → π+ν̄ν

is based on a combination of seven events observed by the BNL-E787 and

BNL-E949 collaborations [22]

B(K+ → π+νν̄) = (1.73+1.15
−1.05)× 10−10. (1.60)

s
t t

Z

dW

ν ν

Figure 1.2: Penguin diagram of the top-quark contribution to the K → πνν̄ decay

The NA62 experiment at CERN expects to provide O(100) signal candidates

on this decay by the end of 2017. The KOTO experiment at KEK will try to

achieve SM sensibility in the K0 → π0ν̄ν observation with a 3σ branching ratio

and a ±10% accuracy in a second stage. These kind of rare decays constitute

very important probes of the FCNC suppression mechanism of the SM and

privileged channels in order to obtain evidence of NP.

Higgs mediated FCNC

We have previously argued that the neutral current gauge lagrangian is left in-

variant by the transformations in (1.44) which ensure that there are no gauge

mediated FCNC at tree level. Once the mass matrices are diagonalised by

those same transformations, there are no Higgs mediated FCNC either in the

SM. Besides, the fact that the Higgs boson couplings to fermions are given by

the fermion masses, makes its contribution to higher order effects, like penguin

diagrams, almost negligible. In models with more involved scalar sectors, like
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we will see in the next chapter with a 2HDM, one can generally expect Higgs

mediated FCNC at tree-level. The very low rate of FCNC observations con-

stitutes one of the main constraints to models with a broader scalar sector as

well as a place to look for possible BSM effects.

1.2.2 The Custodial Symmetry

The mass relation between the weak interaction gauge bosons in (1.41) can be

parametrized in the following way:

ρ ≡ m2
W

m2
Z cos2 θW

= 1. (1.61)

This relation holds at tree-level in the SM but could receive sizeable quantum

contributions. However, we will show in this section that the Higgs Lagrangian

conserves a symmetry that prevents the ρ parameter of receiving large correc-

tions. Even if the Higgs Lagrangian is obviously SU(2)L ×U(1)Y invariant by

construction, the Higgs potential displays a wider SU(2)L×SU(2)R symmetry.

In order to clearly see this, it is useful to define the following matrix:

Φ = (φ, φ̃) =

(

φ+ φ0∗

φ0 −φ−

)

. (1.62)

Making use of this formalism, the scalar potential can be writen in terms of

the Φ matrix as:

V (Φ) = −µ2

2
Tr(Φ†Φ) +

λ

2
Tr(Φ†Φ)2. (1.63)

Both the fields φ and φ̃, defined in (1.43), transform as doublets of SU(2).

Therefore, the Φ field transforms under a SU(2)L × SU(2)R symmetry

Φ → LΦR†, (1.64)

leaving the potential (1.63) invariant. We can also try to write the Higgs

kinetic term in a SU(2)L × SU(2)R invariant way. The covariant derivative

can be writen is terms of Φ as:

DµΦ = ∂µΦ + i
g

2
T i ·W i

µΦ− i
g′

2
BµΦT3. (1.65)
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Under generic SU(2)L and U(1)Y , Φ transforms as follows:

SU(2)L : Φ → LΦ (1.66)

U(1)Y : Φ → Φe−
i
2
T3θ. (1.67)

The SU(2)L transformations leave the kinetic term 1/2Tr(DµΦ
†DµΦ) invari-

ant. However, we can already guess that this will not be the case for SU(2)R

transformations due to the g′ term in (1.65). The global symmetry becomes

therefore manifest in the Higgs kinetic terms only in the g′ → 0 limit if Φ

transforms as:

SU(2)L × SU(2)R : Φ → LΦR†, (1.68)

1

2
Tr(DµΦ

†)DµΦ = TrR(DµΦ
†)L†LDµΦR†. (1.69)

As a consequence, in the g′ → 0 limit, the scalar Lagrangian shows a global

SU(2)L × SU(2)R symmetry. Once SSB takes place, the SU(2)L × SU(2)R

symmetry breaks into SU(2)L+R corresponding to the case where L = R. This

vectorial symmetry is the so-called custodial symmetry. In the custodial limit,

the W+, W− and W 3 bosons form a triplet of the global SU(2)L+R, since

there is no mixing between the neutral gauge bosons, while the photon remains

massless. In the more general case where g′ does not cancel and the custodial

symmetry is not exact, the neutral gauge bosons mix and the (W 1
µ ,W

2
µ ,W

3
µ , Bµ)

mass matrix takes the form:













a 0 0 0

0 a 0 0

0 0 a b

0 0 b c













=













g2v2

4 0 0 0

0 g2v2

4 0 0

0 0 g2v2

4
gg′v2

4

0 0 gg′v2

4
g′2v2

4













(1.70)

After diagonalisation the masses of the physical neutral states Z and γ are

m2
Z = a+ c =

v2

4
(g2 + g′2) (1.71)

m2
γ = ac− b2 = 0. (1.72)

This ensures the mass relation in (1.41) and therefore the identity ρ = 1 at

tree-level. However, because the custodial symmetry is not actually conserved

through the Higgs kinetic couplings, gauge and Higgs boson loop corrections

to the mass terms are expected to be proportional to g′2 and induce radiative
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corrections to the ρ parameter. These ∆ρ corrections are related to the oblique

parameter T [23] defined by:

∆ρ = ρ− 1 = αT =
g2

sin2 θ2W
[ΠWW (0)−ΠZZ(0)], (1.73)

where α = e2

4π and the functions ΠWW,ZZ (q
2) are the coefficients of the Minkowski

metric in the gauge bosons propagators. This relation is only valid in the limit

where q2 terms can be neglected in the isospin violating pieces of the Π coef-

ficients and q4 terms elsewhere. Actually, gauge and scalar bosons loops will

not be the only ones contributing to ∆ρ. In fact the Yukawa Lagrangian (1.43)

breaks the custodial symmetry as well. However, the only corrections expected

to be of actual importance are those due to heavier fermions, mainly t and b

quarks. The Higgs boson and fermion loop corrections to ρ are given by [24–26]

∆ρH =
11GFm

2
Z sin2 θW

24
√
2π2

ln
m2

H

m2
Z

, (1.74)

∆ρf =
3GF

8
√
2π2

(

m2
t +m2

b − 2
m2

tm
2
b

m2
t −m2

b

ln
m2

t

m2
b

)

. (1.75)

The first correction is caused by the custodial symmetry breaking in the gauge

sector and vanishes in the limit θW = 0 (g′ → 0). The second correction is

due to the custodial symmetry breaking in the Yukawa sector. By taking the

limit x ≡ mt

mb
→ 1, one can easily verify that the correction vanishes. This

is due to the fact that it is the splitting between the up and down masses

that breaks the custodial symmetry in the fermion sector. Since the top and

bottom masses splitting is the biggest one, their contribution dominates the

corrections. When trying to translate the quark Yukawa couplings in (1.43)

into the formalism introduced in (1.62) one can easily verify that the only

custodial invariant Yukawa Lagrangian that one can build is

LY = −Q̄LΦY
′QR, (1.76)

implying Y ′ = Y ′
D = Y ′

U and ultimately the top and bottom mass degeneracy

mt = mb.

Furthermore, the scalar correction behaves logarithmically with the Higgs mass

while the fermion correction and the gauge boson corrections show a quadratic

dependence on the masses but with opposite sign. All these features put to-

gether contribute to the smallness of the ∆ρ corrections.
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Up until now, the relation between the ρ parameter corrections and the oblique

parameter T has been used as a mean to constrain the Higgs mass from elec-

troweak precision fits. In the past, the same method had led to the prediction

of the top quark mass before its descovery. However, since the discovery of the

new scalar particle at the LHC, believed to be the SM Higgs boson, the last

missing electroweak piece, i.e. mH , has been found and new fits have been car-

ried out in order to assess the validity of the SM at the electroweak scale. The

oblique parameters (S, T, U) contain information on vacuum polarisation cor-

rections and are therefore very sensitive to new physics. The results in Fig.1.3

show the impressive compatibility of the latest electroweak precision fit with

SM prediction.

S

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5

T

0.5−

0.4−

0.3−
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0.1−
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0.1
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0.3
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Figure 1.3: Contours of 68% and 95% confidence level in the TS-plane, where U was

constrained to 0 in the fit (blue ellipses). Individual constraints are shown at 95% confi-

dence level, from the asymmetry measurements (yellow), partial decay widths of the Z-boson

(green), and the mass and total width of the W boson, mW an ΓW (red) [27]

1.2.3 The Flavour Symmetry

The matter lagrangian of the SM contains the fermion kinetic and gauge inter-

action terms:

L = iQ̄i
L /DQi

L + iūi
R /DdiR + id̄iR /DdiR + iL̄i

L /DLi
L + iℓ̄iR /DℓiR. (1.77)
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In the absence of fermion masses, this Lagrangian presents a group of accidental

global symmetries. Indeed, the matter lagrangian is invariant under a class

of global transformations where each fermion SU(2) × U(1) representation is

allowed to be multiplied by an arbitrary constant phase. In the SM, where

there are three generations of quarks and leptons, each global transformation

leaves invariant a different U(3) symmetry:

U(3)QL
: Qi

L → U ij
QL

Qj
L,

U(3)uR
: ui

R → U ij
uR

uj
R,

U(3)dR
: diR → U ij

dR
djR,

U(3)LL
: Li

L → U ij
LL

Lj
L,

U(3)ℓR : ℓiR → U ij
ℓR
ℓjR.

(1.78)

The product symmetry group can actually be redefined as follows:

Gf = SU(3)3Q×SU(3)2L×U(1)B ×U(1)L×U(1)Y ×U(1)PQ×U(1)ℓR , (1.79)

where

SU(3)3Q = SU(3)QL
× SU(3)uR

× SU(3)dR
(1.80)

SU(3)2L = SU(3)LL
× SU(3)ℓR . (1.81)

This way, we can easily identify some well known symmetries. In the SM, the

U(1)B and U(1)L can be identified with the symmetries associated to baryon

and lepton number conservation respectively. While due to anomalies, B and

L are not conserved, B-L remains a true symmetry of the SM. U(1)Y is the

global version of the local gauge symmetry that is spontaneously broken and

the two remaining U(1) groups can be identified with the Peccei-Quinn sym-

metry and with a global rotation of a single SU(2)L singlet. The SU(3)3Q and

SU(3)2L symmetries are actually explicitely broken by the Yukawa Lagrangian

(1.43) and will be of interest in the formulation of Minimal Flavour Violation

developed in the next chapter.

1.2.4 CP-violation

Since only left-handed fermions and right-handed antifermions couple to the

W± bosons, there is a maximal breaking of parity P (left-right symmetry) and
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charge conjugation C (particle-antiparticle symmetry) in the gauge sector of

the SM. However, the combined transformation CP still seems to be a good

symmetry of the SM Lagrangian in (1.11) despite what the observed matter-

antimatter asymmetry of the universe suggests. The CPT theorem guarantees

that the product of the three discrete transformations is an exact symmetry of

any local and Lorentz-invariant quantum field theory preserving unitarity and

micro-causality. Therefore, a violation of CP requires a corresponding violation

of time reversal. Since T is an antiunitary transformation, this requires the

presence of relative complex phases between different interfering amplitudes.

Experimentally, some phenomena observed in the neutral kaon system and in B

meson decays display a violation of the CP symmetry. These phenomena can in

fact be accounted for in the SM framework thanks to the Cabibbo-Kobayashi-

Maskawa mixing matrix in (1.48).

The Cabibbo-Kobayashi-Maskawa mixing matrix

In 1973, while only three light quarks (u, d, s) had been discovered, M. Kobayashi

and T. Maskawa [28] used a simple parameter counting to prove that if the

number of quark generations was equal to or greater than three, then all the

complex phases in VCKM matrix could not be absorbed by a field redefinition.

If this is true, a possible source of CP violation could be introduced in the

SM. Indeed, the CKM matrix defined in (1.48) is an arbitrary ng × ng uni-

tary matrix, where ng is the number of quark generations, determined by n2
g

parameters. However, field redefinitions of the type Ψ → eiαΨ applied to the

quark fields, allow us to remove 2ng − 1 parameters. A unitary matrix can be

understood as a complex extension of an orthogonal matrix. Since the number

of paramenters of an orthogonal matrix is 1
2ng(ng − 1), we can identify those

parameters as the Euler angles of a unitary matrix, while the remaining pa-

rameters are the complex phases. If we carry out the parameter counting we

obtain the number of complex phases of the ng × ng CKM matrix as:

#phases = #param −#angles = n2
g − (2ng − 1)−

(

1

2
ng(ng − 1)

)

=
1

2
(ng − 1)(ng − 2). (1.82)
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Therefore, in the case of two generations, there are no complex phases and only

a rotation between the quark fields as described by the Cabibbo angle [29].

Kobayashi and Maskawa predicted that if there was an additional generation

of quarks, then the mixing matrix would contain a complex phase which would

account for the observed CP violating phenomena. The b and t quarks were

discovered in 1977 and 1995 respectively, confirming the relevance of Kobayashi

and Maskawa’s claim.

With three generations of quarks, the CKM matrix can therefore be described

by three angles and one phase. The standard CKM parametrization [14] reads:

VCKM =









c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13









,

(1.83)

where cij = cos θij and sij = sin θij . The angles θij can all be forced to lie

in the first quadrant by an appropriate redefinition of quark field phases so

that cij ≥ 0, sij ≥ 0 and 0 ≥ δ13 ≤ 2π. δ13 is the only complex phase in

the SM and therefore the only possible source of CP violation. In order to

experimentally determine the values of the VCKM entries, one takes advantage

of the hadronic decays wich are associated to flavour changing quark tran-

sitions through charged currents. However, since the quarks are confined to

hadrons, an important difficulty in the theoretical estimation arises. Indeed,

the following amplitude of a semileptonic decay

A[H → H ′ℓ−νℓ] ≈
GF√
2
Vij〈H |ūiγµ(1− γ5)dj |H〉ℓ̄γµ(1− γ5)νℓ, (1.84)

involves a hadronic matrix element whose evaluation introduces important un-

certainties due to its non-perturbative nature. These matrix elements are

parametrized by form factors that are computed theoretically making use of

kinematical properties and symmetry principles. Therefore, the experimen-

tal precision in the estimation of the CKM matrix elements is limited by the

accuracy of the theoretical estimation of the form factors. However, impor-

tant improvements have been achieved in this field and our knowledge of the

CKM matrix elements has progressed. Moreover, the measured entries reveal

a rather hierarchical pattern with the diagonal elements being close to one and

|Vus| = 0.2253± 0.0008. The Wolfenstein parametrisation [14] takes advantage

of this hierarchy and estimates every CKM matrix element as a development
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in terms of λ ≈ |Vus|:

VCKM =









1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1









+O(λ4). (1.85)

The new parameters are related to the standard parametrisation (1.83) through

the following relations:

λ ∼= s12; Aλ2 ∼= s23; Aλ3(ρ− iη) = s13e
−iδ. (1.86)

We have pointed out the VCKM complex phase as the only possible source of CP

violation in the SM. However, in order for CP violation to be actually observed

in one particular process, several additional conditions must be verified. In

the kaon sector, for example, CP violation appears at the loop level with same

charge quark loops. If these loops involve quarks degenerated in mass, the

loop function becomes a constant, and the CKM matrix contribution cancels

out due its unitarity. These necessary conditions can all be summarized in

the formalism we will develop here. Let us start with the main reason for

the appearance of the CKM matrix, i.e., the impossibility of simultaneously

diagonalizing both the up and down quark mass matrices. This implies:
[

Y ′
UY

′†
U , Y ′

DY ′†
D

]

= V u
L

[

YUY
†
U , VCKMYDY †

DV †
CKM

]

V u†
L 6= 0. (1.87)

Note that any power of the trace of this commutator defines an invariant since

the trace:

Tr
[

Y ′
UY

′†
U , Y ′

DY ′†
D

]n

= Tr
[

YUY
†
U , VCKMYDY †

DV †
CKM

]n

(1.88)

only depends on physical parameters, i.e., the quark masses and VCKM param-

eters. Under a T (CP) transformation, the CKM matrix transforms:

VCKM
T−→ V ∗

CKM (1.89)

and the invariant in (1.88):

Tr
[

Y ′
UY

′†
U , Y ′

DY ′†
D

]n T−→ (−1)nTr
[

Y ′
UY

′†
U , Y ′

DY ′†
D

]n

. (1.90)

The condition for CP violation therefore becomes:

Tr
[

Y ′
UY

′†
U , Y ′

DY ′†
D

]2n+1

6= 0 n ≥ 1. (1.91)
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We can actually relate the trace of any power of the commutator to its deter-

minant through the Cayley-Hamilton theorem (see (2.95)). Therefore, using

the relations in (1.46), we obtain that the condition for CP violation in the SM

with three generations is in fact:

det
[

MUM
†
U ,MDM †

D

]

= 2i(m2
t −m2

u)(m
2
t −m2

c)(m
2
c −m2

u)

(m2
b −m2

d)(m
2
b −m2

s)(m
2
s −m2

d)J
6= 0, (1.92)

with

J = ±Im
[

(VCKM )ij(V
†
CKM )jk(VCKM )kl(V

†
CKM )li

]

(1.93)

for any i, j, k, l. J is known as the Jarlskog invariant [30]. Two major remarks

can be made about this result.

• If two same charge quarks are degenerated in mass, the invariant vanishes

and no CP violation effect can be observed.

• Since every CP violating observable in the SM is related to the Jarlskog

invariant and |J | ≃ A2λ6η < 10−4, CP violation effects are expected

to be very small. One of the main CP violation observables in hadronic

decays are the so-called CP asymmetries. In the case of a M → f decay

and its CP conjugate M̄ → f̄ , these quantities are defined by

aCP ≡ Γ(M → f)− Γ(M̄ → f̄)

Γ(M → f) + Γ(M̄ → f̄)
(1.94)

where Γ are the decay widths. Therefore, in order to observe a sizeable

CP asymmetry in the hadronic sector, one should look at very suppressed

decays.

The unitarity condition of the VCKM matrix can be used as an interesting tool

in order to test the validity of the CKM mechanism to describe CP violation

in the SM. Let us take the following non-diagonal unitarity conditions

V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0, (1.95)

V ∗
usVub + V ∗

csVcb + V ∗
tsVtb = 0, (1.96)

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0. (1.97)
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These unitarity relations describe triangles in the complex space with areas of

size |J |/2. If there is no CP violation, the triangles would become segments

along the real axis. Given the known values of the CKM elements, the most

interesting triangle is defined by (1.97) since all its sides are of the same order

of magnitude, i.e. O(λ3). Moreover, one of its sides lies on the real axis.

The sides of the triangle are acknowledgeably small, meaning that the relevant

phenomena are rare. However, the amount of CP violating phenomena is of

the same order of magnitude which means that, once enough decay data are

collected, the observed CP asymmetries are sizeable. This triangle involves a

lot of B mesons physics and all the experimental constraints on its parameters

have been put together in Fig.1.4. The (ρ̄, η̄) coordinates correspond to the

Wolfenstein parametrization taken beyond O(λ4) and are related to the (ρ, η)

parameters in (1.86) by a factor (1−λ2/2). The overall agreement between the

different observables in the Standard Model global fit is impressive and shows

the success of the CKM mechanism in the description of flavour mixing and

CP violation.
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Figure 1.4: Constraints on the CKM (ρ̄, η̄) coordinates from the global SM CKM fit. [4]

The strong CP problem

The strong CP problem can be understood as a consequence of the solution

proposed by ’t Hooft to solve the U(1)A problem in QCD through the inclusion

of topological effects called instantons.
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In the limit of massless quarks, the QCD Lagrangian introduced in (1.55) is

invariant under U(nF )L × U(nF )R. Considering only the lightest quarks, i.e.

mq ≪ ΛQCD, one would expect the product symmetry U(2)L ×U(2)R to be a

good symmetry of the observations. Experimentally, U(2)V = SU(2)I ×U(1)B

being the product of the isospin and the baryon number vectorial symmetries,

are compatible with the observations. The axial ones, on the other hand, are

broken spontaneously by the quark condensates 〈uū〉 = 〈dd̄〉 6= 0. The so-called

U(1)A problem rises through the realisation, that even though pions have very

light masses, there are no other light states in the hadronic spectrum that could

act as the pseudo-Goldstone bosons associated with the U(1)A breaking.

The solution proposed by ’t Hooft [31] consists of taking into account the com-

plex structure of the QCD vacuum implying that U(1)A is not a true symmetry

of the QCD Lagrangian even in the limit of very small quark masses. In this

limit, a U(1)A transformation of the quark fields

qf → eiαγ5/2qf (1.98)

leaves the QCD Lagrangian (1.55) invariant. However, once the QCD vacuum

structure is taken into account, the action is modified and a new term must be

added to the QCD Lagrangian

θQCD
g2s

32π2
Gµν

a G̃a
µν , (1.99)

where θQCD = α is a free parameter. This term is actually CP violating and

cannot be set to zero by imposing CP invariance in the strong sector. This is

due to the fact that, since CP is not a symmetry of the whole SM Lagrangian,

divergent contributions would appear from the electroweak sector at the quan-

tum level. In fact, when the total theory is included, one realises that in order

to diagonalise the complex quark mass matrix to move to the physical basis,

one must perform a chiral transformation on all the quark flavours:

qf → eiαγ5/2nf qf (1.100)

implying

θQFD = arg det (Y ′
UY

′
D) . (1.101)

As a consequence, the physical θ̄ reads:

θ̄ = θQCD + θQFD. (1.102)
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The two contributions are a priori independent, θQFD is the argument of the

determinant of the quark mass matrix while θQCD is an arbitrary coefficient.

The physical θ̄ can be constrained through experimental data on the neutron

dipole moment setting the upper limit:

θ̄ . 10−10. (1.103)

Since CP is already broken due to CKM, the SM does not acquire any additional

symmetry when θ̄ → 0. The substantial amount of fine-tuning necessary to

satisfy the bound in (1.103) is often called the strong CP problem. To this day

it remains one of the most puzzling issues of the SM. Several kinds of solutions

have been considered up to now. The simplest one requires the vanishing of

one of the quark masses. If that is the case, (1.101) receives no contributions

and θ̄ can be set to zero. Another solution implies a model with two scalar

doublets and will be discussed in the following chapter.

1.3 Evidence and constraints on the SM scalar

In 2012, the CMS [1] and ATLAS [2] collaborations claimed the observation of a

new boson at around 125 GeV. The main decay channels where measurements

have been taken are W+W−, ZZ, bb̄, τ+τ− and γγ. The bb̄ channel has

been enforced by the data provided by the Tevatron experiments D0 and CDF.

Each channel provides a different sensitivity due to the presence of backgrounds

and different mass resolutions. Moreover, they target different production and

decay mechanisms, providing both a complementary study of the new boson

couplings and properties as well as some insight into the compatibility of the

new particle with the SM Higgs boson. In order to state that the discovered

boson is indeed the one predicted by the SM, one must confirm that the spin-

parity-charge conjugation JPC = 0++ and the couplings are as predicted by

the theory.

The γγ and ZZ decays provide the most precise value of the boson mass because

of their excellent mass resolution of the reconstructed diphoton and four-lepton

final states. The W+W− → ℓ+νℓ−ν̄ has very high sensitivity but poor mass

resolution because of the neutrinos in the final state. The bb̄ and τ+τ− decays,

on the other hand, are polluted by large backgrounds and have lower sensitivity



32 Chapter 1. The Standard Model

and mass resolution. The latest measurement of the boson mass by the CMS

[32] and ATLAS [33] are respectively

mH(CMS) = 125.02+0.26
−0.27(stat)

+0.14
−0.15(syst) GeV, (1.104)

mH(ATLAS) = 125.36± 0.37(stat)± 0.18(syst) GeV. (1.105)

In 2015 a combination of mass measurements between both LHC experiments

using the Run 1 data sets was provided [34]. Only γγ and ZZ decays were

used, leading to the final result:

mH(LHC) = 125.09± 0.21(stat)± 0.11(syst) GeV. (1.106)

The first 13 TeV results in the four-lepton final state, are already available

too [35], and are compatible with the Run 1 data. Taking the signal strength

to be the ratio between the measured cross section and the one predicted by

the SM, it provides a good estimation of the compatibility between the data

and the theory. Fig.1.5 shows the 68% confidence level regions for the individ-

ual channel measurement of each experiment, as well as for the combined result.
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Figure 1.5: Summary of likelihood scans in the 2D plane of signal strength µ = σ̂/σ̂SM

versus Higgs boson mass mH for the ATLAS and CMS experiments. The 68% CL confidence

regions of the individual measurements are shown by the dashed curves and that of the overall

combination by the solid curve. The markers indicate the respective best-fit values [34]

More detailed analysis of the compatibility between the individual channels and

the SM expectations has been provided by both ATLAS [36] and CMS [32].
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Both experiments mainly focus on diboson final state decays and include sig-

nal strengths of production-tagged events. This allows for the study of the

production mechanisms and gives further insight into the nature of the discov-

ered boson. In the LHC, the main production mechanism is gluon gluon fusion

(ggH). However, vector boson fusion (VBF), VH and ttH production have non-

negligible contributions to some of the analyzed decays. Since the signature of

the observed event is somewhat different depending on the production mech-

anism, it is possible to tag the events corresponding to those signatures and

study their compatibility with the SM expectations. Fig.1.6 shows the signal

strengths of the production tagged categories corresponding to different final

states for both ATLAS and CMS. The SM Higgs boson mass is 125.5 GeV in

the case of the ATLAS experiment and 125 GeV for CMS. No significant de-

viations from the SM are observed, reinforcing the SM nature of the observed

boson.

) µSignal strength (

0.5 1 1.5 2

ATLAS

1Ldt = 4.64.8 fb∫ =  7  TeV s

1Ldt = 20.7 fb∫ =  8  TeV s

 = 125.5 GeVHm

0.28-

0.33+
 = 1.55µ

γγ →H 

 0.12-
 0.17+

 0.18-
 0.24+

 0.22-
 0.23+

0.35-

0.40+
 = 1.43µ

 4l→ ZZ* →H 

 0.10-
 0.17+

 0.13-
 0.20+

 0.32-
 0.35+

0.28-

0.31+
 = 0.99µ

νlν l→ WW* →H 

 0.09-
 0.15+

 0.19-
 0.23+

 0.21-
 0.20+

0.18-

0.21+
 = 1.33µ

, ZZ*, WW*γγ→H
Combined

 0.10-
 0.12+

 0.13-
 0.17+

 0.14-
 0.13+

Total uncertainty

µ on σ 1±

(stat)σ
(sys)σ
(theo)σ

SM
σ/σBest fit 

4 2 0 2 4 6

 bb (ttH tag)→H 

 bb (VH tag)→H 

 (ttH tag)ττ →H 

 (VH tag)ττ →H 

 (VBF tag)ττ →H 

 (0/1jet)ττ →H 

 WW (ttH tag)→H 

 WW (VH tag)→H 

 WW (VBF tag)→H 

 WW (0/1jet)→H 

 ZZ (2jet)→H 

 ZZ (0/1jet)→H 

 (ttH tag)γγ →H 

 (VH tag)γγ →H 

 (VBF tag)γγ →H 

 (untagged)γγ →H 
 0.14± = 1.00 µ       

Combined

CMS
 (7  TeV)

1
 (8  TeV) +   5.1 fb

1
19.7 fb

 = 125 GeV
H

 m

 = 0.84
SM

p

Figure 1.6: Values of the signal strengths µ = σ̂/σ̂SM grouped by predominant decay mode

and production mode tag in both ATLAS (left) [36] and CMS (right) [32] experiments.

The previous analyses assume the scalar nature of the observed boson. How-

ever, as already mentioned, the spin-parity-charge conjugation must be con-

firmed by the experiment as well. Analyses of these properties have been

carried out by both experiments. The ATLAS experiment analysis [37] uses

diboson decays and rules out some specific models with quantum numbers
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JP = 0−, 1+, 1−, 2+ to a 97.8% confidence level. The CMS experiment anal-

ysis [38] uses the same decays and rules out spin-one and spin-two scenarios,

and also shows that positive parity is strongly preferred.

Besides Higgs direct searches, the LHC has a large number of ongoing analyses

expected to further enlighten the Higgs sector and the SM as a whole. We wish

to underline the role of the rare decays Bs,d → µ+µ−. The Bs decay has been

observed for the first time by the CMS and LHCb experiments with a six stan-

dard deviations significance for the combined measurement [3]. The Bd decay

combined significance is three standard deviations and an upper limit has been

set on the decay rate. These FCNC decays are considered rare because their

branching ratios are extremely small. On the one hand, they are only gener-

ated at the loop level and are therefore highly suppressed and, on the other

hand, there is a helicity suppression factor mµ/mb. They are very interesting

for testing New Physics scenarios because, being so highly suppressed, they are

very sensitive to the mechanism of quark flavour mixing (similar to K → ν̄ν

decays). Although in the SM framework they do not provide any additional

information about the Higgs boson, they do constrain models with richer elec-

troweak SSB mechanisms and will play an important role in this work. The

theoretical prediction of this rare decay is very clean because the only particles

involved in the final state are leptons and the uncertainty is mainly due to the

B mesons decay constants. With the improvement of lattice calculations, the

theoretical predictions within the SM are [39]:

B(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9, (1.107)

B(Bd → µ+µ−)SM = (1.06± 0.09)× 10−10. (1.108)

The latest measurements provided by LHCb and CMS combined results [3] are:

B(Bs → µ+µ−)LHC = (2.8+0.7
−0.6)× 10−9 with 6.2σ significance, (1.109)

B(Bd → µ+µ−)LHC = (3.9+1.4
−2.6)× 10−10 with 3.2σ significance (1.110)

showing a very strong compatibility with the SM prediction. At this level, it is

worth mentioning the more recent results released by the LHCb collaboration

[40]

B(Bs → µ+µ−)LHC = (3.0 ± 0.6+0.3
−0.2)× 10−9 with 7.8σ significance, (1.111)

B(Bd → µ+µ−)LHC = (1.5+1.2+0.2
−1.0−0.1)× 10−10 with 1.6σ significance (1.112)
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This last result seems to relax a possible tension that had been pointed out

between the Bd → µ+µ− decay rate predicted by the SM (1.108) and the

combined experimental result in (1.110).

1.4 Status of the SM after the Higgs Boson dis-

covery

After the LHC discovery of the Higgs Boson, the SM has confirmed itself as the

most convincing theory at the electroweak scale, pushing New Physics above 1

TeV. It explains with an astonishing accuracy a large amount of experimental

data and has all its ingredients experimentally verified. Given the newly dis-

covered scalar, the first question to arise is whether the new boson corresponds

to the unique scalar predicted by the SM or if it could be a door into a richer

electroweak SSB scenario. Besides, if it is indeed a fundamental scalar, some

mechanism must be found in order to stabilize its mass. Since there is some

new physics at a higher scale ΛNP , quantum corrections to the scalar mass are

expected to grow with the new physics scale such as [41]

δm2
h ∼ g2

(4π)2
Λ2
NP log

(

Λ2
NP

m2
h

)

. (1.113)

The SM provides mechanisms to avoid these kinds of problems in the case of

the other elementary particles. The fermion masses are protected by chiral

symmetry, while the gauge boson masses are protected by gauge symmetry.

Every attempt to provide a mechanism to protect the scalar mass contains

predictions which are yet to be observed or which have already been very

constrained by the LHC results. Some examples are Supersymmetry, scale

symmetry or a dynamical electroweak symmetry breaking. This question is

one of the most striking ones of the SM and still remains unanswered.

With the scalar discovery, the last unknown piece of the SM Lagrangian has

been provided, i.e. the quartic scalar coupling:

λ =
m2

h

2v2
= 0.13. (1.114)

At the electroweak scale, the scalar mass quantum corrections are dominated

by the top loops. It has been shown [42] that the current values of mh and



36 Chapter 1. The Standard Model

mt ensure an almost stable scalar potential up to the Planck scale MPl. The

metastability of the vacuum implies that the SM could be valid up to MPl

and that the possibility of not observing any new physics phenomena in the

following years is not unlikely.

The confirmation of the new scalar couplings being very close to the SM

Higgs ones excludes many New Physics contributions. For example, additional

fermion contributions to the Higgs production and decay rates are excluded; the

H → γγ decay rate heavily constrains models with charged scalars contribut-

ing to the loops, etc. The astonishing success of the SM flavour predictions

already mentioned in a previous section highly constrains New Physics as well.

Only models with SM-like suppression mechanisms, such as Minimal Flavour

Violation, are still possible at the 1 TeV scale.

Although the success of the SM is undeniable, New Physics still seems nec-

essary to provide answers to many pending questions. The very diverse mass

scales between the different elementary particles are still not understood. The

hierarchy existing between the different fermion masses and mixing parame-

ters, as well as the dynamics of flavour and CP violation, need to be properly

explained. Questions about Dark Matter and Dark Energy are still numerous.

The only observed evidence of BSM physics is neutrino mixing. However, the

neutrino oscillation data imply a pattern of leptonic mixing very different from

the one in the quark sector, raising additional questions. Although the most

trending New Physics scenarios have suffered from the LHC’s very constrain-

ing results, not all questions have been answered and future experiments, like

HL-LHC or FCC, are still expected to provide some insight.



Chapter2

Custodial Symmetry and

Minimal Flavour Violation in a

2HDM

The Higgs doublet of the Standard Model is the minimal way to account for the

SU(2)L×U(1)Y → U(1)em SSB mechanism as it has been described in the first

chapter. However, more complex models with an extended scalar sector might

be able to preserve the experimentally favoured SM features previously under-

lined and provide a wider phenomenology. The motivations behind models with

enlarged scalar sectors are many. In supersymmetric models, for example, the

scalar particles belong to a chiral representation of the supersymmetry, while

their complex conjugates belong to multiplets with opposite chirality. Since

the Lagrangian needs to be supersymmetric, multiplets with different chiral-

ities cannot appear together in any term of the Lagrangian. Therefore, with

only one Higgs doublet it would not be possible to provide masses to both up

and down quarks. Besides, since every chiral multiplet contains chiral spin

−1/2 particles as well, the need for an additional scalar doublet becomes evi-

dent when trying to cancel the anomalies. Models with two Higgs doublets have

also become interesting in order to provide Dark Matter (DM) candidates. A

widely studied case is the so-called Inert Doublet Model [43–45]. In this model

37
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one of the doublets does not couple to fermions and does not acquire a vev;

therefore, the lightest Higgs particle of the inert doublet is stable and can be

considered in DM searches. The Peccei-Quinn models, which will be discussed

in more detail further on, also introduce a second scalar doublet in order to

spontaneously break the symmetry able to solve the strong CP problem. Mod-

els with horizontal symmetries, which try to account for the structure of the

quark mass matrices, motivate models with an extended scalar sector as well.

It can be proved that in these models, an additional scalar doublet is needed

in order to spontaneously break the horizontal symmetry in a way compatible

with the observed fermion masses and flavour mixing parameters. Finally, an-

other motivation to study 2HDMs is the fact that the SM is unable to account

for the observed baryon asymmetry of the Universe. Models with two Higgs

doublets are able to introduce additional sources of CP violation. In this study,

however, we adopt yet another perspective and analyze a particular Two Higgs

Doublet Model (2HDM) [46] that minimizes the loss of the SM accidental sym-

metries. Later, we will study the consequences at the LHC, especially those

concerning flavour physics.

2.1 The general 2HDM

Since the flavour sector will play an important role in this work, we start our

introduction of the 2HDM with the Yukawa interactions. In a generic {Φ1,Φ2}
basis, the 2HDM Yukawa sector takes the following form:

LY = −Q̄′
L (∆′

DΦ1 + Γ′
DΦ2) d

′
R − Q̄′

L

(

∆′
U Φ̃1 + Γ′

U Φ̃2

)

u′
R + h.c. (2.1)

where Φ̃i = iτ2Φ
∗
i . Both Higgs fields carry non vanishing vacuum expectation

values (vevs) which take the form:

〈Φ1〉 =
(

0

v1/
√
2

)

and 〈Φ2〉 =
(

0

v2e
iδ/

√
2

)

, (2.2)

in order to break SU(2)L × U(1)Y into U(1)em. Complex Higgs vevs are as-

sumed and without loss of generality a relative complex phase δ can be assigned

to v2.
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2.1.1 The scalar potential

The most general 2HDM scalar potential expressed in the general {Φ1,Φ2}
basis is explicitly given by

V (Φ1,Φ2) =m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 +

1

2
Λ1

(

Φ†
1Φ1

)2

+
1

2
Λ2

(

Φ†
2Φ2

)2

+

+ Λ3

(

Φ†
1Φ1

)(

Φ†
2Φ2

)

+ Λ4

(

Φ†
1Φ2

)(

Φ†
2Φ1

)

+

+

[

−m2
12Φ

†
1Φ2 +

(

1

2
Λ5Φ

†
1Φ2 + Λ6Φ

†
1Φ1 + Λ7Φ

†
2Φ2

)

(

Φ†
1Φ2

)

+h.c.] (2.3)

The mij parameters have mass squared dimensions whereas the Λi are di-

mensionless. Since hermiticity does not force m12 and Λ5,6,7 to be real, the

counting of free parameters of the scalar potential gives 6 + 8 = 14. However,

there are some restrictions to be imposed on the potential for it to fulfill the

SSB mechanism requirements or to preserve additional symmetries.

The scalar potential is bounded from below. The stability of the poten-

tial requires that there is no direction in field space along which the potential

tends to −∞. Given the richness of the field space of the 2HDM, it is not

straightforward to work out in a comprehensive way all the conditions under

which the scalar potential is bounded from below. Besides, depending on how

we define the way the potential is bounded this condition means:

• The quartic potential (V4) has to be strictly greater than zero in every

field direction.

• The quartic potential (V4) has to be greater than zero in every field

direction. However, in this case, we should make sure that when V4 = 0

the quadratic part of the potential (V2) is bounded from below, i.e. V2 ≥ 0

in every direction.

However, some necessary conditions are easy to establish. As an example, in

the direction |Φ1(2)| = 0 and |Φ2(1)| → +∞, V4 > 0 provided that Λ2(1) > 0.
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The scalar potential conserves CP. As a first step, in order to simplify

the analysis, we consider a scalar potential that does not generate CP violation.

Given the success of the CKM mechanism in explaining the CP violation phe-

nomena observed, we do not wish to add any additional CP violation sources.

For now, we will not try to obtain all the necessary conditions to avoid explicit

CP violation since the topic will be studied later on. Just for illustration, as-

suming that all the scalar potential parameters are real is a sufficient condition.

The scalar potential does not generate spontaneous CP violation.

As in the previous case, it is sufficient (but not necessary) to consider the Φ1,2

vev as being real :

〈Φ1〉 =
(

0

v1/
√
2

)

and 〈Φ2〉 =
(

0

v2/
√
2

)

, with v1,2 ∈ R (2.4)

In the next section 2.2.3 we will give more details on the necessary conditions

for CP to be spontaneously broken as well as some important consequences of

models with spontaneous CP violation.

Vacuum stability. Let us assume that the scalar potential is bounded from

below and that it can neither generate explicit nor spontaneous CP violation.

In the following Higgs fields parametrization:

Φ1 =

(

ϕ+
1

(v1 +Reϕ0
1 + iImϕ0

1)/
√
2

)

and Φ2 =

(

ϕ+
2

(v2 +Reϕ0
2 + iImϕ0

2)/
√
2

)

(2.5)

it appears that the scalar potential carries linear terms in the neutral Reϕ0
i

fields. In order to ensure that there is no vev for the physical fields, i.e.

〈Reϕ0
i 〉 = 0, the scalar potential should satisfy:

∂Vlinear

∂Reϕ0
i

= 0. (2.6)

This condition implies:

m2
11 = m12

v2
v1

− 1

2
v2
[

Λ1
v21
v2

+ Λ345
v22
v2

+ 3Λ6
v1
v

v2
v

+ Λ7
v22
v2

v2
v1

]

, (2.7)

m2
22 = m12

v1
v2

− 1

2
v2
[

Λ2
v22
v2

+ Λ345
v21
v2

+ Λ6
v21
v2

v1
v2

+ 3Λ7
v1
v

v2
v

]

, (2.8)
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where

Λij···k ≡ Λi + Λj + · · ·+ Λk and v2 ≡ v21 + v22 =
4m2

W

g2
= (246 GeV)2. (2.9)

Note that m2
ii → −m2

ii would also satisfy the condition. Equations (2.7) and

(2.8) can be re-written as:

m2
11 = m2

12tβ − 1

2
v2
[

Λ1c
2
β + Λ345s

2
β + 3Λ6sβcβ + Λ7s

2
βtβ
]

, (2.10)

m2
22 = m2

12t
−1
β − 1

2
v2
[

Λ2s
2
β + Λ345c

2
β + Λ6c

2
βt

−1
β + 3Λ7sβcβ

]

. (2.11)

if we define

tβ = tanβ ≡ v2
v1

, cβ = cosβ ≡ v1/v and sβ = sinβ ≡ v2/v, (2.12)

where we can assume 0 ≤ β ≤ π/2 given that the Higgs fields can always be

transformed such that both v1 and v2 are positive.

Mass spectrum. We can now figure out the Higgs mass spectrum. First, let
us analyze the charged degrees of freedom. The corresponding mass matrix is
given by

∂2Vquadratic

∂ϕ+
i ∂ϕ−

j

=

(

m2
11 + 1

2
v2(Λ1c2β + Λ3s2β + 2Λ6sβcβ) −2m2

12 + 1
2
v2(Λ6c2β + Λ45sβcβ +Λ7s2β)

−2m2
12 + 1

2
v2(Λ6c2β +Λ45sβcβ + Λ7s2β) m2

22 + 1
2
v2(Λ2s2β +Λ3c2β + 2Λ7sβcβ)

)

.

(2.13)

Once diagonalized, the (normalized) eigenvectors G± and H±, given by

(

G±

H±

)

=

(

cβ sβ

−sβ cβ

)(

ϕ±
1

ϕ±
2

)

, (2.14)

exhibit the following mass spectrum:

m2
G± = 0, (2.15)

m2
H± =

m2
12

sβcβ
− 1

2
v2
(

Λ45 + Λ6t
−1
β + Λ7tβ

)

. (2.16)

The massless fields G± are the would-be Goldstone bosons that provide the
W± gauge bosons with their longitudinal polarization. The charged H± on the
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other hand are dynamical fields, absent in the Standard Model. Concerning
the pseudoscalar fields, we obtain:

∂2Vquadratic

∂Imϕ0
i ∂Imϕ0

j

=





m2
12tβ − 1

2
v2tβ(Λ6c2β +Λ7s2β + 2Λ5sβcβ) −m2

12 + 1
2
v2(Λ6c2β + Λ5sβcβ + Λ7s2β)

−m2
12 + 1

2
v2(Λ6c2β +Λ5sβcβ +Λ7s2β)

m2
12

tβ
− v2

2tβ
(Λ6c2β + Λ7s2β + 2Λ5sβcβ)



 .

(2.17)

The (normalized) eigenvector spectrum is given by
(

G0

A0

)

=

(

cβ sβ

−sβ cβ

)(

Imϕ0
1

Imϕ0
2

)

, (2.18)

and contains both a massless and a massive field:

m2
G0 = 0 (2.19)

m2
A0 =

m2
12

sβcβ
− 1

2
v2
(

2Λ5 + Λ6t
−1
β + Λ7tβ

)

. (2.20)

The massless would-be Goldstone boson G0 is responsible for the Z0 gauge

boson mass whereas A0 remains a dynamical field. Since we have assumed

that the scalar potential is CP conserving, this later field does not mix with the

remaining neutral Higgs fields which we will analyze afterwards. In this case

indeed, A0 has a definite parity quantum number O−+; it is a pseudoscalar

neutral field absent in the Standard Model. Note that we obtain the mass

relation

m2
H± = m2

A0 +
1

2
v2(Λ5 − Λ4). (2.21)

Eventually, the scalar neutral Higgs fields mix according to the following mass

matrix:
∂2Vquadratic

∂Reϕ0
i ∂Reϕ

0
j

=

(

M2
11 M2

12

M2
12 M2

22

)

(2.22)

with

M2
11 = m2

12tβ +
1

2
v2(2Λ1c

2
β − Λ7tβs

2
β + 3Λ6sβcβ), (2.23a)

M2
12 = −m2

12 +
1

2
v2(2Λ345sβcβ + 3Λ6c

2
β + 3Λ7s

2
β), (2.23b)

M2
12 = −m2

12 +
1

2
v2(2Λ345sβcβ + 3Λ6c

2
β + 3Λ7s

2
β), (2.23c)

M2
22 = m2

12t
−1
β +

1

2
v2t−1

β (2Λ2s
2
β − Λ6t

−1
β c2β + 3Λ7sβcβ). (2.23d)
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In this case, there is no massless eigenvector and both mass spectrum and

eigenvector decomposition are intricate. The eigenfields are given by
(

H

h

)

=

(

cα sα

−sα cα

)(

Reϕ0
1

Reϕ0
2

)

. (2.24)

In this commonly used convention, the diagonalization of the mass matrix
(

m2
H 0

0 m2
h

)

=

(

M2
11 cos

2 α+M2
22 sin

2 α+M2
12 sin 2α 1

2
(2M2

12 cos 2α+ (M2
22 −M2

11) sin 2α)
1
2
(2M2

12 cos 2α + (M2
22 −M2

11) sin 2α) M2
11 sin

2 α+M2
22 cos

2 α−M2
12 sin 2α

)

(2.25)

is ensured provided that

tan 2α =
2M2

12

M2
11 −M2

22

, (2.26)

or equivalently

sin 2α =
2M2

12
√

(M2
11 −M2

22)
2 + 4(M2

12)
2
, (2.27)

cos 2α =
M2

11 −M2
22

√

(M2
11 −M2

22)
2 + 4(M2

12)
2
, (2.28)

with −π/2 ≤ α ≤ π/2. The eigenvalues can be easily extracted from the

eigenvalue equation:

det

(

M2
11 − λ M2

12

M2
12 M2

22 − λ

)

= 0, (2.29)

and they explicitly read

mH,h =
1

2

[

M2
11 +M2

22 ±
√

(M2
11 −M2

22)
2 + 4(M2

12)
2

]

(2.30)

assuming mH ≥ mh. Therefore, unlike the SM, the 2HDM contains two dy-

namical neutral scalar Higgses. Finally, let us note the following transformation

rules between the {Φ1,Φ2} and the physical fields:

ϕ±
1 = cβG

± − sβH
±, (2.31)

ϕ±
2 = sβG

± + cβH
±, (2.32)

ϕ0
1 =

1√
2

[

cαH − sαh+ i
(

cβG
0 − sβA

0
)]

, (2.33)

ϕ0
2 =

1√
2

[

sαH + cαh+ i
(

sβG
0 + cβA

0
)]

. (2.34)
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2.1.2 The Higgs basis

The 2HDM Lagrangian is invariant under unitary transformations between the

two Higgs fields [47]. This specific feature allows us to define the so-called

Higgs basis {H1, H2} as follows:

〈H1〉 =
(

0

v/
√
2

)

and 〈H2〉 =
(

0

0

)

, (2.35)

via the following unitary transformation:

(

H1

H2

)

=

(

cosβ sinβe−iδ

− sinβeiξ cosβe−i(δ−ξ)

)(

Φ1

Φ2

)

. (2.36)

The free parameter ξ can be chosen to fix the phase of the H2 field. As a conse-

quence, there exist an infinite number of equivalent Higgs bases parametrized

by the H2 phase. For future purposes, let us consider the case ξ = δ. In this

basis, the Yukawa sector Lagrangian in (2.1) takes the following form:

LY = −Q̄′
L (Y ′

DH1 + Z ′
DH2) d

′
R − Q̄′

L

(

Y ′
UH̃1 + Z ′

UH̃2

)

u′
R + h.c. (2.37)

where

Y ′
D = cosβ∆′

D + sinβΓ′
Deiδ, (2.38a)

Y ′
U = cosβ∆′

U + sinβΓ′
Ue

−iδ, (2.38b)

Z ′
D = − sinβ∆′

De−iδ + cosβΓ′
D, (2.38c)

Z ′
U = − sinβ∆′

Ue
iδ + cosβΓ′

U . (2.38d)

We can now use the following fields definition:

H1 =

(

H+
1

H0
1

)

=

(

G+

(v +H + iG0)/
√
2

)

, (2.39)

H2 =

(

H+
2

H0
2

)

=

(

H+

(R+ iI)/
√
2

)

. (2.40)

Note that in the case where the potential does not violate CP, as in the discus-

sion of the previous section, the I field can be identified with the pseudoscalar

A0. This basis, where there is only one vev, will show itself to be very useful

in order to identify the quark and boson masses.
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2.1.3 Quarks and Higgses mass eigenstates

In the Higgs basis the quark masses are generated by the H1 vev after SSB:

SU(2)L ⊗ U(1)Y
SSB−→ U(1)em

LY
SSB−→ − v√

2

(

d̄′LY
′
Dd′R + ū′

LY
′
Uu

′
R

)

+ . . .
(2.41)

Without any further assumptions, the complex matrices Y ′
U,D are arbitrary.

However, we can always place ourselves in a basis where the quark fields are

mass eigenstates. This can be achieved by using the bi-unitary transformations

u′
L,R = V u

L,RuL,R and d′L,R = V d
L,RdL,R. (2.42)

The full Yukawa sector can then be decomposed as

LY = Lmass + Lneutral + Lcharged, (2.43)

where

Lmass = −d̄LMDdR − ūLMUuR + h.c. (2.44)

Lneutral = −
√
2

v

[

d̄L
(

MDH0
1 + ZDH0

2

)

dR + ūR

(

MUH
0
1 + Z†

UH
0
2

)

uL

]

+ h.c.

(2.45)

Lcharged = −
√
2

v

[

ūLVCKM

(

MDH+
1 + ZDH+

2

)

dR

−ūR

(

MUH
+
1 + Z†

UH
+
2

)

VCKMdL
]

+ h.c., (2.46)

with

ZU,D =
v√
2
V d,u†
L Z ′

d,uV
d,u
R , (2.47)

and

MU =
v√
2
V u†
L Y ′

UV
u
R =









mu 0 0

0 mc 0

0 0 mt









, (2.48)

MD =
v√
2
V d
LY

′
DV d†

R =









md 0 0

0 ms 0

0 0 mb









. (2.49)

In the above expressions, we used the CKM matrix defined in (1.48).

In the previous section we have thouroughly studied the formalism of a CP-

conserving 2HDM in the generic basis. Such an approach can be motivated
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by the success of the CKM mechanism in order to account for CP violation

in hadron physics. However, as we have mentioned in the beginning of the

chapter, the CP violation mechanism present in the SM is unable to account

for the observed baryon asymmetry of the Universe. If the symmetry is not

imposed by hand, a 2HDM is able to provide additional sources of CP violation

that can be interesting to study. Therefore, let us now consider a more general

case where CP is not necessarily a symmetry of the potential, and derive the

Higgs bosons masses departing from the Higgs basis. For now we will still

hide all the details concerning mixing effects in the potential by introducing a

generic mixing matrix in the neutral Higgs space:









H

R

I









= O









S1

S2

S3









. (2.50)

Since the {H,R, I} mass matrix must be symmetric by hermicity of the La-

grangian, the O matrix can be taken as orthogonal (O = OT ) independently of

any V (H1, H2) potential. However, if the Higgs potential is not invariant under

CP, the mixing between the H and R fields with the pseudoscalar I indicates

that the final mass eigenstates will not be CP eigenstates.

Let us illustrate these aspects in a more explicit way. Similar to (2.3), the most

general renormalizable SU(2)L ⊗U(1)Y gauge invariant potential in the Higgs

basis reads:

V (H1, H2) =µ1H
†
1H1 + µ2H

†
2H2 + λ1

(

H†
1H1

)2

+ λ2

(

H†
2H2

)2

+

+ λ3

(

H†
1H1

)(

H†
2H2

)

+ λ4

(

H†
1H2

)(

H†
2H1

)

+

+
[

µ12H
†
1H2 +

(

λ5H
†
1H2 + λ6H

†
1H1 + λ7H

†
2H2

)(

H†
1H2

)

+ h.c.] . (2.51)

The parameters µi and λi are not all independent. As we already explained

in the previous section, additional requirements, such as the vacuum configu-

ration, imply that linear terms are not allowed in either H,R or I. Therefore,

since

V (H1,H2)|linear = 2v [ H(2λ1v
2 + µ1) + R(Reλ6v

2 +Reµ12)− I(Imλ6v
2 + Imµ12)

]

,

(2.52)
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we conclude that the existence of a stable minimum requires

µ1 = −2λ1v
2, (2.53)

µ12 = −λ6v
2. (2.54)

Under these conditions, the scalar potential becomes

V (H1, H2) = −λ1v
4+m2

H±H+H−+
1

2

(

H R I
)

MN









H

R

I









+... (2.55)

with

m2
H± = µ2 + v2λ3, (2.56)

MN =









4v2λ1 2v2Reλ6 −2v2Imλ6

2v2Reλ6 m2
H± + (λ4 + 2Reλ5)v

2 −2v2Imλ5

−2v2Imλ6 −2v2Imλ5 m2
H± + (λ4 − 2Reλ5)v

2









.

(2.57)

The neutral Higgs mixing matrix is indeed symmetric and the would-be Gold-

stone bosons G±,0 are found massless. This is a particularity of this choice of

base where no additional mass diagonalization is needed in order to remove the

Goldstone bosons. In the particular case where all the µi and λi parameters

are real, the potential is invariant under CP and, as expected, we obtain:

MN =









4v2λ1 2v2λ6 0

2v2λ6 m2
H± + (λ4 + 2λ5)v

2 0

0 0 m2
H± + (λ4 − 2λ5)v

2









. (2.58)

This choice of base will be widely used in the rest of this work, especially

concerning the Yukawa sector.

2.2 Accidental Symmetries in the 2HDM

In the previous chapter, we have emphasized the accidental symmetries of the

SM and their respective impact on phenomenology. Once a second SU(2)L

scalar doublet is introduced, most of these SM features are no longer preserved
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and one needs to introduce a mechanism that allows the model to account for

the experimental data. In this section we will review, one by one, the different

accidental symmetries of the SM and introduce the necessary constraints on

the 2HDM which are favoured by the experimental results.

2.2.1 FCNC and Natural Flavour Conservation in the 2HDM

Flavour changing neutral currents (FCNC) are absent at tree-level in the SM.

Once a second scalar doublet is introduced, FCNC easily arise. Firstly, let us

have a look at the 2HDM neutral Yukawa Lagrangian:

Lneutral = −
√
2

v

[

d̄L
(

MDH
0
1 + ZDH0

2

)

dR + ūR

(

MUH
0
1 + Z†

UH
0
2

)

uL

]

+ h.c.

(2.59)

In the SM, diagonalizing the mass matrices MU and MD automatically di-

agonalizes the Yukawa interactions. In the 2HDM, MD,U and ZD,U are not

simultaneously diagonalizable in general and therefore, the Yukawa couplings

are not always flavour diagonal. The neutral Higgs scalars in H0
2 will mediate

FCNC such as dsH .

These FCNC can cause difficulties regarding phenomenology, since the dsH in-

teractions would for example contribute to K0−K̄0 mixing at tree-level. Since

the Higgs couplings to fermions are related to their masses, tree-level FCNC

involving top quarks would imply neutral Higgs masses of the order of 1 TeV

in order to account for the experimental data. There are, therefore, two main

possibilities to confront FCNC in the 2HDM: either a mechanism is found in

order to justify why the couplings of tree-level FCNC are very small, or an

additional condition is imposed to the model in order to get rid of tree-level

FCNC. The latter possibility will be explained in this section while models with

small tree-level FCNC will be dicussed later on.

Glashow and Weinberg [48] and Paschos [49] proved that the necessary and

sufficient condition to avoid FCNC at tree-level in 2HDM is given by three

conditions for all the fermions of a given charge and helicity:

• they transform under the same irreducible representation of SU(2);

• they correspond to the same eigenvalue of T3;



2.2. Accidental Symmetries in the 2HDM 49

• there is a basis in which they all receive their contributions in the mass

matrix from a single source.

In the SM, where all the fermions transform as left-handed doublets and right-

handed singlets, the previous conditions are obviously satisfied by the fact that

since all right-handed fermions of a given charge couple to the single Higgs mul-

tiplet. However, in the 2HDM, the conditions are fulfilled for two particular

models. These models can be enforced through the introduction of additional

symmetries. The resulting models of this type are commonly known as 2HDM

with Natural Flavour Conservation (NFC).

In the type-I 2HDM, all quarks couple to just one of the Higgs doublets, while

in the type-II 2HDM, the Q = 2/3 right-handed quarks couple to one Higgs

doublet and the Q = −1/3 right-handed quarks couple to the other doublet.

These two types can be achieved by imposing Z2 discrete symmetries with the

following transformations of the Higgs doublets implemented in the generic ba-

sis (2.2):1

Type-I: Φ1 → −Φ1 ⇒ ∆′
D = ∆′

U = 0, (2.60)

Type-II: Φ1 → −Φ1, d
′
R → −d′R ⇒ Γ′

D = ∆′
U = 0. (2.61)

One might wonder why the Z2 symmetry has not been imposed directly in the

Higgs basis (2.35). Actually, if that had been the case, since in the Higgs basis

only one doublet (H1) receives a non-zero vev, we would have obtained van-

ishing mass terms for all fermions in a type-II scenario and the sole remaining

option would have been a type-I scenario where all fermions couple to H1. In

that case, all the new physical fields would belong to H2. While this might be

an interesting model that provides a natural candidate for dark matter, still

it remains a very particular case that strongly restrains the phenomenological

possibilities. If, on the other hand, the Z2 is chosen to be manifest in a generic

basis and also promoted to be a symmetry of the Higgs potential, or at least

broken only softly, then it will also be manifest in the Higgs basis while keep-

ing the NFC models general enough. Regarding the couplings of the leptons to

the Higgs doublets, it is conventionally assumed that the right-handed leptons

1Note that the original Peccei-Quinn models along with the supersymmetric models give

the same Yukawa couplings as in the type-II 2HDM, but they get them through continuous

symmetries.
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satisfy the same discrete symmetry as the d′R and couple to the same Higgs

boson as the Q = −1/3 quarks. However, such a requirement is not imposed

by the Paschos-Glashow-Weinberg theorem, and there are two additional NFC

models. The first one is commonly known as lepton-specific or X model and re-

quires that all the right-handed quarks couple to Φ2 while all the right-handed

leptons couple to Φ1. The flipped or Y model requires that the Q = 2/3 right-

handed quarks couple to Φ2, and the Q = −1/3 right-handed quarks couple to

Φ1 while all right-handed leptons couple to Φ2.

Another model that somehow satisfies the NFC conditions, without imposing

a particular symmetry, is the aligned 2HDM introduced in [50]. This model

assumes that the Yukawa coupling matrices for each doublet are actually pro-

portionally related. In this case, the diagonalization of the mass matrices auto-

matically implies the diagonalization of the other coupling matrices and FCNC

are avoided at tree-level. The proportionality constants between the Yukawa

matrices are free parameters of this model and are allowed to be complex.

A general formalism can be introduced where all these NFC models are con-

tained. Considering the Lagrangian in (2.1), the definition in (2.5) and the

relations (2.14), (2.18) and (2.24), the general NFC Yukawa interaction La-

grangian can be written as follows:

Lneutral =−
∑

f=u,d,ℓ

mf

v

(

ξfh f̄fh+ ξfH f̄ fH + iξfAf̄γ5fA
)

,

(2.62)

Lcharged =−
{
√
2Vud

v
ū

(

muξ
u
A
1− γ5

2
+mdξ

d
A
1 + γ5

2

)

dH+ +

√
2mℓξ

ℓ
A

v
ν̄LℓRH

+

+ h.c.} . (2.63)

The phenomenology of these models has been widely studied and a rather

complete review can be found in [51]. The latest results at LHC have also

provided important constraints on these models parameters [52–60].

Up to now, we have only considered the Yukawa sector in order to avoid tree-

level FCNC. However, if discrete symmetries are imposed, they should also

hold in all the other sectors of the model to ensure the renormalizability of the

theory. The Z2 symmetries actually reduce the scalar potential parameters,

since they enforce the following conditions in (2.3):

m12 = Λ6 = Λ7 = 0. (2.64)
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Type-I Type-II Lepton-specific Flipped

ξuh
cosα
sinβ

cosα
sinβ

cosα
sinβ

cosα
sinβ

ξdh
cosα
sinβ

− sinα
cos β

cosα
sinβ

− sinα
cos β

ξℓh
cosα
sinβ

− sinα
cos β

− sinα
cos β

cosα
sinβ

ξuH
sinα
sinβ

sinα
sinβ

sinα
sinβ

sinα
sin β

ξdH
sinα
sinβ

cosα
cos β

sinα
sinβ

cosα
cos β

ξℓH
sinα
sinβ

cosα
cos β

cosα
cos β

sinα
sin β

ξuA − cot β − cot β − cot β − cot β

ξdA cot β − tanβ cot β − tan β

ξℓA cot β − tanβ − tan β cot β

Table 2.1: Yukawa couplings of the fermions to the neutral Higgs bosons in the

different NFC models.

However, the m12 term is usually kept since it only breaks the symmetry softly

through a dimension-two term, avoiding divergent corrections.

2.2.2 Custodial invariant 2HDM

Unlike the SM, the most general scalar potential of the 2HDM is not invariant

under custodial symmetry. This means that quantum corrections to the ρ

parameter introduced in (1.61) could be very important. These corrections are

measured by the parameter T defined in (1.73) and have been calculated in

2HDM theories. The deviations from the SM radiative corrections in a general

2HDM are given by [61]:

αT = − 3g′2

64π2

3
∑

i=1

O2
i1

M2
W −M2

Z

L(m2
Hi

,m2
Href

)

+
g2

64π2m2
W







3
∑

i=1

(1−O2
i1)F (m2

Hi
,m2

H+)− 1

2

3
∑

i,j,k=1

i6=j 6=k

O2
i1F (m2

Hj
,m2

Hk
)






,

(2.65)

with Oij being the entries of the matrix defined in (2.50) and the L and F

loop-funtions given by

L(x, y) = F (x,m2
Z)− F (x,m2

W ) + F (y,m2
W )− F (y,m2

Z), (2.66)

F (x, y) =
x+ y

2
− xy

x− y
log

x

y
( lim
y→x

F (x, y) = 0). (2.67)
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The Href corresponds to the SM boson that is taken as a reference to study

the deviations from this point. The first term in (2.65) contains radiative

corrections due to gauge boson loops. This term is similar to the SM custodial

breaking term, but contains contributions from the additional neutral bosons.

It grows logarithmically with the bosons masses and will not cancel even if

SU(2)L × SU(2)R is imposed to the 2HDM potential. However, the second

term receives contributions caused by the breaking of custodial symmetry in

the scalar potential and grows quadratically with the scalar masses. Yet, one

can see that the correction cancels if there exists one neutral boson Hi such

that

mHi
= mH+ and Oi1 = 0. (2.68)

From this correction alone we already understand that imposing the custodial

symmetry will imply such mass relations between the scalars.

Let us now construct a custodial invariant 2HDM potential. Similar to what

we did in the SM case, we can introduce the following representations for the

Higgs doublets Φi [61]:

Mi = (iτ2Φ
∗
i ,Φi) ≡

(

φ0∗
i φ+

i

−φ−
i φ0

i

)

i = 1, 2. (2.69)

They transform under the SU(2)L × SU(2)R symmetry as follows:

Mi → LMiR
†. (2.70)

We can now write the scalar potential that is left invariant under these trans-

formations:

V (M1,M2) =
1

2
m2

11tr[M
†
1M1] +m2

22tr[M
†
2M2] +

1

8
Λ1

(

tr[M †
1M1]

)2

+
1

8
Λ2

(

tr[M †
2M2]

)2

+
1

4
Λ3tr[M

†
1M1]tr[M

†
2M2]

+
1

2
Λ4

(

tr[M †
1M2]

)2

−m2
12tr[M

†
1M2]

+
1

2

(

Λ6tr[M
†
1M1] + Λ7tr[M

†
2M2]

)

tr[M †
1M2], (2.71)

with tr[M †
i Mj ] = Φ†

iΦj +Φ†
jΦi. Comparing it to the conditions on the general

potential introduced in (2.3), we realize that here all the parameters mij and

Λi need to be real and the additional relation Λ4 = Λ5 needs to be imposed to
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get, from equation (2.21), the following mass degeneracy:

m2
H± = m2

A0 . (2.72)

There is, however, another way of defining the SU(2)L × SU(2)R symmetry

matrix invariants that regroups both doublets in a single representation:

M21 = (iτ2Φ
∗
2,Φ1) ≡

(

φ0∗
2 φ+

1

−φ−
2 φ0

1

)

. (2.73)

In this case the matrix transforms as follows under SU(2)L × SU(2)R like:

M21 → LM21R
†. (2.74)

Here, the potential can be written as

V (M12) = m2
11tr[M

†
21M21]−m2

12

(

det[M†
1M2] + h.c.

)

+
1

2
Λ1

(

tr[M†
21M21]

)2

+ Λ4det[M
†
21M21] +

1

2

(

Λ5det(M21)
2 + h.c

)

+
(

Λ6det(M21)tr[M
†
21M21] + h.c

)2

. (2.75)

The conditions on the potential parameters are m11 = m22; Λ1 = Λ2 = Λ3;

Λ6 = Λ7; and m12, Λ5 and Λ6 are complex. Although it is less clear than in

the previous case, it can actually be proved that the previous conditions on the

potential parameters lead to similar mass degeneracy as in (2.72) but with the

H0 scalar [61].

Even though the two resulting potentials are different, the two previous mod-

els are actually two different formalisms of the same case. In [62], it has been

shown that the two models are related through a basis change and contain the

same physics.

Yet another possibility has been suggested by the authors in [63]. They state

that since the actual gauge symmetry is SU(2)L × U(1)Y , the SU(2)R trans-

formation of the second doublet is not totally fixed by the transformation of

the first doublet, and find a more general transformation rule:

M1 → LM1R
†, (2.76)

M2 → LM2R̃
† with R̃ = X†RX, (2.77)

where the matrix X needs to commute with exp iτ3 in order to be U(1)Y

invariant. Therefore X = exp iγτ3. Under these transformations, tr[M1XM †
2 ]
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is also invariant and the potential can be written as:

V (M1,M2) =
1

2
m2

11tr[M
†
1M1] +m2

22tr[M
†
2M2] +

1

8
Λ1

(

tr[M †
1M1]

)2

+
1

8
Λ2

(

tr[M †
2M2]

)2

+
1

4
Λ3tr[M

†
1M1]tr[M

†
2M2]

+
1

2
Λ4

(

tr[M1XM †
2 ]
)2

−m2
12tr[M1XM †

2 ]

+
(

Λ6tr[M
†
1M1] + Λ7tr[M

†
2M2]

)

tr[M1XM †
2 ]. (2.78)

The different values of the newly introduced γ parameter provide different real-

izations of a custodial invariant 2HDM. Going back to the radiative corrections

in (2.65), the cancellation condition in (2.68) is achieved in the previously men-

tioned models with

mA0 = mH+ . (2.79)

However, the last potential introduced allows a different degeneracy relation in

the particular case where γ = π: [63]

mH0 = mH+ . (2.80)

This twisted scenario, where the pseudoscalar might be light, leads to an in-

teresting phenomenology that has been widely studied in [64].

2.2.3 CP violation in the 2HDM

One of the important features that the 2HDM possesses with respect to the SM

is that it can introduce additional sources of CP violation both in the potential

as well as in the Yukawa sector. We have previously mentioned that the only

source of CP violation in the SM is the VCKM matrix and that it alone, though

succesful, is not able to account for the baryon assymmetry of the Universe. In

the 2HDM, on the other hand, the CP symmetry can be violated both explicitly

and spontaneously. We will now consider both cases.

Explicit CP violation

We have mentioned after (2.3) that there are, in the most general scalar po-

tential, four complex parameters: m12, Λ5, Λ6 and Λ7. However, one of the
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phases of those parameters can be absorved by rephasing one of the doublets

through a U(1) transformation. Besides, a transformation can be applied to

the doublets in order to obtain diagonal quadratic terms and get rid of the m12

term without any loss of generality. There are therefore only two independent

complex phases in the most general 2HDM potential. Imposing CP invariance,

however, does not mean that the two remaining parameters need to be real. As

it has been shown by [65], starting with the most general CP transformation

for n Higgs doublets

Φi
CP−−→

n
∑

j=1

UijΦ
∗
j Φ†

i
CP−−→

n
∑

j=1

U∗
ijΦ

T
j , (2.81)

one can obtain the conditions on the parameters mij and Λi for the potential

(2.3) to conserve CP. In [65] these conditions are found to be:

• Λ5 is real and Λ6 and Λ7 have equal phases or phases differing by π

• Im[Λ5(Λ
∗
6 + Λ∗

7)
2] = 0.

The addition of the new coupling matrices to the second doublet in the Yukawa

sector introduces more sources of CP violation as well. Therefore, if CP is not

imposed on the whole Lagrangian, it is necessarly violated both in the scalar

and Yukawa sectors.

Spontaneous CP violation

In order to have spontaneous CP violation, one must have a CP invariant La-

grangian such that after SSB the vacuum is not invariant under CP. In the SM,

where there is only one Higgs doublet, hermicity requires that the parameters

of the scalar potential be real and that the scalar potential does not violate

CP. Spontaneous CP violation is also ruled out, due to the possibility of using

a U(1) gauge transformation to remove the phase of the vev. In the 2HDM,

the vev in (2.2) could in principle induce spontaneous CP violation. However,

identifying the vev as CP-violating is not so straightforward. Actually, a CP

invariant Lagrangian allows a number of different transformations -that can be

interpreted as CP- under each of which it remains invariant. Therefore, the

following conditions need to be satisfied for the vev to be CP violating.
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• The Lagrangian allows different CP transformations for all of which it

remains invariant.

• There is no CP transformation which leaves both the vacuum and the

Lagrangian invariant.

We can illustrate this by making use of the CP transformation defined in (2.81).

If the vev is CP invariant, i.e. CP |0〉 = |0〉, then we have

〈0|Φi|0〉 =
2
∑

j=1

Uij〈0|Φi|0〉∗. (2.82)

If no transformation of the form (2.81) satisfies (2.82), CP is spontaneously bro-

ken. One of the first 2HDM to be studied, Lee’s model [66], is an example of a

2HDM that spontaneously violates CP. 2HDMs where additional symmetries

have been imposed have less opportunities to violate CP (even if the vacuum is

complex) because the number of possible U matrices verifying (2.82) is larger.

Notice that, since the Lagrangian should be invariant under CP, a realistic

model needs to be able to account for the CP violation in flavour physics that

the CKM mechanism is able to explain, without introducing complex phases

in the Yukawa couplings.

Despite the attractiveness of the possibility of building a model where CP is vi-

olated spontanleously, there have been important arguments in the litterature

about how models with spontaneously broken discrete symmetries can lead to

grave difficulties in the context of cosmology [67]. The reason is that sponta-

neously broken discrete symmetries imply the existence of several degenerate

ground states. After the big bang, causally disconnected spatial regions will

have no special tendency to make the same choice of degenerate ground state.

Therefore, at a later stage in the evolution, when the homogeneous ground

state is approached everywhere locally, the different ground state regions will

be separated by stable domain walls. As previously causally disconnected re-

gions are always newly entering the horizon, it should be expected that at least

one domain wall of roughly the dimension of the horizon will exist [68]. The

domain wall total mass is proportional to σR2(t) where σ corresponds to the

domain wall mass per unit area and R(t) to the cosmic scale factor. Therefore,

the energy density scales as 1/R(t). This decrease in energy density is much
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slower than the one found for ordinary radiation (1/R4(t)) or nonrelativistic

matter (1/R2(t)) implying that stable domain walls quickly come to dominate

the mass of the universe, which is in disagreement with observation.

CP-violation and NFC models

While models with sofly broken Z2 symmetry can explicitly violate CP, this is

not the case for spontaneous CP violation. To prove this, we simply need to

find a U matrix such that (2.82) holds. In the Z2 invariant case, the doublets

vacuum configuration is given by

〈Φ1〉 =
(

0

v1e
i π
2

)

and 〈Φ2〉 =
(

0

v2

)

. (2.83)

The Z2 matrix acting on (Φ1,Φ2)
T , i.e.,

U =

(

−1 0

0 1

)

, (2.84)

satisfies (2.82)

(

−1 0

0 1

)(

v1e
iπ
2

v2

)∗

=

(

v1e
iπ
2

v2

)

, (2.85)

and there is no spontaneous CP violation. This feature is no longer present in

models with three doublets [69]. Indeed, the authors in [70] found a counterex-

ample of a CP-violating vacuum in a Three Higgs Doublet Model with NFC.

With respect to CP violation in the Yukawa sector in models with Z2 symme-

try, since the diagonalization of the mass matrices automatically diagonalizes

all the Yukawa couplings, there are no additional sources of CP violation in

this case. In the aligned model [50], however, the couplings ξiI in (2.62) (2.63)

are free parameters of the theory, and complex phases can be introduced ac-

counting for additional CP violation.

CP-violation and custodial symmetry

Let us now analyze the possibility of a custodial invariant 2HDM violating the

CP symmetry. We will consider each of the three formalisms introduced in
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section 2.2.2. In the formalism introduced through the matrix (2.69) there is

a requirement on the vacuum [61] such that after SSB SU(2)L × SU(2)R is

broken down to SU(2)V ,

〈Mi〉 = vi1 ⇒ 〈φ0
i 〉 = 〈φ0∗

i 〉 = vi ∈ R. (2.86)

This result already rules out the possibility of Spontaneous CP violation. Re-

garding explicit CP violation, we can define a CP transformation for the Mi

matrix

Mi(~x, t) → τ2Mi(−~x, t)τ2 i = 1, 2. (2.87)

Such a transformation is contained in the custodial transformations given in

(2.70). Therefore, this model is also CP invariant.

The second case was given by the representation (2.73). The condition on the

vacuum is

〈M21〉 ∝ 1 ⇒ 〈φ0
1〉 = 〈φ0∗

2 〉 = vi ∈ C. (2.88)

The CP transformation in this case is given by

M21(~x, t) → τ2Mi(−~x, t)τ2. (2.89)

This transformation is of the same type as (2.74). Therefore, a custodial in-

variant Lagrangian in this formalism will also be CP invariant. With regards

to the fact that the vevs in (2.89) can be complex, we can easily prove that

spontaneous CP violation cannot be generated since the vacuum is also CP

invariant:

(CP )〈M21〉(CP )† = 〈M21〉. (2.90)

The proof of the third case introduced in 2.2.2, is very similar to the first case,

but with the corresponding custodial transformations in (2.76) and (2.77).The

authors in [63] also explain that since the custodial invariant potential built

in their formalism conserves Z2 symmetries as well, the CP symmetry is auto-

matically conserved.

The strong CP problem

As we have already explained in the previous chapter, the strong CP problem

is one of the most troubling issues of the SM. To solve this issue, most solutions
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propose some symmetry that ensures θ = 0.

One of the most elegant solutions was proposed by Peccei and Quinn [71]. Their

model introduces a global chiral symmetry U(1)PQ under which the quarks and

the Higgses transform non-trivially. In order to do so, the model consists of a

2HDM where the pseudoscalar is massless at tree-level. When the Higgs dou-

blets acquire a vacuum, the U(1)PQ symmetry is spontaneously broken and the

massless pseudoscalar acts as a Goldstone boson. However, since the U(1)PQ

symmetry is anomalous, the pseudoscalar a0, known as the axion, becomes a

pseudo-Goldstone boson and ends up acquiring a small mass through instan-

ton effects. The Peccei-Quinn model is able to solve the strong CP problem

because the parameter θ is associated to a dynamical field, rather than being

a constant, and can be dynamically set to zero. For several decades, the axion

has been searched for, but has been eluding detection until now. The axion in

the mass range of the model described above has actually already been ruled

out. Therefore, more complex models which preserve the axion as the solution

to the strong CP problem, but which do not run into conflict with experiment

(for example through the addition of a complex singlet Higgs field with V ≫ v),

are still being looked for in helioscopes like CAST at CERN 2.

If such a symmetry is not imposed, one might think that ∆θ corrections could

provide insight into how the θ parameter can be kept small. The physical

θ̄ parameter is actually given by the two contributions θ̄ = θQCD + θQFD

as explained in (1.99) and (1.101). ∆θ computations in the SM framework

have already been carried out in the past. The two-loop corrections computed

in [72,73] rely on perturbative short distance (SD) approaches that treat correc-

tions to θQCD and θQFD separately. In the approach [74], the authors compute

∆θ through η′ → ππ decays, providing direct access to the physical parameter

θ̄.

One could in principle consider a similar approach in the case of 2HDM. How-

ever, the two scalar doublet extension possesses a supplementary issue since it

can already introduce divergent corrections to θQFD at the one-loop level. A

possible way out would be to find a mechanism between the new sources of

CP violation, both in the scalar as in the Yukawa sector, that might be able

2CAST: CERN Axion Solar Telescope
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to cancel the one-loop corrections for special values of the parameters. This

would, in addition, provide a way to furtherly constrain the 2HDM.

2.2.4 Minimal Flavour Violation in the 2HDM

The flavour symmetry present in the SM is only broken, in a very particular way,

by the Yukawa couplings which generate the mixing and masses of the fermions.

When adding an additional doublet to the model, new Yukawa couplings need

to be introduced. These couplings are arbitrary 3×3 matrices that may violate

flavour and CP in a sizable way compared to the SM. The mass hierarchy be-

tween the fermion masses and mixing parameters in the SM is not explained by

any mechanism and remains an intriguing feature of the SM. In the 2HDM case,

the addition of new Yukawa matrices would imply adding arbitrary parameters

to the theory. One may wish to describe the new flavour structures in terms of

the SM ones, in order to let the already known masses and mixing parameters

be the only ones responsible for flavour breaking. A method that has been

widely used lately in flavour studies starts from the so-called Minimal Flavour

Vioaltion (MFV) hypothesis [75]. To formulate the hypothesis, let us first go

back to the SM flavour sector. If we restrain ourselves to the quark sector, we

realize that the flavour symmetry Gf = SU(3)QL
×SU(3)UR

×SU(3)DR
can be

restored in the Yukawa Lagrangian (1.43) by imposing suitable transformation

laws under Gf to the Yukawa couplings

Y ′
U ∼ (3, 3̄, 1)SU(3)3 , Y ′

D ∼ (3, 1, 3̄)SU(3)3 . (2.91)

By doing so, the Yukawa couplings are promoted into auxiliary fields or spu-

rions. Although this symmetry conservation is achieved artificially, we realize

that, if any flavour structure is constructed from these spurions in a Gf invari-

ant way, the physical quantities associated to them will also be flavour invariant.

This type of Gf invariant flavour structures would give rise to couplings of the

form:

Y ′
UY

′†
U , Y ′†

D Y ′
UY

′†
U Y ′

D. (2.92)

Once the Yi couplings are frozen to their real values, the flavour breaking

will still be controlled by the SM masses and mixing parameters. The MFV

hypothesis takes advantage of this realization in order to study flavour physics
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in models beyond the SM. We will define the MFV hypothesis by two conditions

as it is done in [76]:

1. The first condition concerns the minimality of the hypothesis. MFV

states that all the new structures beyond the SM must be invariant under

the Gf group. To implement this condition, the new flavour structures

are written as series in terms of the spurions. However, only the spurions

needed to account for the known fermion masses and mixings are allowed.

The spurions are therefore the building blocks for the new flavour struc-

tures, without any physical content.

In the past, spurions were introduced for a straightforward isospin decom-

position of the weak K → ππ decay amplitudes, or to provide Goldstone

bosons with a small mass in a chiral invariant effective theory for strong

interactions. Here, MFV gives rise to an effective low-energy theory which

does not make any assumption on the possible underlying high-energy dy-

namics of the spurions.

2. The second condition can be considered a naturality condition. Since

every physical flavour observable will be written as series in terms of the

spurions, if the coefficients of these series were arbitrary, they could in-

volve complex phases or unnaturally introduce new hierarchies. To avoid

any additional fine-tuning, we demand that the coefficients of the MFV

expansion be natural, i.e. O(1), so that only the already known masses

and mixing parameters are responsible for suppression or enhancement

effects, CP violation, etc. If in one particular process a very small value

of the MFV coefficients is needed to fit the data, this would mean that

MFV fails to explain the flavour structure of the process. If, on the con-

trary, a value greater than one is needed for the coefficients, this would

point to an additional flavour structure beyond the SM one.

MFV in the Higgs basis

The MFV hypothesis has already been applied to the 2HDM in several works

[77–79]. However, the way the hypothesis is implemented and the choice of
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flavour structures that are taken as the spurions can lead to quite different

models, at least with respect to the fermion couplings. In [79], for example,

the couplings ∆′
D and Γ′

U in the generic basis (2.1) are taken as the spurions

and the remaining couplings, Γ′
D and ∆′

U , are written as a series of Gf invari-

ant spurion structures. However, one could have chosen Γ′
D and ∆′

U to be the

spurions and develop ∆′
D and Γ′

U as a series.

Since in the SM the Yukawa couplings to the two doublets for a same fermion

family -let us choose the d quarks for example- cannot be simultaneously di-

agonalized, none of the couplings ∆′
D and Γ′

D in (2.1) correspond to the SM

Yukawa coupling Y ′
D that once diagonalized provides the d quarks with a mass.

In the MFV implementation prescription that we have previously introduced,

we have stated that ”the new flavour structures are written as series in terms

of the spurions. However, only the spurions which are needed to account for

the known fermion masses and mixings are allowed”. Following this prescrip-

tion we have chosen to work on the Higgs basis (2.37), where the couplings

Y ′
D,U are the only ones responsible for the quark masses just like in the SM.

Furthermore, the CKM mixing matrix is also a consequence of the impossi-

bility of simultaneously diagonalizing the up and down quark mass matrices,

i.e. Y ′
D and Y ′

U . The Beyond the Standard Model (BSM) flavour structures

are the Z ′
D,U couplings to the second doublet, which does not acquire a vev in

the Higgs basis. Therefore, a way to realize the MFV requirement consists in

developing the Z ′
D,U couplings as series of HD,U = Y ′

D,UY
′†
D,U :

Z ′
U = [α0 + α1HD + α2HU + α3HDHU + ...]Y ′

U , (2.93)

Z ′
D = [ǫ0 + ǫ1HD + ǫ2HU + ǫ3HDHU + ...]Y ′

D. (2.94)

One can easily prove that these series are actually finite. Using the Cayley-

Hamilton theorem for a generic 3× 3 matrix M:

M3 − 〈M〉M2 +
1

2
(〈M〉2 − 〈M2〉)− detM = 0, (2.95)

where 〈M〉 is the trace of the matrix, we can reduce the number of terms to

17 [76]. Furthermore, considering that when the diagonalized spurions YD and

YU are frozen to their background values we have the relations (YD,UY
†
D,U )

2 ∼
YD,UY

†
D,U , we can reduce the series to four terms. Writing

Z ′
D = QY ′

D; Z ′
U = QY ′

U , (2.96)
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we obtain

Q = x0 + x1HD + x2HU + x3{HD, HU}+ ix4[HD, HU ], (2.97)

where the coefficients in Q are different for the different couplings Z ′
D and Z ′

U .

In [78], a useful notation in terms of operators has been introduced. Taking

into account the fact that the Y ′
U,D couplings once diagonalized generate the

quark masses, we can rewrite the HD,U structures in the following way:

HD = Y ′
DY ′†

D = V d
LM2

DV d†
L =

2

v2
V d
L

(

∑

i

m2
diPi

)

V d†
L =

2

v2

∑

i

m2
diP

dL
i , (2.98)

HU = Y ′
UY

′†
U = V u

L M2
UV

u†
L =

2

v2
V u
L

(

∑

i

m2
ui
Pi

)

V u†
L =

2

v2

∑

i

m2
ui
PuL
i , (2.99)

where V d,u
L are the diagonalization unitary matrices and Pi is a projector

defined by (Pi)jk = δijδjk and P
(d,u)L
i = V

(d,u)
L PiV

†(d,u)
L . In this formalism,

the Z ′
D,U couplings, once written in the quark mass basis, become

ZD =
v√
2
V d†
L Z ′

DV d
R

= [ǫ0 + ǫ1
2

v2

∑

i

m2
di
Pi + ǫ2

2

v2

∑

i

m2
ui
V †
CKMPiVCKM + ...]MD (2.100)

ZU =
v√
2
V u†
L Z ′

UV
u
R

= [υ0 + υ1
2

v2

∑

i

m2
di
VCKMPiV

†
CKM + υ2

2

v2

∑

i

m2
ui
Pi + ...]MU (2.101)

Some important observations need to be made at this point. Equations (2.100)

and (2.101) show that tree-level FCNC remain after diagonalization of the

quark mass matrices, since the ǫ2 term in ZD and the υ1 term in ZU contain

non-diagonal terms. However, these FCNC are weighed by the VCKM matrix

elements and the MD and MU quark masses, as should be the case from the

MFV hypothesis. One can therefore expect FCNC in 2HDM with MFV to

be highly suppressed. We will nevertheless study their consequences in some

physical processes in the next chapter.

It is worth noting as well, that despite de naturalness condition of the MFV

coefficients that requires no new CP violation sources other than the already

present in the SM, (2.97) introduces a CPV term through ix4. Besides, in [80]

it is argued that when the MFV expansion is truncated, complex coefficients

of the MFV expansion are in principle generated. However, in this work, we
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restrain ourselves to the case where the MFV coefficients are assumed to be

real, and therefore the ix4 term is not taken into account. We believe this is a

choice we make in the way the MFV hypothesis is conceived and implemented

since our departing point is that the only mass hierarchies and CP violation

sources are the ones present in the SM.

BGL models

Another attempt which is quite similar to MFV, in that it aims at controlling

all flavour and CP violation by the quark masses and CKM structures, has been

proposed in [81]. In this particular case, horizontal symmetries are introduced

in such a way that only the VCKM elements involving the top quark will be

relevant. In order to see this, let us take the Yukawa Lagrangian in a generic

basis (2.1). The horizontal symmetry imposed is given by

S : Q′
L3 → eiαQ′

L3; u′
R3 → ei2αu′

R3; φ2 → eiαφ2; α 6= 0, π, (2.102)

with all the other fields transforming trivially under S. Under this symmetry,

the most general Yukawa couplings with three generations of quarks take the

following form:

∆′
D =









∗ ∗ ∗
∗ ∗ ∗
0 0 0









; Γ′
D =









0 0 0

0 0 0

∗ ∗ ∗









; (2.103)

∆′
U =









∗ ∗ 0

∗ ∗ 0

0 0 0









; ΓU =









0 0 0

0 0 0

0 0 ∗









. (2.104)

From these couplings, we can already make the following observations:

• Since only the third row of Γ′
D is not equal to 0, once the diagonalization

matrices V d
L,R are be applied to Γ′

D, only (V d†
L )3j will be relevant.

• since the Γ′
U and ∆′

U matrices are block diagonal, then (V u
L )3i = (V u

L )i3 =

δi3 and since VCKM = V u†
L V d

L , we have (VCKM )3j = (V d
L )3j .
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• Due to the form of both ∆′
D and Γ′

D we obtain the following relation as

well:

Γ′
D =

v

v2
P3YD; P3 =









0 0 0

0 0 0

0 0 1









. (2.105)

Taking into account the previous remarks as well as equations (2.38), we ob-

tain3:

ZD =
v√
2
V d†
L Z ′

DV d
R

=

[

v2
v1

−
(

v2
v1

+
v1
v2

)

V d†
L P3V

d
L

]

MD =

[

v2
v1

−
(

v2
v1

+
v1
v2

)

V †P3V

]

MD

(2.106)

ZU =
v√
2
V u†
L Z ′

UV
u
R ,

=

[

v2
v1

−
(

v2
v1

+
v1
v2

)

V u†
L P3V

u
L

]

MU =

[

v2
v1

−
(

v2
v1

+
v1
v2

)

P3

]

MU .

(2.107)

A comparison of these two last equations with the MFV expansion given in

(2.100) and (2.101) leads us to conclude that this BGL model corresponds to a

particular case of the MFV expansion, where all the quark masses are neglected

with respect to the Higss vev except for the top quark mass. In this model,

the previously ”unknown” ǫ coefficients acquire a particular value in terms of

the ratios of the vevs of the two doublets. However, it is important to note

that in the BGL case, the form of the Yukawa couplings is given by an imposed

symmetry, while in the case of the MFV expansion, some terms need to be

neglected to give similar expressions.

There are actually six types of BGL models corresponding to six types of S

symmetries. Three of them display FCNC in the down sector (when u′
Rj trans-

forms non-trivially under S) and three of them show FCNC in the up sector

(when d′Rj transforms non-trivially under S).

3To simplify the expression we take VCKM ≡ V
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The aligned 2HDM

The aligned 2HDM with CP violation developed in [50] and mentioned in 2.2.1

can also be considered as a special case of MFV. In this model, the relations

between the Y ′
D,U and the Z ′

D,U couplings in the Higgs basis are given by the

alignment relations

Z ′
D = ςdY

′
D, Z ′

U = ςuY
′
U , (2.108)

where the ςd,u are simple coefficients which are allowed to take complex values,

so that when the Y ′
D,U matrices are diagonalized so are the Z ′

D,U . If the align-

ment coefficients ςd,u are constrained to be real and O(1), the aligned 2HDM

would be equivalent to a 2HDM with MFV where the expansions in (2.93) and

(2.94) are taken to the 0th order in HD,U .

2.2.5 CP and Flavour invariants

In our study of CP violation in the SM framework, we have underlined the im-

portance of the flavour structure of the model in order to construct quantities

which are invariant under ”weak basis” transformations, that is, transforma-

tions in the flavour space. In the previous chapter we showed that the neces-

sary and sufficient condition for CP violation in the SM is given by (1.92). The

2HDM has a much richer flavour structure than the SM, even if symmetries

can be imposed on the flavour parameters in order to constrain them. It seems

useful, nevertheless, to define invariants which may appear in physical quanti-

ties and which can be helpful to check the flavour structure and CP violating

properties of a flavour model, by comparing them with experimental results.

In the weak basis where both quark mass matrices MU and MD are diagonal,

the flavour structure of the SM contains 10 parameters: the three up quark

masses; the three down quark masses; the three angles of the VCKM matrix;

and its complex phase. It has been shown [82] that from the four invariants

tr(HUHD), tr(HUH
2
D), tr(H2

UHD) and tr(H2
UH

2
D), one can construct the full

VCKM matrix. In a general 2HDM, we have the previous amount of parameters

plus nine angles and nine phases for each of the ZD and ZU arbitrary complex

matrices. If one introduces flavour symmetries in one particular weak basis, as

in MFV or BGL models, the invariants constructed from the flavour quantities
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must account for these symmetries regardless of the weak basis in wich they

have been computed.

It is obvious by now that, in the 2HDM framework, one can build flavour invari-

ants which do not appear in the SM. Each one of them will give some insight

into the impact of the model on various physical phenomena. For example, the

invariants [83]

tr(Y ′
DZ ′†

D) =
2

v2
[md(ZD)∗dd +ms(ZD)∗ss +mb(ZD)∗bb] , (2.109)

tr(Y ′
UZ

′†
U ) =

2

v2
[mu(ZU )

∗
uu +mc(ZU )

∗
cc +mt(ZU )

∗
tt] , (2.110)

probe the phases of the diagonal terms of the ZU and ZD which can contribute

to quark electric dipole moments. In the MFV and BGL models introduced in

the previous section, the diagonal terms of the ZD and ZU matrices are always

real, therefore, the previous invariants will not contribute to quark electric

dipole moments in these particular 2HDM. In the SM, the invariant in (1.92)

measures CP violation arising from the misalignment of the Y ′
D and Y ′

U Yukawa

couplings. In the 2HDM, with the presence of two additional Yukawa matrices,

one can study CP violation effects arising from the misalignment between the

SM and the new matrices:

tr
[

YUY
†
U , ZDZ†

D

]3

∝ (m2
t −m2

u)(m
2
t −m2

c)(m
2
c −m2

u)(z
2
b − z2d)(z

2
b − z2s)(z

2
s − z2d)ImQ,

(2.111)

where zi are the eigenvalues of ZD, and Q is a similar structure to (1.93),

but with the unitary matrix involved V u
ZD

reflecting the misalignment between

the YU and ZD diagonalization matrices (V u
L and V Zd

L ) by the relation V u
ZD

=

V u†
L V ZD

L . There are three other invariants of this class, plus four other that

are sensitive to the misalignment between the right-handed diagonalization

matrices. In the MFV and BGL models previously introduced, the ZD and

ZU are both described in terms of the SM mass and CKM matrices as can be

seen in (2.100), (2.101), (2.106) and (2.107). This particular feature implies

that invariants of the type (2.111) will again depend on VCKM rather than on

new misalignment matrices. However, an interesting characteristic of MFV and

BGL models is that invariants of lower order than (1.92) can already account

for CP violation. For example, in BGL models, the invariant

Im tr
[

MDZ†
DMDM†

DMUM
†
UMDM†

D

]

∝ (m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)(m
2
c −m2

u)Im(V ∗
22V32V

∗
33V23), (2.112)
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accounts for CP violation even though the order in quark masses is lower than

in the SM. This is because, in these kind of models, CP violation can also

appear in FCNC but still depending on VCKM parameters. Besides, even if

there was a mass degeneracy between the top and another same charge quark,

the invariant would still not vanish.

The previous discussion could be generalized to different cases of 2HDM with

MFV where new sources of CP violation are allowed, through the expansion

coefficients for example, or to a 2HDM where CP violation is not a symmetry

of the scalar potential. In the second case, CP violation invariants depending

on physical parameters will also include Higgs potential parameters [84].

2.3 Experimental constraints on 2HDM

Since the 2HDM is one of the simplest extensions of the SM Higgs sector, a large

amount of work has been carried out since the first data release on the newly

discovered boson, in order to constrain the 2HDM parameter space and look for

any hint of its additional predicted particles. The LHC-discovered boson seems

to own every feature of the SM-predicted one, from its quantum numbers to its

couplings to other particles. Therefore, any 2HDM attempting to be consistent

with the data, must identify one of its scalars with the newly discovered one

and study a limit where it behaves like the SM scalar. Concerning flavour,

most studies have been carried out in models with NFC, due to the flavour

constraints coming from the unitary triangle and B meson rare decays wich are

extremely sensitive to quark flavour mixing. Besides, the presence of several

free parameters in a 2HDM doesn’t allow us to rule out the model as a whole

and only some points of the parameter space can be constrained. There are

also numeruous different realizations of the 2HDM and studies tend to only

concentrate in some of them. We include a short summary of what we consider

the most relevant constraints related to our work.

• Concerning the direct Higgs searches, the constraints can only be fully

applied to the SM-like scalar h0 in a 2HDM where CP is conserved. The

additional scalar and pseudoscalar of the 2HDM (H0 and A0) couple in

different ways to the SM particles. In a general 2HDM with NFC and im-
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posing the h0 couplings to be SM-like (cos (β − α) ≪ 1), the H0 trilinear

coupling to vector bosons is very small while A0, being a pseudo-scalar,

does not have such a coupling. This has a lot of implications not only

concerning the WW and ZZ decays, but also concerning the produc-

tion mechanism, since it will be mainly gluon fusion driven. The ATLAS

collaboration having provided a limit on a fully ggF generated Higgs-

like boson decaying into two photons [85], provides an upper limit to

the boson mass that could in principle be applied to the additional neu-

tral (pseudo-)scalar mA0,H0 > 200 GeV depending on their couplings to

fermions. Other limits on the pseudoscalar mass mA0 come mainly from

ττ decays as a function of tanβ [86]. A search for a pseudoscalar A0

decaying into a Z boson and the 125 GeV scalar h0 has been carried out

by the CMS collaboration [87]. No evidence of background deviation has

been observed and upper limits have been set on the cross-section branch-

ing ratio product in the context of type-I and type-II models. Concerning

the charged Higgs boson H±, the most constraining limits are still those

provided by B physics experiments. However, we will give more details

on these constraints in the next chapter, once we have introduced the

specificities of our model, since we will only consider the limits relevant

to our study.

• A complete study which corrects the width used in the CMS and ATLAS

analyses to the H0 and A0 widths in a CP conserving 2HDM with NFC,

has been carried out in [58]. They consider both the case where the

125 GeV scalar is the lightest neutral scalar, and the case where it is

the heaviest. They conclude that detection of additional Higgs particles

is still possible within LHC searches. In the case where the 125 GeV

scalar is the lightest one, the most favoured scenario is the 2HDM taken

to the decoupling limit, where the masses of the other Higgs particles

mH0 ≈ mA0 ≈ mH± are very large and their detection at the LHC seems

impossible. However, the authors highlight a particular type-II model

case with a lighter scalar where the detection of the pseudoscalar A0

could still be possible.

• Several studies on type-II 2HDM have underlined another interesting case

in the parameter space still allowed by the data. Two major scenarios
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of a type-II CP conserving 2HDM with an 8-parameter potential are

favoured. The first scenario is an SM-like case, where h0 is the 125 GeV

boson and the other Higgs particles are very heavy and decoupled. In the

second case, called the ”wrong-sign scenario”, the Higgs coupling to down-

type quarks changes sign relative to the SM, while couplings to up-type

quarks and massive gauge bosons are the same. The case with wrong-sign

couplings to up-quarks has been ruled out, since it requires a small value

of tanβ already incompatible with observations [88]. The ”wrong-sign

scenario” was first studied in [88] and has led to several studies after

the LHC data release [58–60, 89]. The main consclusion being that, as

more data are released by the LHC at
√
s = 14 TeV, a higher precision

determination of the hγγ coupling could either rule out or confirm the

wrong-sign scenario. In particular, the charged Higgs contribution to this

decay suppresses the diphoton branching ratio to an amount such that

the LHC could be sensitive enough.

2.4 Summary

The SM of elementary particles and fundamental interactions is based on gauge

symmetries. However, some sectors of the SM have shown themselves to acci-

dentally conserve additional symmetries. These symmetries are responsible for

numerous features which have been experimentally confirmed to a very high

precision level. A simple extension of the SM such as the 2HDM, loses, in its

most general case, several of these accidental symmetries.

In this chapter we introduced the formalism of a general 2HDM. We then

analysed, one by one, the constraints which need to be applied to the 2HDM

Lagrangian in order to preserve the SM accidental symmetries or at least break

them as minimally as possible. This was done with the aim of being able to

take advantage of the richer phenomenology provided by an extended scalar

sector, while at the same time maintaining the outstanding features of the SM

that have guaranteed its impressive success. Finally, we summarized the most

relevant constraints on the 2HDM provided by the LHC data.
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Phenomenology of a custodial

invariant 2HDM with MFV

Despite the undeniable success of the SM and its very specific characteristics,

we have shown in the previous chapter that several of its accidental symmetries

can still be imposed to a more involved model with two scalar doublets. In

this chapter we will focus on the predictions of a particular realization of the

2HDM that minimally breaks the custodial, the flavour and the CP symmetries.

First, we will specify the properties of the model which we will be studying.

Then, we will focus on the predictions of the model concerning flavour physics.

We will analyze Kaon and B-meson physics. We will focus our work on the

ǫK parameter that measures the amount of CP violation in the neutral kaon

system and its real part Re(ǫK) that can also be extracted from experiments.

With respect to B-meson physics, we will study the neutral strange B-mesons

mass difference ∆MBs
and the neutral B-meson rare decays into two muons

Bs,d → µ+µ− recently measured for the first time at the LHC. Lastly, we will

analyze some LHC phenomenology.

71
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3.1 The Model

In the previous chapter we studied constraints are to be applied to the 2HDM

scalar potential in order for it to be custodial invariant. This way, corrections

to (2.65) are kept small and the source of the custodial symmetry breaking

is the same as in the SM, i.e. radiative corrections due to gauge boson and

fermion loops. The presence of additional scalars will modify these corrections,

but the source of the breaking remains the same as in the SM. It was also

shown previously that any custodial invariant scalar potential will conserve CP

as well. Neglecting CP violation in the strong sector, the only CP breaking

sources will therefore come from the Yukawa Lagrangian. Instead of specifying

a particular custodial invariant scalar potential and deriving all the specific

properties, we stay as general as possible [46] and classify the scalars in triplet

and singlet irreducible representations of the unbroken SU(2)L+R, namely

Φ1 ∋















G+

G0

G−















⊕ {h0 +
v√
2
}; v = (

√
2GF )

− 1
2 ≈ 246 GeV (3.1)

and

Φ2 ∋















H+

A0

H−















⊕ {H0} or















H+

H0

H−















⊕ {A0}. (3.2)

A particularity of the specific model introduced in (3.1) and (3.2) is that only

Φ1 contains a non vanishing vev. These assignments, with h0 behaving as

the SM scalar and all the new physical states beyond the SM being in Φ2,

would correspond to a particular case of the Higgs basis introduced in the

previous chapter with a further assumption on theH0−h0 mixing angle, namely

α = β − π
2 . The triplet in (3.1) corresponds to the massless Nambu-Goldstone

bosons. The two possibilities presented in (3.2) correspond to the two cases

where either the pseudoscalar A0 forms a triplet of SU(2)L+R with H±, or it

is the additional scalar H0 that forms the triplet with H±. These two cases

are equivalent to the particular realizations of a custodial invariant 2HDM

potential presented in (2.79) and (2.80). In the limit where the scalar triplet in

(3.2) is also degenerate in mass, the custodial SU(2)L+R symmetry is minimally

broken as in the SM, i.e., by mb, mt and g′. Actually, all the additional scalar
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contributions to the ρ parameter cancel. In [90] it has been shown that in a

general 2HDM, the only scalar vacuum polarization diagrams contributing to

ρ are those with trilinear couplings. Since in our model Φ2 is vectophobic,

meaning that it does not have trilinear couplings to vector bosons, its quantum

corrections to the ρ parameter cancel.

Concerning the masses of the different particles, several constraints can be

applied. In our work in [46], we considered the case where the singlet component

of (3.2) is light compared to its triplet partners:

mH0 < mA0 ≈ mH± or mA0 < mH0 ≈ mH± , (3.3)

while the mass of the SM-like Higgs boson h0 was left as a free parameter of the

theory. Given the latest LHC results, where the newly found particle seems to

possess all the properties of the SM scalar, it appears to be no longer possible

to make the hypothesis in (3.3) by identifying the light BSM (pseudo)scalar

with the observed one. Therefore we will study the properties of the model

assuming that h0 is the newly discovered boson at 125 GeV. We are hence

left with two main mass hierarchies. The so-called decoupling limit, where the

SM-like Higgs is decoupled from the rest of the Higgs particles,

mh0 ≪ mH± ,mA0 ,mH0 , (3.4)

seems less interesting from a phenomenological point of view. Since its BSM

particles are too heavy to be detected in any current experiment, the phe-

nomenological signature of this model reduces to the SM one. The other hier-

archy still not ruled out would be

mh0 ,mA0(H0) < mH0(A0) = mH± . (3.5)

It actually covers the two different cases where either the pseudoscalar, or the

additional neutral scalar is the one degenerated with H±.

The strongest constraints on the charged Higgs mass come from B-meson

physics. That is why, before stating them and studying how to apply them

to our particular model, we need to specify the flavour sector of our model and

how the two scalar doublets couple to flavoured particles. To do so, let us take

a look at the quark Yukawa Lagrangian written, in the Higgs basis, namely in

terms of Φ1 and Φ2:

LY = −Q̄′
L (Y ′

DΦ1 + Z ′
DΦ2) d

′
R − Q̄′

L

(

Y ′
U Φ̃1 + Z ′

U Φ̃2

)

u′
R + h.c. (3.6)
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In this model, all the fermions acquire a mass through their coupling Y to Φ1

after SSB, while tree-level FCNC are induced by their coupling Z to the new

spin-0 felds in Φ2.

As we have previously stated, we will be applying the MFV hypothesis to our

specific model. Following the prescription given in the previous chapter, the

MFV formalism can be applied in this case by expressing the additional flavour

structures Zi as series of the Yi couplings in a Gf = SU(3)QL
× SU(3)UR

×
SU(3)DR

invariant way, as done in (2.93) and (2.94). Instead of taking the

full series into account, we make a quite accurate approximation based on the

fact that, once the flavour matrices Y ′
D,U are diagonalized, they give rise to

the quark mass matrices. Making use of our knowledge of the quark masses

hierarchy, we can neglect the down-quark mass contributions with respect to

the top mass, and the MFV series are therefore given by [46]:

Z ′
D

∼= {δ0 + δ1Y
′
UY

′†
U }Y ′

D, (3.7)

Z ′
U

∼= {υ0 + υ1Y
′
UY

′†
U }Y ′

U , (3.8)

where the δi, υi ≤ 1 are arbitrary real coefficients of order one to avoid any

fine-tuning. In the quark mass eigenstate basis, where the YU,D matrices are

diagonalized, the misalignment between the down and up quark masses causes

the ZD couplings to be non-diagonal. Since the second doublet Φ2 alone is

concerned with these couplings, only H0 and A0 will be the FCNC mediators.

Considering only the top mass contribution, the non-diagonal FCNC couplings

are then given by

(ZD)ij = 4GF δ1(V
∗
tiVtj)m

2
t

mdj

v
i 6= j. (3.9)

From the previous equation we note that CP violation could appear in FCNC

as well through the standard CKM matrix elements.

3.2 Comparison with other models

Although some models have already been mentioned in previous sections, let

us stop here for a while to compare the particular realization of the MFV

hypothesis in a custodial invariant 2HDM with other models present in the

literature.
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3.2.1 Models with NFC

The first comparison we want to make concerns models with NFC, where the

flavour conservation has been achieved by imposing Z2 discrete symmetries.

Since we are focusing on the quark sector alone, these NFC models are mainly

the Type-I and Type-II models introduced in 2.2.1. These models have been

built to avoid any FCNC at tree-level, which is one of the main differences

between NFC and MFV. Using equations (2.60) and (2.61) and assuming that

there is no relative phase δ between the two doublets’ vevs, we obtain analogous

relations to (3.7) and (3.8):

Type-I

{

Z ′
D = cotβY ′

D

Z ′
U = cotβY ′

U

, Type-II

{

Z ′
D = − tanβY ′

D

Z ′
U = cotβY ′

U

. (3.10)

From these relations we notice that both Type-I and Type-II seem to be par-

ticular cases of MFV when the series expansion is stopped at the first order,

and with particular values of the coefficients related to tanβ. However, in the

Type-II case, the previous statement is not totally correct, since both tanβ

and cotβ cannot be simultaneously of O(1) except for the very particular case

where β = π/4. Therefore, this model does not in general verify the require-

ment imposed on the MFV expansion coefficients. Nevertheless, in processes

where only charged currents contribute, the study of Type-I 2HDM contribu-

tions can be used to impose constraints on our MFV 2HDM with the proper

translation between tanβ and the MFV expansion coefficients.

3.2.2 Models with flavour alignment

A similar conclusion as in the NFC case can be drawn from the study of the

aligned 2HDM [50]. The relations between the two doublets Yukawa couplings

in this model are given by

ZD = ςDYD and ZU = ςUYU , (3.11)

where the coefficients ςi can be complex. We believe that this is in fact almost

equivalent to the MFV case developed here when taken to the first order (where

no FCNC are present at tree-level). In [50] the authors argue that FCNC
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are driven by the same structures as in the MFV case. There are however

two main differences between these two approaches. One is that, as far as

we understand, no constraint is imposed on the ςi coefficients, while in the

MFV case the coefficients must be O(1). The second difference is that, since

in the aligned model the new FCNC contributions are produced by quantum

corrections, they are suppressed by loop factors. In the general MFV case,

FCNCs appear at tree-level without any extra suppression. However, if the

ςi coefficients are free to take any value, the small loop factors can always be

compensated by these coefficients and provide sizeable contributions, while in

the first order MFV case we do not have this freedom and suppressions are

only due to quark masses and VCKM matrix elements.

Regarding the fermion couplings with the charged Higgs, they are given, in our

model, by the following Lagrangian [77]:

LH+ =

√
2

v

3
∑

i,j=1

ūi

[

Ai
dmj

1 + γ5
2

−Ai
umi

1− γ5
2

]

VijdjH
+ + h.c., (3.12)

with

Ai
d = δ0 + δ1

2m2
t

v2
δi3, Ai

u = υ0 + υ1
2m2

t

v2
δi3. (3.13)

As already mentioned before, the well-known Type-I and Type-II 2HDM corre-

spond to particular relations between the series parameters in this model and

tanβ:

Type I: Ai
d = Ai

u = cotβ, (3.14)

Type II: Ai
d = −1/Ai

u = − tanβ. (3.15)

A similar relation can also be found with the aligned 2HDM:

Au = |ςu|, Ad = |ςd|, (3.16)

while taking into account the MFV constraint Au,d ∼ O(1) and the fact that

ςu,d are allowed to be complex. Establishing a relation between our parameters

and NFC models parameters may be useful to constrain our model by using the

limits on the 2HDM parameters. As a matter of fact, we have made use of some

constraints from the aligned 2HDM [50] regarding the charged Higgs mass.

Although in [77] the model studied shows more similarities with our model

and the same observables are studied in order to constrain the charged Higgs
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mass, we will also take a look at similar studies on the aligned 2HDM [91, 92]

in order to have a more complete and updated view. The authors in [91]

constrain the charged Higgs mass through the analysis of the Z → bb̄ decay.

The charged Higgs contribution to this decay is related to the H+tb coupling

that is proportional to both mt and Vtb ≈ 1 and is therefore expected to provide

a bigger contribution than the Z → ss̄ or Z → dd̄ decays. A simple way to get

rid of the QCD and EW corrections dependence is by studying the ratio [91]

Rb ≡
Γ(Z → b̄b)

Γ(Z → hadrons)
=

[

1 +
Sb

sb
CQCD

b

]−1

(3.17)

with CQCD
b ≈ 1 being a factor including QCD corrections and where

sq = [(ḡLb − ḡRb )
2 + (ḡLb + ḡRb )

2]

(

1 +
3α

4π
Q2

q

)

; Sb =
∑

q 6=b,ℓ

sq. (3.18)

The model-dependence enters through the ḡL,R
b parameters. Adapting the

expressions given in [91] to our own model we obtain

ḡLb = ḡLb,SM +

√
2Gfm

2
W

16π2

m2
t

m2
W

A2
u

[

f1(th)
αs

3π
f2(th)

]

, (3.19)

ḡRb = ḡRb,SM −
√
2Gfm

2
W

16π2

m2
b

m2
W

A2
d

[

f1(th)
αs

3π
f2(th)

]

, (3.20)

where th =
m2

t

m2

H±
and the fi(th) are loop functions related to NLO corrections

that can be found in [77]. Because of the relative factor between the top and

bottom masses, the constraints to be applied on Ad are much weaker than those

on Au. Therefore, we neglect its contribution and obtain the following bound:

|Au|
mH±

< 0.0024 GeV−1 +
0.72

mH±

< 0.011 GeV−1. (3.21)

The previous boundary ensures that the charged scalar mass should be heav-

ier than 116 GeV if we impose the MFV to be smaller than the unity, what

constitutes a quite weak constraint. In [91], and later on in [92], a very de-

tailed study about the B̄ → Xsγ decay rate and CP asymmetry was carried

out. Here, we apply their main results to our model in order to further con-

strain the charged Higgs mass mH± . Given that our model does not provide

any additional sources of CP violation that could have some impact on the
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CP asymmetry, we focus on their results on the B̄ → Xsγ branching ratio.

Following [93] we can express the branching ratio as

B(B̄ → Xsγ)Eγ<E0
= B(B̄ → Xceν̄)exp

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2
6α

πCB
[P (E0) +N(E0)],

(3.22)

where

CB =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2
Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)
= 0.580± 0.016. (3.23)

The interest of the previous normalization lies in the cancellation of non-

perturbative corrections that minimizes the sources of uncertainty. In the ap-

proximationms = 0, the charged Higgs effects appear in the Wilson coefficients

of the perturbative part:

Ceff
i (µW ) = Ci,SM + |Au|2Ci,uu − (AuAd)Ci,ud. (3.24)

The BSM contributions are virtual top-quark dominated and their exact ex-

pressions can be found in [77]. We make use of the results in [91] for the real

values of their parameters. These constraints are much more stringent than

the previous case, however, for a charged Higgs mass heavier than 400 GeV,

values of Au and Ad of order one are still allowed. Besides, it is worth noting

that the case where Au and Ad have opposite signs considerably loosens the

constraints.

3.2.3 Alignment limit in the scalar sector

Given the impressive compatibility between the newly discovered 125.5 GeV

scalar boson and the SM Higgs boson couplings, the alignment limit of the

2HDM seems one of the most interesting realisations of the 2HDM where NP

phenomenology could still be observed. This particular limit consists on the

assumption that one of the neutral Higgs mass eigenstates of the 2HDM is

aligned with the vev. The previous assumption implies as a direct consequence

that the ’aligned’ mass eigenstate has SM-like couplings to all the SM parti-

cles [94]. The custodial invariant 2HDM introduced in (3.1) and (3.2) can be

considered as a case of optimal alignment by construction. In [94], the condi-

tions to achieve the alignment limit are given in terms of the mixing parameters
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between the neutral scalar h0 and H0, allowing to further constrain the CP

invariant scalar potential. The neutral scalars are given in terms of the two

doublets H1 and H2 in the Higgs basis as follows:

H0 = (
√
2ReH0

1 − v) cos (β − α)−
√
2ReH0

1 sin (β − α) (3.25)

h0 = (
√
2ReH0

1 − v) sin (β − α) +
√
2ReH0

1 cos (β − α). (3.26)

The alignment condition can be achieved in two different cases. First of all, if

the mixing angle between the two states verifies the condition cos (β − α) ≪ 1,

then h0 aligns with the vev and has SM-like couplings to fermions and vector

bosons. On the other hand, if sin (β − α) ≪ 1, it is H0 who has SM-like cou-

plings. As we already mentioned in 3.1, our model requires the mixing angle

relation α = β − π/2 that verifies cos (β − α) = 0.

The well-kown decoupling limit, where all the Higgs particles but one neutral

scalar are heavy with respect to v, also has one of the neutral scalars behaving

like the SM Higgs boson. The case where both are verified, i.e. alignment

and decoupling, is called double decoupling limit, but the alignment without

decoupling could in principle provide a more interesting phenomenology since

it allows lighter BSM particles with a very SM-like Higgs boson.

In [94] and [95] the phenomenological analysis of the alignment limit has been

carried out for mh0 = 125.5 GeV (cos (β − α) ≪ 1) and mH0 = 125.5 GeV

(sin (β − α) ≪ 1) respectively. They impose NFC and study the fermion cou-

plings and the constraints to be applied to the 2HDM of type I and type II.

Given that the LHC expected precision on the measurement of the Higgs to

vector boson couplings is of about 1 %, the analysis is carried out by assuming

the minimum alignment condition necessary to match this level of precision and

look at fermion couplings and signal strengths in order to analyze the compat-

ibility with experiments.

The analysis of the fermion couplings allows to estimate how much a small

departure from the limit cos (β − α) ≪ 1 can have an impact on the decays

h → γγ or h → gg. In some cases, like the type II, the alignment limit can be

compensated by large tanβ leading to big down-type couplings to the SM-like

Higgs. However, such a compensation does not take place in our model here,

because the custodial arrangement in (3.1) and (3.2) is not the consequence of

taking a particular limit but the result of imposing a symmetry to the scalar

sector.
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The direct observation of the BSM particles H0 and A0 is also pointed out in

the articles mentioned above in the framework of the alignment limit. One of

the decays that could also be relevant for our model as well is the Higgs to

Higgs decay in gg → H0 → ZA0. We will discuss it in more depth in section

3.5.

3.3 Flavour Phenomenology

The flavour sector can be considered as the most intriguing one. Within the

SM, the Higgs mechanism introduces masses for the flavour particles in a gauge

invariant way but does not predict their values. Cancellations take place in a

very subtle way thanks to the CKM matrix unitarity and its resulting GIM

mechanism, ensuring the absence of FCNC. When studying BSM physics, these

subtleties often disappear and one of the easiest ways to constrain the BSM

model is by looking at its flavour physics predictions.

The particular model we are studying does not provide us with a better under-

standing of the flavour masses and mixing parameters hierarchies compared to

the SM. However, by imposing MFV, we have ensured that the same subtleties

that take place in the SM play a role in our model as well. In this section we

will study the way this happens in some particular observables and how much

it constraints our model.

3.3.1 CP-violation in the neutral Kaon mixing

The ∆S = 2 Weak transitions given in Fig.1.1, imply a non vanishing mixing

between the neutral Kaon states K0 and K̄0. This mixing generates a violation

of the CP symmetry in K → ππ decays that has been experimentally observed.

To understand how this happens, let us define the neutral Kaon CP eigenstates

K1 and K2 as

K1
CP→ +K1, K2

CP→ −K2. (3.27)
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The observed physical states can, in turn, be written in terms of the CP eigen-

states as

KS =
1

√

(1 + |ǭ|2)
(K1 + ǭ K2) , (3.28)

KL =
1

√

(1 + |ǭ|2)
(K2 + ǭ K1) . (3.29)

These states are built by assuming that ǭ is small, which means that KS is

almost CP-even while KL is almost CP-odd. This hypothesis is in agreement

with the observations since KL → ππ is very suppressed with respect to KS →
ππ.1 (3.29) clearly shows two different ways of violating CP in this system. If

KL decays into two pions through its CP-even component K1, the transition is

known as mixing-induced or indirect CP violating (ICPV). On the other hand,

if KL decays into two pions through its CP odd component K2, the transition

is called direct CP violating (DCPV). To further explore the neutral Kaon

system, one can also work in the strong interaction eigenstate basis defined in

terms of CP eigenstates as:

K0 =
√
2(K2 +K1), K̄0 =

√
2(K2 −K1). (3.30)

These states K0 = |s̄d〉 and K̄0 = |d̄s〉 are actual members of the SU(3)F

pseudoscalar octet (π, K, η) and are CP conjugates of each other. Since the

K0−K̄0 mixing can be considered a weak interaction perturbation of the strong

interaction, we are allowed to use perturbation theory tools. The K0 − K̄0

transitions are given by the effective Hamiltonian

H =

(

M11 − i
2Γ11 M12 − i

2Γ12

M21 − i
2Γ21 M22 − i

2Γ22

)

, (3.31)

with

M12 = 〈K̄0|H∆S=2
W |K0〉+

∑

n

P
〈K̄0|H∆S=1

W |n〉〈n|H∆S=1
W |K0〉

MK − En
, (3.32)

Γ12 = 2π
∑

n

〈K̄0|H∆S=1
W |n〉〈n|H∆S=1

W |K0〉δ(MK − En), (3.33)

1The numerical values of the KS and KL two pion decay rates are [14]:

B(KS → π0π0) = (30.69± 0.05) B(KL → π0π0) = (8.64 ± 0.06) × 10−4%

B(KS → π+π−) = (69.20 ± 0.05) B(KL → π+π−) = (1.967.64 ± 0.010) × 10−3%
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where P in (3.32) means the principal part at En = MK . Hermiticity and CPT

symmetry ensure

M11 = M22 ≡ M0, Γ11 = Γ22 ≡ Γ0, M21 = M∗
12, Γ21 = Γ∗

12. (3.34)

The eigenvalue problem is therefore given by

H

(

KL

KS

)

= λ

(

KL

KS

)

, (3.35)

and we find for the eigenvalues

λL = mL − i

2
γL = M0 −

i

2
Γ0 +

√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗
12

)

, (3.36)

λS = mS − i

2
γS = M0 −

i

2
Γ0 −

√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗
12

)

. (3.37)

The neutral kaon mass difference and decay width difference are defined in

terms of the real and imaginary parts of the eigenvalues. Their experimental

measurements are given by [14]:

∆MK ≡ mL −mS = 2 Re

[
√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗
12

)

]

= (3.483± 0.006) · 10−12 MeV, (3.38)

∆ΓK ≡ γL − γS = −4 Im

[
√

(

M12 −
i

2
Γ12

)(

M∗
12 −

i

2
Γ∗
12

)

]

≈ −γS.

(3.39)

The latest approximation comes from the observation that there exists a large

hierarchy between the long and short Kaon lifetimes : τKL
= γ−1

L = (5.116 ±
0.020) · 10−8 s whereas τKS

= γ−1
S = (0.8953 ± 0.0005) · 10−10 s [14]. This

feature can easily be explained thanks to (3.29). The fact that KL is almost

CP odd implies that it will mostly decay into a CP-odd state, mainly a 3π

state. Although KL is slightly heavier than KS , the amount of phase-space

available in a 3π decay is smaller and therefore KL lifetime is longer.

Another interesting experimental relation is given by the ratio −2∆MK/∆ΓK ,

which is almost one [14]. Following the last remark, let us define the angle

φǫ = arctan
2∆MK

∆ΓK
, (3.40)
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that will be used in the following. Finding the eigenvectors will allow us to

obtain the expression of the mixing parameter ǭ in terms of known quantities.

The diagonalization will give us the coordinates of mass eigenstates (KS ,KL)

in the strong eigenstates basis (K0, K̄0). Since (H−λL)KL = 0 can be written

as
(

− 1
2 (λL − λS) M12 − i

2Γ12

M∗
12 − i

2Γ
∗
12 − 1

2 (λL − λS)

)(

1 + ǭ

1− ǭ

)

=

(

0

0

)

, (3.41)

we finally obtain

1− ǭ

1 + ǭ
=

(∆MK − i
2∆ΓK)/2

M12 − i
2Γ12

=
M∗

12 − i
2Γ

∗
12

(∆MK − i
2∆Γ)/2

. (3.42)

The exact solution of (3.42) is:

ǭ =

[

1
2 ImΓ12 +

(

ReM12 − 1
2∆MK

)]

+ i
[

ImM12 − 1
2

(

ReΓ12 − 1
2∆ΓK

)]

[

1
2 ImΓ12 +

(

ReM12 +
1
2∆MK

)]

+ i
[

ImM12 − 1
2

(

ReΓ12 +
1
2∆ΓK

)] .

(3.43)

These expressions can be further simplified. Given that Br(KL → ππ) ≈ 10−3,

we know that ǭ must be very small. Therefore, in the strict ǭ = 0 limit we have

(

ReM12 −
1

2
∆MK

)

+
1

2
ImΓ12 = 0 and

(

ReΓ12 −
1

2
∆ΓK

)

+ ImM12 = 0;

(3.44)

and
(

ReM12 −
1

2
∆MK

)

− 1

2
ImΓ12 = 0 and

(

ReΓ12 −
1

2
∆ΓK

)

− ImM12 = 0.

(3.45)

The previous relations imply that mixing (or indirect) CP violation is absent

as soon as both imaginary parts of M12 and Γ12 vanish, in which case, mass

and width differences are completly fixed by ReM12 and ReΓ12 respectively,

i.e.:

ReM12 =
1

2
∆MK , and ReΓ12 =

1

2
∆ΓK . (3.46)

Therefore, at the 10−3 level we have:

ǭ =
i
[

ImM12 − i
2 ImΓ12

]

∆MK − i
2∆ΓK + i

[

ImM12 − i
2 ImΓ12

] ≈ i
[

ImM12 − i
2 ImΓ12

]

ReM12 − i
2ReΓ12

. (3.47)
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To obtain the last approximate identity, we have used the approximations

ReM12 >> ImM12 and ReΓ12 >> ImΓ12, (3.48)

which follow from (3.42) that could be rewritten as

1− ǭ

1 + ǭ
=

√

ReM12 − i
2ReΓ12 − i

(

ImM12 − i
2 ImΓ12

)

ReM12 − i
2ReΓ12 + i

(

ImM12 − i
2 ImΓ12

) (3.49)

= 1− i
ImM12 − i

2 ImΓ12

ReM12 − i
2ReΓ12

+O(ImM2
12, ImΓ2

12) (3.50)

given that (1− ǭ)/(1 + ǭ) ≈ 1 is almost real. Equation (3.47) can therefore be

put in the form

ǭ =
sin 2φǫ

2

[

1

2

(

ImM12

ReM12
− ImΓ12

ReΓ12

)

− i

(

ImM12

ReΓ12
+

1

4

ImΓ12

ReM12

)]

. (3.51)

The real and complex parts of the ǭ parameter are finally given by

Re(ǭ) = cosφǫ sinφǫ

(

ImM12

∆MK
+ ξΓ

)

, (3.52)

Im(ǭ) = sinφǫ sinφǫ

(

ImM12

∆MK
+ ξΓ

)

− ξΓ, (3.53)

where

ξΓ ≡ −1

2

ImΓ12

ReΓ12
. (3.54)

It is worth noting that ǭ is not a physical parameter since any wave function

rephasing s → eiϕs will modify M12 and Γ12 and therefore ǭ as well. It is

therefore necessary to find observables related to it that can give us a measure

of the amount of CP violation in the neutral Kaon system. The easiest way

to measure CP violation in neutral kaon decays to two pions are the following

ratios:

η+− =
A(KL → π+π−)

A(KS → π+π−)
, η00 =

A(KL → π0π0)

A(KS → π0π0)
. (3.55)

Let us consider the isospin decompositions of the decay amplitudes

A(K0 → π+π−) = A0e
iδ0 +

1√
2
A2e

δ2 , (3.56)

A(K0 → π0π0) = A0e
iδ0 −

√
2A2e

iδ2 , (3.57)

where δ0 and δ2 are the strong phases developed by ππ final state interactions

and defined as

A(K0 → (ππ)I=0) = A0e
iδ0 , A(K0 → (ππ)I=2) = A2e

iδ2 . (3.58)
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Introducing the new parameters

ǫK =
A(KL → (ππ)I=0)

A(KS → (ππ)I=0)
; ǫ2 =

A(KL → (ππ)I=2)

A(KS → (ππ)I=0)
; ω =

A(KS → (ππ)I=2)

A(KS → (ππ)I=0)
,

(3.59)

and using the assumption ǭ ≪ 1 lead us to the following expressions:

η+− =
ǫK + 1√

2
ǫ2e

−iδ02

1 + ω√
2
e−iδ02

η00 =
ǫK −

√
2ǫ2e

−iδ02

1−
√
2ωe−iδ02

, (3.60)

where δ02 ≡ δ0 − δ2. Looking at these expressions we can clearly see the

two different sources of CP violation. The ǫK parameter in both η+− and

η00 is dominantly the ICPV contribution. The remaining piece is the DCPV

component and can be expressed in terms of yet another parameter:

ǫ′ =
e−iδ02

√
2

ω
( ǫ2
ω

− ǫK

)

, (3.61)

if we define

η+− = ǫK +
ǫ′

1 + ω√
2
e−iδ02

, η00 = ǫK − 2ǫ′

1−
√
2ωe−iδ02

. (3.62)

Another common expression for the ǫ′ parameter is in terms of the isospin

amplitudes in (3.58):

ǫ′ =
1√
2
Im

(

A2

A0

)

e−iδ02 (3.63)

The ω parameter can be determined experimentally and is known to be very

small (∆I = 1/2 rule). Therefore, we can make the following approximations:

η+− ≃ ǫK + ǫ′, η00 ≃ ǫK − 2ǫ′. (3.64)

In order to obtain a theoretical prediction of the ǫK parameter we can use the

definition in (3.59) and relate it to ǭ. Departing from

KS,L =
1 + ǭ

√

2(1 + ǭ2)
K0 ∓ 1− ǭ

√

2(1 + ǭ2)
K̄0, (3.65)

we obtain

ǫK =
(1 + ǭ)A0 + (1− ǭ)A∗

0

(1 + ǭ)A0 − (1− ǭ)A∗
0

=
ǭRe(A0) + iIm(A0)

Re(A0) + iǭIm(A0)
=

ǭ+ iξ0
1 + iξ0

≃ ǭ+ iξ0,

(3.66)
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with

ξ0 ≡ Im(A0)

Re(A0)
. (3.67)

Using (3.52) and (3.53), we obtain a theoretical expression of both the real and

the imaginary part of the ICPV parameter ǫK :

Re(ǫK) = Re(ǭ) = cosφǫ sinφǫ

(

ImM12

∆MK
+ ξΓ

)

, (3.68)

Im(ǫK) = Im(ǭ) + ξ0 = sinφǫ sinφǫ

(

ImM12

∆MK
+ ξΓ

)

+ (ξ0 − ξΓ). (3.69)

Measurement of ǫK and SM prediction

Based on the already mentioned ∆I = 1/2 rule, the approximation ξ0 = ξΓ has

often been made. The ∆I = 1/2 rule reflects the fact that |(ππ)I=0〉 largely

saturates the neutral kaon decay widths. Hence, one can make the following

approximation for the absorptive part of the K0 − K̄0 mixing:

Γ21 = Γ∗
12 =

∑

f

A(K0 → f)A(K̄0 → f)∗ ≃ (A0)
2, (3.70)

leading to the result:

ξΓ = −1

2

Im(Γ12)

Re(Γ12)
=

1

2

Im(A0)
2

Re(A0)2
≃ ImA0

ReA0
= ξ0. (3.71)

This approximation gives rise to the common formula of ǫK :

ǫK = eiφǫ sinφǫ

(

ImM12

∆MK
+ ξ0

)

. (3.72)

In their estimation of ǫK within the SM, several authors have tried to compute

ImM12 in the most accurate way possible. We have already mentioned the

fact that M12 is generated by the box diagrams in Fig.1.1. However, long

distance effects coming from box diagrams with u quarks in the loops as well

as double-penguin diagrams should be taken into account leading to ImM12 =

ImMSD
12 + ImMLD

12 . In [96], a new parametrization that includes these effects

together with φǫ 6= π/4 was introduced as well as an estimation of ξ providing

the following formula for ǫK :

ǫK =
κǫ√
2

ImMSD
12

∆MK
. (3.73)
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The latest estimation of κǫ [97] gives

κǫ = 0.940± 0.013± 0.023. (3.74)

In the SM, due to the GIM mechanism, the computation of MSD
12 only takes

into account the c and t box diagrams, and is related to the following effective

Hamiltonian:

2mK(MSD
12 )∗ = 〈K̄0|Heff (∆S = 2)|K0〉, (3.75)

Heff (∆S = 2) =
G2

Fm
2
W

16π2
(ηccλ

2
cS0(xc) + ηttλ

2
tS0(xt) + ηct2λcλtS0(xc, xt))O∆S=2,

(3.76)

where the S0(xi) are Inami-Lim loop functions in Appendix B, the ηi are the

QCD correction factors and O∆S=2 is the current-current operator

O∆S=2 = (s̄d)V −A(s̄d)V −A + h.c. (3.77)

The λi = V ∗
isVid can be estimated in terms of measured quantities using the

Wolfenstein parametrization discussed in (1.85). Indeed, proceeding that way,

one can use quantities measured in B physics to predict observables in K

physics, testing their compatibility within the framework of the unitary CKM

matrix as can be seen in Fig.1.4. Finally, in order to estimate the matrix ele-

ment of the dimension six operator in (3.76), one introduces the so-called BK

parameter that measures the deviation from the vacuum insertion approxima-

tion as follows:

〈K̄0|(s̄d)V −A(s̄d)V −A|K0〉 = 2

3
BKm2

Kf2
K . (3.78)

This parameter has been estimated by the lattice as well as through several

theoretical computations. To this day, it constitutes, together with Vcb, one of

the main sources of uncertainty of the ǫK parameter theoretical prediction.

The uncertainty on Vcb comes from the fact that its determinations from both

inclusive and exclusive semileptonic B meson decays are only marginally con-

sistent. The limitations arise mainly from our inability to precisely account for

form factors and higher-order perturbative and non-perturbative effects. The

values obtained from inclusive and exclusive measurements are [14]

|Vcb| = (42.2± 0.8)× 10−3 inclusive (3.79)

|Vcb| = (39.2± 0.7)× 10−3 exclusive. (3.80)
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Instead of using an average value, in this work we use the best fit value provided

by [4]. With all this information available, the estimation of the short distance

contribution to the ǫK parameter in the framework of the SM is given by the

formula

|ǫK |SM =
κǫG

2
FmW f2

KmK

6
√
2π2∆MK

BKV 2
cbV

2
us×

(

1

2
V 2
cbR

2
t sin 2βηttS0(xt) +Rt sin β(ηctS0(xc, xt)− ηccxc)

)

, (3.81)

where β and Rt are respectively one of the angles and one of the sides of the

unitary triangle in Fig.1.4. The angle sin 2β is extracted experimentally from

Bd → J/ΨKS while Rt can be extracted from B -physics quantities like:

Rt =
ξs

|Vus|

√

mBs

mBd

√

∆Md

∆MBs

, ξs =
fBs

√

BBs

fBd

√

BBd

. (3.82)

Our theoretical prediction of |ǫK | within the framework of the SM is given by

the value2

|ǫK |SM = (1.97± 0.23)× 10−3. (3.83)

The CKMfitter collaboration that uses all the latest experimental and lattice

results to give the best fit of CKM related parameters provides the following

result for |ǫK | [4]:
|ǫK |SM = (2.20+0.47

−0.49)× 10−3. (3.84)

Experimentally, one can access the modules of ǫK through the KL → ππ asym-

metries thanks to the highly accurate approximation

|ǫK | = 2|η+−|+ |η00|
3

, (3.85)

providing the experimental value [14]

|ǫK |exp = (2.228± 0.011)× 10−3. (3.86)

Although much progress has been made towards the improvement of the the-

oretical prediction by trying to reduce all theoretical and lattice calculation

2All the theoretical and experimental inputs used as well as the Inami-Lim functions can

be found in Appendix A and B. An alternative theoretical prediction given in [98] is:

|ǫK |SM = (1.81 ± 0.28)× 10−3.

The difference with (3.83) is explained by the different values of the theoretical and experi-

mental inputs.
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uncertainties, the current experimental error is one order of magnitude smaller

than the theoretical one.

Measurement of Re(ǫK) and SM prediction

It is important to note that the approximation made in (3.71) only affects

the imaginary part of the ǫK parameter. Besides, the real part of ǫK can be

extracted from experiments on its own; thereby providing an additional way of

testing the accuracy of its theoretical prediction. Considering the semi-leptonic

decays KL → πℓνℓ, we can define the asymmetry

δℓ ≡
Γ(KL → π−ℓ+νℓ)− Γ(KL → π+ℓ−ν̄ℓ)

Γ(KL → π−ℓ+νℓ) + Γ(KL → π+ℓ−ν̄ℓ)
. (3.87)

Using symmetry arguments (the ∆S = ∆Q rule [99]) one can eliminate the

semi-leptonic matrix elements associated to the amplitudes, and the expression

of δℓ is given in terms of the K0 − K̄0 dependence of KL, that is, as a function

of ǭ:

δℓ =
|1 + ǭ|2 − |1− ǭ|2
|1 + ǭ|2 + |1− ǭ|2 =

2Re(ǭ)

1 + |ǭ|2 ≈ 2Re(ǭ). (3.88)

Experimentally, the leptonic universality is quite well verified since one has [14]:

δe = 0.334± 0.007%

δµ = 0.304± 0.025%

}

δℓ = 0.332± 0.006. (3.89)

Folowing (3.68), we can therefore conclude that the current experimental value

of Re(ǭ) is given by

2Re(ǫK)exp = (3.32± 0.06)× 10−3. (3.90)

Theoretically, one can make use of the large number of colours hypothesis [100]

where LD effects as well as deviations from φǫ = π/4 can be neglected at

O( 1
Nc

). In the large Nc framework, BK can also be estimated [101,102] giving

the result BK = 3/4. This value is quite close to the lattice result in Appendix
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B. Therefore, in the SM, the large Nc limit for Re(ǫK) gives3

2Re(ǫK)(Nc → ∞) = (2.91± 0.33)× 10−3. (3.91)

While both experimental measurements of |ǫK | and 2Re(ǫK) have a similar

level of precision, it is interesting to study their theoretical accuracy. The |ǫK |
theoretical uncertainty is due, to some extent, to the hadronic parameters and

Vcb, and therefore relies on the lattice calculations’ accuracy, while 2Re(ǫK)

determination in this work relies mostly on the large Nc hypothesis. With re-

spect to the consequences of the model we are studying on these two particular

observables, the results are expected to be very similar in both cases without

one providing any additional information with respect to the other. That is

why, moving forward, we will limit ourselves to the study of the contributions

of our 2HDM to |ǫK | only.

Measurement of ǫ′

ǫ and SM prediction

Before ending this section about CP-violation in the neutral Kaon mixing we

would like to adress the current status, within the SM, of the ǫ′

ǫ ratio where

ǫ′ is the parameter introduced in (3.61). Given what has been explained in

the previous paragraphs, this ratio measures the size of direct CP violation in

KL → ππ decays with respect to the indirect CP violation given by ǫK .

The results by the NA68 [103] and KTeV [104, 105] experiments provide the

average value

(ǫ′/ǫ)exp = (16.6± 2.3)× 10−4. (3.92)

From the theory point of view, several factors have contributed to the difficulty

of making a precise prediction of this ratio. Although the topic has been stud-

ied for years, with the improvement of lattice numerical simulations as well as

the development of some analytical methods in order to reduce the hadronic

uncertainties, it has been recently pointed out that the SM seems unable to

3All the theoretical and experimental inputs used as well as the Inami-Lim functions

can be found in Appendix A and B. A previous result using slightly different values of the

parameters gave [100]:

2Re(ǫK)(Nc → ∞) = (2.96 ± 0.38) × 10−3.
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account for the experimental value of the ratio [106–108] hinting to a possible

NP contribution. We will not provide here a full explanation of the calculations

but rather try to explain what are the main issues regarding the compatibility

of the SM predictions with the experimental result.

Within the SM, the ǫ′ parameter is dominated by positive contributions from

QCD penguins, while the electroweak penguins contribute mainly negatively.

This interplay demands a more accurate knowledge of the different contribu-

tions in order to provide a useful prediction of the ratio. While short distance

contributions, that are given by the Wilson coefficients of both QCD and elec-

troweak penguins, are known at the NLO level [107], the problem lies in the

accurate computation of the hadronic matrix elements of the different opera-

tors involved.

The authors in [107] propose a method in order to avoid the direct computation

of the hadronic matrix elements, better identify the main sources of uncertitude

and provide a more accurate prediction. This method is an improvement based

on a previous work [109] where the main hypothesis is that Re(A0) and Re(A2),

which are the main characters of the ∆I = 1/2 rule, are fully described by SM

dynamics. This way, the matrix elements associated to the (V −A)× (V −A)

operators can be extracted from experiments. Actually the main operator of

this type involved in the ǫ′/ǫ ratio is the QCD penguin operator

Q4 = (s̄αdβ)V −A

∑

u,d,s,c,b

(q̄αqβ)V −A. (3.93)

Its contribution is not as big as the (V −A)× (V +A) operators

Q6 = (s̄αdβ)V−A

∑

u,d,s,c,b

(q̄αqβ)V+A, Q8 =
3

2
(s̄αdβ)V −A

∑

u,d,s,c,b

eq(q̄αqβ)V +A,

(3.94)

coming from QCD and electroweak penguins respectively. However, due to their

opposite sign contributions, a better knowledge of the Q4 associated matrix el-

ement is a very important improvement. Following the previous assumptions,

the authors are able to provide a formula of the ǫ′/ǫ ratio whose main uncer-

titudes are the Q6 and Q8 matrix element parameters B
(1/2)
6 and B

(3/2)
8 . The

values of these parameters have been provided by lattice calculations and the

most recent results by (RBC-UKQCD) [107] are

B
(1/2)
6 (mc) = 0.57± 0.19, B

(3/2)
8 (mc) = 0.76± 0.05 (3.95)



92 Chapter 3. Phenomenology of a custodial invariant 2HDM with MFV

which lead to the following SM prediction of the ratio

(ǫ′/ǫ)SM = (1.9± 4.5)× 10−4 (Lattice). (3.96)

This prediction happens to differ with the experimental value in (3.92) to a 3σ

significance. On the other hand, in [106], a computation of the same hadronic

parameters in the large N limit, with N being the number of colors, is provided.

In this framework the following bound is derived

B
(1/2)
6 ≤ B

(3/2)
8 < 1 (3.97)

A saturation of the bound (3.97), confirms the discrepancy between the SM

prediction and the experimental result in (3.92)

(ǫ′/ǫ)SM = (8.6± 3.2)× 10−4 (Large N). (3.98)

Even in the hypothetical case of improved lattice calculations, where the param-

eters in (3.95) would have bigger values, the large N bound in (3.97) suggests

that there is still something missing in the determination of the ǫ′/ǫ hinting to

a new possible road to look for new physics. Despite it being one of the current

main issues regarding the neutral kaon system, we will not provide a possible

solution within the framework of the model presented in this work given that it

only introduces scalar operators that would not contribute to relax the tension.

3.3.2 ∆MBs

The case of the neutral B-meson system is slightly different from the K meson

one. The quantity that better estimates the strength of the B0
q − B̄0

q mixing is

the mass difference ∆MBq
, where q can be d or s whether it is the Bd or the Bs

system. We will only focus on ∆MBs
moving forward, since it is the quantity

that is expected to be the most sensitive to our BSM extension. Because the

B mesons are much heavier than the Kaons, they have many possible decay

channels and there is no sizeable difference between the lifetimes. That is why

the neutral states are called heavy and light, in contrast to long and short

which were used in the Kaon system, and the mass difference is defined by

∆Ms = ms
H −ms

L. (3.99)
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The mass difference can be expressed in terms of the off-diagonal element in

the neutral B-meson mass matrix by using the formula developed previously

for the K-meson system:

∆Ms = 2|M s
12|. (3.100)

However, there are several differences with respect to the Kaon mixing ex-

plained above. The first difference concerns the approximation ∆MK ≃ 2ReM12

that cannot be made in this case since Γs
12 ≪ M s

12 in the B system. Besides,

there are no LD effects to be expected in this case and the estimation of M s
12

reduces to the computation of the box diagrams. A final feature of this system

is that, due to the particular values of the CKM matrix elements involved and

mt ≫ mc,u, only the top quark contribution to the box diagram needs to be

computed. Taking all of this into account, the off-diagonal term M s
12 in the

neutral strange B-meson mass matrix is given by:

2mBs
|M s

12| = |〈B0
s |Heff (∆B = 2)|B̄0

s 〉|, (3.101)

where

Heff (∆B = 2) =
G2

F

16π2
mw(V

∗
tbVtd)

2ηBS0(xt)(b̄s)V −A(b̄s)V−A + h.c. (3.102)

Similar to the neutral Kaon system, the main uncertainties in the estimation

of this mass difference within the SM framework, come from the hadronic

parameters associated with the matrix element of the dimension six operator in

(3.102). However, the precision in the lattice computation of those parameters

has considerably improved these last years reducing the uncertainty of the SM

prediction. The final formula of ∆MBs
within the SM is

∆MBs
=

G2
F

6π2
ηBmBs

(BBs
f2
Bs

)m2
WS0(xt)|Vts|2. (3.103)

Using all the parameters listed in Appendix A and the loop functions in B, our

prediction of ∆Ms is given by

(∆MBs
)SM = (1.178± 0.061)× 10−11 GeV. (3.104)

The uncertainty in this theoretical prediction is smaller than in the Kaon case.

However, it remains larger than the experimental one [14]:

(∆MBs
)exp = (1.1688± 0.0014)× 10−11 Gev. (3.105)

Therefore, efforts still need to be made in order to reduce it as much as possible.
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3.3.3 ∆F = 2 results in the custodial invariant 2HDM with

MFV

In this section we will analyze the implications of our custodial 2HDM with

MFV in ∆F = 2 transitions. We will focus on the observables introduced

before, that is |ǫK | and ∆MBs
. The reasons for limiting ourselves to these

quantities are as follows:

• ǫK parametrizes ICPV in the Kaon sector. Its experimental determina-

tion is quite accurate and its main short distance contribution is due to

box diagrams with top quarks. The other quantity that can give us in-

sight into the K0−K̄0 mixing is ∆MK . However, due to the MFV nature

of our model, BSM contributions to ∆MK are expected to be small since

it is dominated by lighter quarks box diagrams.

• ∆MBs
measures the mixing between neutral states in the strange B sec-

tor. The study of CPV in this sector is not expected to provide us with

a lot of information because the CKM elements involved are almost real.

However, MFV can have an impact since the loop particles concerned in

this system are heavier quarks. This also accounts for why we will con-

centrate ourselves on ∆MBs
since it involves heavier quarks than ∆MBd

.

We will also divide this section in two sub-parts. The first part consists of the

study of the contribution of our model tree-level FCNC to these quantities. In

the second part we will analyze the contributions due to box diagrams with

charged Higgs in the loops updating the results given in [46].

FCNC effects on ∆F = 2 transitions

The coupling between different flavour down quarks is given by (3.9). Based

on that, we can build an effective Hamiltonian describing the tree-level contri-
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bution of both scalar H0 and pseudoscalar A0 to the M0 − M̄0 mixing:

H∆F=2
2HDM (H0, A0) =

(

− 1

mH0

[(ZD)ij − (Z†
D)ij ]

2

2
+

1

mA0

[(ZD)ij + (Z†
D)ij ]

2

2

)

(d̄iRd
j
L)(d̄

i
Rd

j
L). (3.106)

We aim at expressing the new contribution in terms of the SM one. So, we

try to relate the density-density operator in (3.106) to the SM current-current

operator:

OSM = (d̄iLγµd
j
L)(d̄

i
Lγ

µdjL). (3.107)

We can decompose the operator in (3.106) into a scalar and a pseudoscalar part.

Since we know that at the hadronic level the scalar part will not contribute,

we keep only the pseudoscalar part in the factorization limit:

− 1

4
(d̄iiγ5d

j)(d̄iiγ5d
j). (3.108)

Making use of the Dirac equation, we obtain

∂µ(d̄iγµγ5d
j) = (mi +mj)(d̄

iiγ5d
j). (3.109)

And applying twice, we finally have

m2
M (d̄iγµγ5d

j)2 = (mi +mj)
2(d̄iiγ5d

j)(d̄iiγ5d
j). (3.110)

Therefore, at the hadronic level, we obtain the following relation between the

two different operator matrix elements:

〈M̄0|(d̄iRd
j
L)(d̄

i
Rd

j
L)|M0〉

〈M̄0|(d̄iLγµd
j
L)(d̄

i
Lγ

µdjL)|M0〉
= − m2

M

(mi +mj)2
. (3.111)

The latest result allows us to write the FCNC effective Hamiltonian matrix

element in terms of the SM one. In [46], we gave an expression of this relation

when neglecting the charm box contribution:

〈M̄0|H∆F=2
2HDM (H0, A0)|M0〉 ≃ 〈M̄0|H∆F=2

SM |M0〉
[

1 + 16π2xδ21m
2
M

(

1

m2
H0

− 1

m2
A0

)]

,

(3.112)

with

x =
2m4

t

mW v2S0(xt)
≃ 1.61. (3.113)
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It is worth mentioning that the pseudoscalar contribution in (3.112) induces

a negative interference with respect to the SM one. This allows us to get a

glimpse into the behaviour of the 2HDM contribution for a light pseudoscalar

that will tend to reduce the ∆F = 2 transition amplitude with respect to the

SM prediction.

Charged Higgs effects on ∆F = 2 transitions

In the SM only the W+ −W− gauge bosons generate flavour changing neutral

currents through box diagrams. In the 2HDM, however, the charged Higgs

boson is also responsible for flavour changing up-down currents. When studying

the SD contributions to K and B meson mixings, one needs to compute the

pure H+ −H− and mixed H± −W± box diagrams as well.

s̄

d H−

H+

t t

s

d̄ s̄

d W−

H+

t t

s

d̄

Figure 3.1: Box diagrams with the charged Higgs contributing to the M0 − M̄0 mixing

Given our implementation of the MFV hypothesis, the charged current Higgs

Feynman rules in Fig.3.2 are given by the Lagrangian in (3.12).

The Ai
u and Ai

d coefficients in (3.13) are the same as those given in [77].

ūj

di
H−

d̄j

ui

H+

i
√

2
v
V †
ij

(

mujA
j
u

1+γ5
2

−mdjA
j
d
1−γ5

2

)

i
√

2
v

(

muiA
i
u

1−γ5
2

−mdiA
i
d
1+γ5

2

)

Vij

Figure 3.2: H±-quark coupling Feynman rules

Given the rules above and considering that the charged Higgs contribution with

charm quarks in the loop will be highly suppressed since the Higgs couplings
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are proportional to the quark masses, we can neglect both the Ad terms and

the box diagrams with two c quarks. The dominant effective Hamiltonian

describing the charged Higgs contribution to the M0 − M̄0 mixing is therefore

given by

H∆F=2
2HDM (H±) =

G2
fm

2
W

16π2

[

λ2
tC

tt + 2λcλtC
ct
]

(d̄iRd
j
L)(d̄

i
Rd

j
L) + h.c. (3.114)

where

Ctt = 2(Au)
2x2

t

[

m2
WD2(m

2
t ,m

2
W , m2

H±)

−4m4
WD0(m

2
t , m

2
W ,m2

H±)
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t ,m

2
H±). (3.116)

The Di functions are listed in appendix B.

Numerical results on 2HDM effects on ∆F = 2 transitions

In this section we analyze the 2HDM contributions to both ǫK and ∆MBs
for

different values of the model parameters.

Figure 3.3: |ǫK | and ∆MBs as a function of the H0 and A0 masses with MFV coeffi-

cients δ1 = 1 and Au = 1. The thin horizontal (green) lines indicate the experimental

values; the broad horizontal (orange) areas indicate the 1σ SM prediction; the upper

(blue) areas show the 1σ prediction for mH0 ≪ mA0 = mH± = 400 GeV; and the

lower (grey) areas correspond to the analog prediction for mA0 ≪ mH0 = mH± = 400

GeV.
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In Fig.3.3 one can see similar plots to the ones in [46] where we carried out a

study without considering the charged Higgs loop effects that now lead us to

much stronger constraints. First of all, in both ǫK and ∆MBs
, the addition

of the charged scalar loops implies a considerable shift (30%) with respect to

the SM, even when the FCNC effect is almost negligible, i.e. when the mass

of the lightest BSM scalar is big enough (400 GeV). Although the plots in

Fig.3.3 are made for the maximal values of the MFV coefficients, we can draw

some definitive conclusions from them. Firstly, we can see that the case where

the scalar H0 is light is highly disfavoured since the tree-level induced FCNC

together with the charged Higgs loop effects sum up to deviate (severely in

the ∆MBs
case) from the SM prediction and from the measured experimental

value as well. Besides, we already mentioned in section 2.3 that a limit on

a fully ggF-generated scalar decaying into two photons has been made by the

ATLAS collaboration, providing the following constraint on the additional neu-

tral scalar: mH0 > 200 GeV [85]. The case where the pseudoscalar A0 is light,

on the other hand, is more interesting since, looking at ∆MBs
, both effects

compensate for values around mA0 = 140 GeV. The |ǫK | parameter constraint

is less stringent. Although there is a shift with respect to the SM predictions

due to the charged Higgs loops, it remains compatible with the experimental

measurement for masses of the lightest BSM particle being higher than 50 GeV.

Given that ∆MBs
imposes much stronger constraints, with a light H0 more

unlikely than the SM prediction, we will, moving forward, only consider the

twisted case where the pseudoscalar A0 can be light.

Let us now analyze some variations of the model parameters. In the following

figures we have always considered the case of exact custodial symmetry with

the degeneracy relations mH± = mA0(H0). Nevertheless, we have verified that

a small departure from the degeneracy relation (around 10%) does not modify

the results and will therefore consider the case case of exact degeneracy from

now on.

First of all, in Fig.3.4, we study the mA0 dependence of the parameters for two

different values of the custodial triplet masses: mH0,H± = 200 and 400 GeV.

Similar to the previous case, ∆MBs
imposes a larger constraint on the model

parameters than |ǫK | does. This is easily explained by the MFV nature of the

Yukawa couplings that makes the effects depend on the masses and CKM ma-
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trix elements of the quarks involved. However, it is interesting to note that, in

the case where mH0,H± = 400 GeV, there is a wide mass spectrum for A0 that

accomodates the experimental value of ǫK better than in the SM. This way,

from mA0 = 50 GeV, where the model prediction and the experimental value

are compatible, up to the decoupling limit mh0 ≪ mA0,H0,H± , the 2HDM with

MFV gives a quite satisfying theoretical prediction for ǫK . Given that |ǫK |
does not favour the case where mH0,H± = 200 GeV, we analyze ∆MBs

for

mH0,H± = 400 GeV. The observable only agrees with its experimental value in

the case where mA0 ≃ 150 GeV.

Figure 3.4: |ǫK | and ∆MBs as a function of mA0 with MFV coefficients δ1 = 1 and

Au = 1. The thin horizontal (green) lines indicate the experimental values; the broad

horizontal (orange) areas indicate the 1σ SM predictions; the upper (grey) areas show

the 1σ prediction for mH0 = mH± = 200 GeV; and the lower (blue) areas correspond

to the analog prediction for mH0 = mH± = 400 GeV.

This result is of course dependent on the values for the MFV coefficients which

we have fixed to unity. The latest remark leads us to our next parameter study,

where we analyze the impact of variation of the MFV coefficients. In Fig.3.5

and 3.6, we allow the variation of the MFV coefficients Au and δ1 respectively.

We make the following observations:

• The case where Au = 0.5 seems to easier accomodate the experimental

result than both the Au = 1 case and the SM for some values of mA0 .

Looking at |ǫK | in Fig.3.5, from mA0 = 50 GeV, the concordance between

the experimental results and the theoretical prediction is slightly better

in the 2HDM than in the SM. ∆MBs
seems to best fit the results around

mA0 = 250 GeV. However, for even bigger masses of the pseudoscalar,
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the theoretical prediction is still less than 2σ away from the experimental

prediction.

• The variation of δ1 does not have a big impact on |ǫK |. Looking at Fig.3.6
we observe that the mA0 values for which |ǫK | better accomodates the

experimental result are totally ruled out by ∆MBs
. However, excepting

the case where the pseudoscalar is very light (mA0 < 40 GeV), the theo-

retical prediction of ǫK in the context of our model is as compatible as in

the SM. The strange neutral B mesons mass difference on the other hand

exhibits a rather different behaviour when δ1 = 0.5. A smaller value

of δ1 shifts the best fitting value of mA0 to the left, allowing a lighter

pseudoscalar but in a very narrow mass spectrum.

Figure 3.5: |ǫK | and ∆MBs as a function of mA0 with δ1 = 1 and mH0 = mH± = 400

GeV. The thin horizontal (green) lines indicate the experimental values; the broad

horizontal (orange) areas indicate the 1σ SM predictions; the upper (blue) areas show

the 1σ prediction for Au = 1; while the lower (grey) areas correspond to the analog

prediction for Au = 0.5.

From the joint study of these two quantities, we can try to identify some bench-

mark points. Having taken a look at the previous plots, we conclude that ∆MBs

can be used as the quantity to constrain our model parameters, and |ǫK | can
be used to verify that the consequences of the allowed BSM physics in the

B-sector are not dramatic on the Kaon sector. Considering the fact that the

charged Higgs loop effects are too big when the charged scalar mass is light, we

will take all our benchmark points in the case where we have mH0,H± = 400

GeV. In table 3.1 we have listed the regions in the mA0 space allowed at 1σ for

different values of the MFV parameters.
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Figure 3.6: |ǫK | and ∆MBs as a function of mA0 with Au = 1 and mH0 = mH± =

400 GeV. The thin horizontal (green) lines indicate the experimental values; the broad

horizontal (orange) areas indicate the 1σ SM predictions; the blue areas show the 1σ

prediction for δ1 = 1; while the grey areas correspond to the analog prediction for

δ1 = 0.5.

Parameters |ǫK | ∆MBs

δ1 = 1, Au = 1 mA0 > 20 GeV 130 GeV< mA0 < 150 GeV

δ1 = 1, Au = 0.5 mA0 > 50 GeV mA0 > 180 GeV

δ1 = 0.5, Au = 1 mA0 > 15 GeV 60 GeV< mA0 < 80 GeV

Table 3.1: Regions of mA0 allowed by ∆MBs
and |ǫK | for different values of

the MFV parameters.

3.3.4 Bs → µ+µ−

As mentioned in previous sections, neutral B meson decays to two charged

leptons constitute one of the cleanest decays on a theoretical level in the field

of B-physics. Within the SM, the main diagrams contributing to these decays

are Z-penguins and box diagrams involving top-quark exchanges. The effective

Hamiltonian of these processes in the SM framework is [110]

Heff (∆F = 1) = −GF√
2

α

2π sin2 θW
λt4ηY Y0(xt)(b̄q)V−A(ℓ̄ℓ)V −A+h.c. (3.117)

where ηY takes QCD corrections into account and Y0(xt) is a loop function

whose exact expression can be found in Appendix B.This Hamiltonian leads to

the following formula for the branching ratio:

B(Bq → µ+µ−) = τBq

G2
F

π

(

α

4π sin2 θW

)

f2
Bq

m2
µmBq

√

1− 4
m2

µ

m2
Bq

|V ∗
tbVtq|2η2

Y Y 2
0 (xt).

(3.118)
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In this study, we only focus on the Bs → µ+µ− decay for two main reasons.

First of all, the strange neutral B meson decay has been observed by the CMS

and LHCb collaborations (1.110) providing an already quite satisfying exper-

imental result. The second reason is due to the MFV nature of our model.

Because MFV is proportional to the masses of the quarks involved, the effects

in the Bd case are weaker and are not expected to lead to relevant results.

The uncertainty caused by the lack of precision in the determination of the

hadronic parameters has led some authors [111] to propose the use of the ex-

perimental value of ∆MBs
in the SM prediction of B(Bs → µ+µ−). This way,

the fBs
together with the uncertainty of the CKM elements were removed.

However, another uncertainty appeared through the hadronic parameter Bs:

B(Bs → µ+µ−) = τBs

3G2
F

4π

m2
W η2

Y Y 2
0 (xt)

BsηBS0(xt)
m2

µ

√

1− 4
m2

µ

m2
Bs

∆MBs . (3.119)

Currently, the uncertainty due to fBs
is around the same order of magnitude

as the one on Bs [112] and the difference in precision between the two deter-

minations of the branching ratio is not really significant. Our results in the

SM framework are given below4 and are to be compared with the experimental

result in (1.110).

B(Bs → µ+µ−)SM
fBs= (3.69± 0.19)× 10−9 (3.120)

B(Bs → µ+µ−)SM
∆MBs= (3.68± 0.14)× 10−9. (3.121)

FCNC effects on Bs → µ+µ−

The presence of FCNC in our 2HDM leads to A0 and H0 mediated tree-level

contributions to the Bs → µ+µ− decay amplitude. Once the FCNC present

in our model are taken into account, the effective Hamiltonian in (3.117) is

modified with the addition of two new operators:

Heff (∆F = 1)(A0, H0) = −GF√
2

α

2π sin2 θW
λt(−CSQS−CPQP +CAQA)+h.c.

(3.122)

4All the theoretical and experimental inputs used as well as the Inami-Lim function can

be found in Appendix A and B. Other theoretical predictions within the SM were given in

(1.108).
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s̄

b
A0, H0 µ−

µ+

Figure 3.7: Tree-level FCNC neutral Higgs contribution to the Bs → µ+µ−

decay amplitude.

where

QS = mb(b̄RsL)(µ̄µ); QP = mb(b̄RsL)(µ̄γ5µ); QA = (b̄q)V −A(µ̄µ)V −A.

(3.123)

The SM coefficient is CA = 2ηY Y0(xt). In order to determine the coefficient of

the scalar and pseudoscalar operators, we need to implement the MFV hypoth-

esis in the lepton sector as well. This can easily be carried out by analogy with

the quark sector. However, given the very well known lepton mass spectrum,

we are able to truncate the MFV series for Zℓ at first order:

Zℓ = λ0Yℓ. (3.124)

Therefore, the CS and CP coefficients in our model are given by

CS(P ) =
∆

m2
H0(A0)

, with ∆ =
4π2δ1λ0m

2
t

m2
W

; (3.125)

and the decay branching ratio becomes

B(Bs → µ+µ−) = B(Bs → µ+µ−)SM

[

(

1 +m2
Bs

CP

CA

)2

+

(

1− 4m2
µ

m2
Bs

)

m4
Bs

C2
S

C2
A

]

.

(3.126)

With respect to the contribution due to the charged Higgs boson, we can ne-

glect it based on the fact that the charged Higgs contribution to this decay only

takes place, as in the ∆F = 2 transitions, through box diagrams with inner

W±, H±, up quarks and neutrinos. Since the H±-fermions coupling is always

proportional to the fermion masses, we can expect these effects to be negligible
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given the very small values of the neutrino masses.

Figure 3.8: B(Bs → µ+µ−) as a function of the H0 and A0 masses with MFV

coefficients δ1 = λ0 = 1 (left) and δ1 = −λ0 = 1 (right). The thin horizontal (green)

lines indicate the LHCb and CMS combined result of the experimental measurement;

the broad horizontal (orange) areas indicate the 1σ SM prediction; the blue areas show

the 1σ prediction for mH0 ≪ mA0 = mH± = 400 GeV; while the lower grey areas

correspond to the analog prediction for mA0 ≪ mH0 = mH± = 400 GeV.

In Fig.3.8 we show our results for both mH0 < mA0,H± and mA0 < mH0,H±

cases. An interesting feature of (3.126) is the interference term between the

SM and the pseudoscalar operator. This characteristic leads, for the first time

in our analysis, to a sensitivity of the branching ratio to the sign of the MFV

coefficients. A difference in sign between the two coefficients implied, λ0 and

δ1, cause the interference term to suppress the branching ratio in the light

pseudoscalar case, providing a better compatibility with the experimental result

than the SM for mA0 > 100 GeV. When the scalar H0 is light, the MFV

theoretical prediction departs from the SM one in the wrong direction giving

us an additional argument to favour the mA0 < mH0,H± mass hierarchy. We

therefore conclude that the B(Bs → µ+µ−) study favours a pseudoscalar in the

mass range 100 < mA0 < 200 GeV when δ1 = −λ0 = 1. As previously done in

the ∆F = 2 case, we have studied the case where the values of the coefficients

are taken to be smaller than one. As an example, in the case of δ1 = −λ0 = 0.5,

the presence of a lighter pseudo-scalar, mA0 ≈ 60 GeV, would already be able

to provide a more satisfying compatibility with the observations.
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The B → K∗µ+µ− decay

After the first release of the LHCb results on the B → K∗µ+µ− decay angular

observables [9], this rare decay has revealed itself as one of the privileged places

to look for new physics. Indeed, decays involving b → sµ+µ− transitions

are very rare in the SM, since they are both CKM and loop suppressed, but

are sensitive probes of NP given that many extensions of the SM are able

to produce measurable effects. The kinematics and the angular distribution

of the four body final state of the B → K∗µ+µ− decay, where K∗ indicates

the K∗(892) → K+π− decay, give access to numerous observables sensitive to

possible BSM contributions.

The differential angular distribution of the final state is given by [8]

1

dΓ/dq2
d4Γ

d cos θld cos θkdφdq2
=

9

32π

[

3

4
(1− FL) sin

2 θk + FL cos2 θk

+
1

4
(1− FL) sin

2 θk cos 2θl − FL cos2 θk cos 2θl

+ S3 sin
2 θk sin

2 θl cos 2φ+ S4 sin 2θk sin 2θl cos φ

+ S5 sin
2 θk sin θl cosφ+ S6 sin

2 θk cos θl

+ S7 sin 2θk sin θl sinφ+ S8 sin 2θk sin 2θl sinφ

+S9 sin
2 θk sin

2 θl sin 2φ
]

, (3.127)

where FL and Si are q2 dependent bilinear combinations of the K∗ decay

amplitude. They are functions of the Wilson coefficients, containing informa-

tion about the short distance effects, and form factors, encoding long distance

effects. Therefore, it has been suggested to introduce observables that are com-

binations of these FL and Si functions in order to reduce the uncertainties, in

particular in the low q2 limit. They are defined as

P ′
i=4,5,6,8 =

Sj=4,5,7,8

FL(1− FL)
. (3.128)

In [8], the LHCb collaboration determined a set of angular observables in the

B0 → K∗
0µ

+µ− decay using data collected during 2011 and found a local

deviation with respect to the SM prediction in one of the observables, P ′
5,

with a significance corresponding to 3.7 standard deviations. More recently,

the LHCb collaboration has released and updated analysis using the LHCb

Run 1 full data sample [9], confirming the P ′
5 inconsistency with the SM at the

level of 3.4 standard deviations.
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This inconsistency as well as the possibility of NP contributions being able to

solve it have been widely discussed in the litterature [113–118]. Here, we would

like to adress the argument provided in [11] about the possibility of the QS,P

operators introduced in (3.123) being able to give an appropriate contribution

to P ′
5 in order to solve the tension with its experimental result. In the SM, the

b → s transitions are gouverned by the the effective hamiltonian

HSM
eff =

4GF√
2
(V ∗

tsVtb)

10
∑

i=1

CiOi. (3.129)

The B → K∗µ+µ− decay is dominated by the following tensor, axial and axial

vector operators

O7 =
e

16π2
mb(s̄σαβPLb)F

αβ , (3.130)

O9 =
αem

4π
(s̄γαPRb)(µγ

αµ), (3.131)

O10 =
αem

4π
(s̄γαPRb)(µγ

αγ5µ). (3.132)

Beyond the SM, new chirally flipped (PL(R) → PR(L))O′
7, O′

9 andO′
10 as well as

the QS,P operators introduced in (3.123) may also be generated. However, the

study carried out in [119] shows that the observable P ′
5 is especially sensitive

to the contribution of the BSM operators O′
9 and O′

10. As pointed out in

[11], the contribution of the QS,P operators needed to release the tension of

the P ′
5 measurement would affect other radiative and rare b → s modes, like

Bs → µ+µ−, providing a prediction of their branching ratios that would be

incompatible with the already available experimental values. Therefore, we

conclude that the deviations observed in the LHCb experiment can not be

explained within our 2HDM once the results on Bs → µ+µ−are taken into

account.

3.4 Two-photon Higgs decay at the LHC

In our work in [46] we analyzed the possibility of observing one of the BSM

neutral bosons A0 and H0 in the two-photon invariant mass spectrum at the

LHC. More precisely, we studied the possibility of the observed excess around

125 GeV to be one of the non SM-like scalars. Currently, with the release of
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much more precise data, the possibility that the observed boson is not a scalar

or does not have the SM couplings has become very unlikely. In this section we

will assess the situation of our 2HDM concerning the two-photon decay with

the available data.

In the SM, the dominant contributions to the diphoton decay of the Higgs boson

are the top and W loops. With respect to the SM scalar, a main differences of

both the scalar H0 and the pseudoscalar A0 in the particular realization of the

2HDM that we have introduced, is that they are both vectophobic (i.e. gHV V =

gAV V = 0 with V = W±, Z0) and therefore only top loop contributions have

to be considered.

The number of events in the diphoton invariant mass spectrum is proportional

to the production cross-section multiplied by the decay branching ratio. It

is convenient to normalise it to the SM rate in order to study the possible

enhancement (R > 1) or suppression (R < 1) by a BSM particle:

R ≡ σ × B(H0, A0 → γγ)

σSM × B(h0 → γγ)SM
. (3.133)

At the time of our study in [46] we made the assumption, both in the SM

as in the 2HDM case, that the production cross-section was gluon-gluon fu-

sion (ggF)-dominated. We also considered the limit where the total decay

widths are dominated by the bb̄ final state and computed the ratio R in the

mH0,A0 ≪ 2mt, 2mW regime5.

However, both the CMS [32] and the ATLAS [85] experiments have proved their

ability to disentangle different diphoton events by their production mechanisms

and provide a combination of the differently produced number of events. These

analyses show evidence of Vector Boson Fusion (VBF) and Vector Higgs (VH)

enriched diphoton selected events. The ATLAS collaboration [85] has further-

more studied the possibility of a fully ggF-produced scalar being compatible

with the observed data and has set a lower limit of 200 GeV. These results,

together with the observation of the diboson final states decays [32,36], lead to

the conclusion that the observed 125 GeV particle is neither the scalar H0 nor

the pseudoscalar A0 in our custodial invariant 2HDM with MFV.

5A detailed explanation of the computations is given in Appendix C.
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3.5 Experimental constraints on the custodial

invariant 2HDM with MFV

In the previous chapter we have already summarized the state of the art regard-

ing experimental contraints and direct searches of 2HDM particles. However,

in this section, we will carry out a more complete and systematic analysis

regarding the particular 2HDM considered in this work.

Constraints from the hSM coupling measurements. In [120] a combina-

tion of the measurements of the Higgs boson production and decay rates from

CMS and ATLAS is given for the full data collected in 2011 and 2012. The

SM Higgs boson couplings can therefore be constrained from five production

mechanisms; gluon-gluon fusion, vector-boson fusion and associated produc-

tion with a gauge boson W or Z or a top pair. Six decay modes are combined

as well; decays to two bosons: H → WW , H → ZZ and H → γγ and to two

fermions: H → ττ , H → bb and H → µµ. The analysis provides the coupling

measurements of the significant observations related to gluon-gluon fusion and

ZZ, WW and γγ decays, the signal strengths and the constraints on the rest

of the couplings. The results in this paper are significant enough to conclude

that the newly observed boson at the LHC has SM-like couplings. Since the

h0 particle of the 2HDM introduced in this work has SM-like couplings to all

the SM particles, we underline the compatibility between our model and those

results.

In section 3.2.3, we have already mentioned the constraints on the alignment

limit of the 2HDM coming from the hSM coupling measurements. We will

therefore sumarize the discussion by saying that the model considered in this

work corresponds to a case of perfect alignment by construction and therefore,

in regards of the SM-like boson couplings, the associated h0 scalar is compatible

with the observed scalar boson.

Direct searches of scalars and pseudoscalars. In the phenomenological

analysis of the previous sections, we have already set some limits on the NP

particles A0, H0 and H± that come from experimental results. We summarize
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these constraints and explain how to apply them to the custodial invariant

2HDM with MFV.

As mentioned in 2.3, a limit on a fully ggF generated Higgs-like boson decaying

into two photons is provided in [85]. Both A0 and H0 are fully ggF generated

in this particular model and do not have a trilinear coupling to vector bosons.

Consequently, this analysis can be applied to the BSM particles too. From

the previous section, as well as from the appendix C, it can be seen that the

ratio R defined in (C.1) is close to one around 200 GeV in the A0 case, while

significantly smaller in the H0 case. Therefore, the upper limit mH > 200

GeV obtained from this particular analysis only applies to the pseudoscalar

A0. However, as we have seen, more stringent constraints coming from the

flavour analysis previously carried out are applied to the scalar H0 favouring

at the same time the custodial degeneracy mH0 ≈ mH± and implying that the

charged Higgs constraints should be applied to the additional scalar boson.

Direct searches on pseudoscalars have also been mentioned in 2.3. Regarding

the pseudoscalar introduced in this work, the particular limits obtained in [86]

cannot be fully applied since the analysis takes place in the framework of the

MSSM 2HDM relying on the contribution of SUSY particles that are absent

in our model. Another analysis that has been previously mentioned is carried

out in [87] by CMS and [121] by ATLAS where limits on 2HDM are set from

the search of the A0 → h0Z decay. Yet, the custodial invariant 2HDM has no

tree-level Zh0A0 coupling.

Concerning the limits on the charged Higgs H±, the comparison in 3.2.2 pro-

vides the most stringent constrains with mH± & 400 GeV.

Constraints on H0 → A0Z from searches for a new resonance decaying

into a lighter resonance and a Z boson. The H0(A0) → A0(H0)Z decay

has been previously pointed out in the litterature [64] as a priviledged decay

for 2HDM particles to be phenomenologically tested. The CMS collaboration

has released the results on the search for neutral resonances decaying into a

Z boson and a pair of b jets or τ leptons [122]. In the mentioned analysis,

the two main assumptions are the degeneracy of the heaviest resonance with

the charged Higgs, which is the case in the H0 → A0Z interpretation within

the custodial invariant 2HDM, and a Z2 symmetry leading to type-I or type-
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II fermion couplings. There is no significant deviation observed with respect

to the SM, and limits are set on the 2HDM parameter space. But, it is worth

mentioning that two moderate excesses are observed for the ττbb channel in the

regions around (mbb,mℓℓbb) = (95, 285) GeV and (575, 660) GeV. Their local

significance is 2.6σ and 2.85σ, respectively. In the ℓℓττ channel, no significant

excess is observed.

In [122] the excess around (mbb,mℓℓbb) = (95, 285) GeV is found compati-

ble with the benchmark signal hypothesis of a type-II 2HDM at mH0 = 270

GeV and mA0 = 104 GeV and with the 2HDM parameters tanβ = 1.5 and

cos(β − α) = 0.01. We adress the compatibility of this potentially significant

excess with the 2HDM proposed in this work. Only the H0 → A0Z scenario

is considered since mH0 < mA0 = mH± has already been ruled out in the

previous section. After comparing the hypothesis made in [122], we underline

the following differences with our framework:

• The analysis carried out by CMS assumes a 2HDM in the alignment limit

cos(β−α) = 0.01. Therefore, the difference with our model, regarding the

cross section of the production mechanism of the H0 scalar, only relies on

its coupling to fermions. Instead of being cotβ dependent, like in type-II

models, the production cross-section would introduce a Rt
H0 factor (see

(C.6)).

• The HAZ coupling coming from the Higgs kinetic terms, is not different

from the one of a 2HDM in the alignment limit.

• The A0 decay to fermions is also modified. While in the type-II 2HDM

the coupling of the pseudo-scalar to both a bb pair and a τ -lepton pair is

proportional to tanβ, in the custodial invariant with MFV the coupling

to a bb pair is given by Rb
A0 in (C.12) and the one to a τ -lepton pair is

given by the λ0 coefficient in (3.124).

The first remark leads to the conclusion that a Rt
H0 factor is expected to

slightly enhance the production cross section with respect to a type-II model

with tanβ = 1.5, although keeping it at the same order of magnitude. The

third remark indicates that the Rb
A0 factor would provide a similar result for

the A0 → bb decay rate as the one in the framework of the type-II 2HDM in
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the alignment limit. In the case of the decay to two leptons, since λ0 < tanβ,

the type-II observed number of events are expected to be higher than those

in the 2HDM with MFV. This is coherent with the fact that no excess is

observed in the analysis of this channel by CMS. Taking all this remarks into

account, we conclude that the excess of events reported in [87], while non

significant as it stands, could still be compatible with a H0 → A0Z decay in

the framework of the model presented in this work with mH0 > 270 GeV. A

heavier H0 would compensate the Rt
H0 factor enhancement while favouring

the custodial condition mH0 ≈ mH± . As we have commented in 3.3.3, a slight

departure from the custodial degeneracy does not affect our flavour results.

Having mH± > mH0 > 270 GeV is thus a fairly acceptable hypothesis.

3.6 Summary

In this chapter we have introduced a particular realization of the 2HDM that

minimally violates both custodial and flavour symmetries. We have also an-

alyzed the consequences of this particular model especially on some flavour

observables and on the LHC results. In our analysis of the ∆F = 2 transition

observables ǫK and ∆MBs
, we have studied both the A0 and H0 mediated

FCNC contributions as well as the H± loop contributions. To get a glimpse of

the order of magnitude of the two different contributions, we make use of the

following parametrization for ǫK :

|ǫK | =|ǫSM
K + ǫFCNC

K + ǫH
±

K |
=|ǫSM

K |(1 + δFCNC
ǫK (δ1,mA0 ,mH0) + δH

±

ǫK (υ0 + ytυ1,mH±)) (3.134)

with

δFCNC
ǫK (1, 200, 400) = −0.2%; δH

±

ǫK (1, 400) = 25%. (3.135)

In the ∆MBs
case, a similar parametrization gives

δFCNC
Bs

(1, 200, 400) = −13% ; δH
±

Bs
(1, 400) = 30%. (3.136)

We conclude that the most stringent constraints come from ∆MBs
. The ǫK

parameter can be used to confirm that the parameter space where ∆MBs
con-

cords better with the experiments is also allowed or even favoured by the neu-

tral Kaon constraints. From these two flavour observables we conclude that the
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mass hierarchy mh0 ≈ mA0 < mH0,H± is still very much compatible with the

current data. The B(Bs → µ+µ−) rare decay gives us an additional argument

favouring this particular hierarchy when the down quark and lepton MFV co-

efficients verify the relation δ1 = −λ0 = 1.

As a general remark, let us underline the role of the top mass in the importance

of MFV contributions. Although the mass hierarchy is not better understood

in this model, the top quark is essential for the MFV contributions to be rel-

evant. The dependence of the different contributions on the MFV parameters

and on the choice of mH± is also high. However, instead of trying to fit the

best value for the MFV parameters, we have considered the case where the

contributions are maximal and showed that the model is still compatible with

the experiments for a wide range of parameter values.
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This work took off with the aim of studying a 2HDM that was able to provide

a richer phenomenology while preserving the main features of the SM that had

made it so succesful over the last few decades. Compared to the SM, a general

2HDM has many additional parameters that need to be somehow constrained

to fit the available experimental data. Many studies have analysed the pos-

sibility of the 2HDM solving the issues the SM is still unable to account for.

However, the approach we have taken does not aim to solve these issues, but

rather to preserve what made the SM so succesful up to now. This has shown

itself to be very convenient given the historical results achieved over the past

few years. With the latest LHC results, the idea that the SM is the strongest

contender for the explanation of nature at the EW scale has been reinforced.

Moreover, the impact of the latest experimental results on BSM models has

mainly been to constrain their parameter space without any NP observation.

While introducing the SM in the first chapter of this work, we have sought to

underline the accidental features of this theory and how important they are its

actual success in explaining observed data. The absence of FCNC at tree-level

is one of the major succesful features of the SM. The custodial symmetry that

accidentally arises in the scalar sector of the theory and ensures that correc-

tions to the ρ parameter remain small in another one. The flavour group Gf

encoded in the fermion kinetic terms, although broken in other sectors of the

theory, represents an additional particular property of the SM. Finally, the way

in which CP violaton appears in the flavour sector through one single phase in
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the 3× 3 quark mixing matrix is striking as it accounts for CP violation both

in Kaon and in B meson physics with an astonishing accuracy.

We have shown how all these properties, which arise subsequently to the particle

content and the gauge symmetries associated to the fundamental interactions,

are usually lost in BSM physics. In particular, the 2HDM does not preserve

them in general. The constraints to be imposed on the 2HDM in order to

keep the main SM properties, while at the same time allowing for some ne

phenomenology, have been analyzed. We have studied the very particular case

of a 2HDM where the custodial symmetry is imposed on the scalar potential in

such a way that one of the additional neutral Higgs particles is degenerated in

mass with the charged Higgs and therefore ensures the smallness of the ρ pa-

rameter corrections. A very interesting consequence of requiring the custodial

invariance is the fact that it also ensures the absence of CP violation sources in

the scalar potential. This non-trivial feature is unexpected but suitable to the

prospect of finding a NP model that preserves the properties that have made

the SM so succesful. On the other hand, through the introduction of the MFV

hypothesis in the flavour sector we have been able to avoid additional sources

of flavour mixing and CP violation. This way, only the CKM matrix and the

quark masses and mixing parameters are responsible for the mentioned phe-

nomena just like in the SM. A particularity of this model compared to other

MFV models is that Higgs mediated FCNC are introduced at tree-level. How-

ever, the mechanism of MFV also ensures that these FCNC are kept small

enough to remain compatible with the data for some interesting values of the

BSM scalar masses. While conserving so many properties of the SM, the model

still manages to provide possible values of the parameter space where NP could

still be observed.

After studying the predictions of the model concerning some Kaon and B-meson

quantities, we have been able to constrain the parameter space still available

for the BSM particles of this 2HDM. The quantities we have studied in more

detail are the neutral Kaon system CPV parameter ǫK ; the B meson mass dif-

ference ∆MBs
; and the rare decay Bs → µ+µ− branching ratio. We conclude

that the scalar mass hierarchy of the 2HDM introduced in this work which is

still favoured by the data is

mh0 ∼ mA0 < mH0 ≃ mH± , (3.137)
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where h0 is a scalar having the same fermion and gauge boson couplings as the

SM Higgs boson; H± corresponds to the charged Higgs; and A0 and H0 are a

pseudo-scalar and an additional neutral scalar respectively.

The phenomenological analysis of this model has not been exhausted with the

study carried out here. At the theoretical level, we have previously underlined

how the SM is unable to account for the strong experimental constraint to be

imposed on the θQCD parameter by the neutron dipole moment. An interesting

follow-up of this work would be to analyze the possibility of a BSM contribu-

tion that would naturally cancel the θQCD parameter SM contribution. This

could give an explanation for the very strong neutron dipole moment upper

limit which would not have to resort to any fine-tuning.

Given the more precise experimental data available on the different Higgs de-

cays channels with precisions on the different production mechanisms, it would

be interesting to see if the diphoton channel in particular would be able to

shed light on this model through some potential enhancements or suppressions

granted by the vectophobic nature of two of its three neutral Higgs particles.

The study of models with an enlarged scalar sector remains a very relevant way

of looking for new physics signals. The currently available experimental data

allow us to strongly constrain the originally free parameters of these kinds of

models. However, there is still room for NP observations and their study is

still highly motivated.
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AppendixA

Input parameters

In this appendix we list all the input parameters used in our work together with

the references from which they have been extracted. We use most of those used

by the CKMfitter group [4].

Parameter Value ±Error(s) Reference

mW 80.385± 0.015 GeV [14]

m̄c 1.286± 0.013± 0.040 GeV [4]

m̄t 165.95± 0.035± 0.064 GeV [4]

mK 497.625± 0.024 MeV [14]

∆MK (4.484± 0.006)× 10−12 MeV [14]

fK 155.2± 0.2± 0.6 MeV [4]

BK 0.7615± 0.0027± 0.0137 [4]

Vcb 41.00± 0.33± 0.74 [4]

Vus 0.2163± 0.0005 [4]

ηtt 0.5765± 0± 0.0065 [4]

ηcc 1.87± 0± 0.76 [98]

ηct 0.497± 0± 0.047 [123]

κǫ 0.94± 0.013± 0.023 [97]

φǫ 43.51o(5) [14]
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Parameter Value ±Error(s) Reference

fBs
/fBd

1.205± 0.03± 0.006 [4]

BBs
/BBd

1.023± 0.013± 0.014 [4]

sin 2β 0.691± 0.017 [4]

mBd
5279.58± 0.17 MeV [14]

mBs
5366.77± 0.24 MeV [14]

∆MBd
0.510± 0.003 ps−1 [14]

∆MBs
17.757± 0.021 ps−1 [14]

ηB 0.5510± 0± 0.0022 [4]

fBs
225.6± 1.1± 5.4 MeV [4]

τBs
(1.512± 0.007)× 10−12 s [14]

Bs 1.320± 0.034 [4]

ηY 1.026± 0.006 [110]

sin2 θW 0.23116± 0.00003 [112]

mµ (105.6583715± 0.0000035)× 10−3 GeV [14]
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Loop functions

The S loop-functions are given by

S(xi, xj) = xixj

[(

1

4
+

3

2(1− xi)
− 3

4(1− xi)2

)

− 3

2

(

xi

1− xi

)

1

xi − xj
Ln(xi)

+(xi ↔ xj)− 3

4

1

(1− xi)(1− xj)

]

. (B.1)

S(xi) ≡ S(xi, xj)|xj→xi

= xi

(

1

4
+

9

4(1− xi)
− 3

2(1− xi)2

)

− 3

2

(

xi

1− xi

)3

Ln(xi). (B.2)

The D loop-functions are given by

D0(m1,m2,M1,M2) =
m2

2 log
m2

2

m2
1

(m2
2 −m2

1)(m
2
2 −M2

1 )(m
2
2 −M2

2 )

+
M2

1 log
M2

1

m2
1

(M2
1 −m2

1)(M
2
1 −m2

2)(M
2
1 −M2

2 )

+
M2

2 log
M2

2

m2
1

(M2
2 −m2

1)(M
2
2 −M2

1 )(M
2
2 −m2

2)
, (B.3)
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D0(m,M1,M2) ≡ lim
m2→m

D0(m,m2,M1,M2)

=
M1 log

M1

m

(m−M1)2(M1 −M2)
+

1

(m−M1)(m−M2)

+
M2 log

M2

m

(M2 −M1)(m−M2)2
, (B.4)

D0(m,M) ≡ lim
M2→M

D0(m,M,M2)

=
2(m−M) + (m+M) log M

m

(m−M)3
, (B.5)

D2(m1,m2,M1,M2) =
m4

2 log
m2

2

m2
1

(m2
2 −m2

1)(m
2
2 −M2

1 )(m
2
2 −M2

2 )

+
M4

1 log
M2

1

m2
1

(M2
1 −m2

1)(M
2
1 −m2

2)(M
2
1 −M2

2 )

+
M4

2 log
M2

2

m2
1

(M2
2 −m2

1)(M
2
2 −M2

1 )(M
2
2 −m2

2)
, (B.6)

D2(m,M1,M2) ≡ lim
m2→m

D2(m,m2,M1,M2)

=
M2

1 log M1

m

(m−M1)2(M1 −M2)
+

M2
2 log M2

m

(m−M2)2(M2 −M1)

+
m(m−M2)

(m−M1)(m−M2)2
, (B.7)

D2(m,M) ≡ lim
M2→M

D2(m,M,M2)

=
m2 + 2mM log M

m −M2

(m−M)3
. (B.8)

The Y loop-function is given by

Y0(x) =
x

8

(

4− x

1− x
+

3x

(1− x)2

)

log x. (B.9)



AppendixC

Computation of the diphoton

decay number of events ratio R

In 3.4 we have defined the ratio R of the number of diphoton events as

R ≡ σ × B(H0, A0 → γγ)

σSM × B(h0 → γγ)SM
. (C.1)

If we assume that the production is ggF-dominated via top quark loops and

that the total decay widths are mainly due to bb̄ decays, we can summarize the

main steps in the computation of this ratio as the following. These are: the

computation of the diphoton decay rate for the different (pseudo)scalars; the

ggF production cross-sections computations and finally the bb̄ decay widths.

• First, let us compute the diphoton decay rates. The SM scalar diphoton

decay receives contributions from both fermions (mainly top quarks) and

W bosons. The effective Lagrangian associated to the decay is [124]

Lh0

γγ = −1

4
FµνFµν

[

1 + Πt
γγ(0) + ΠW

γγ(0)
]

, (C.2)

where

Πt
γγ(0) =

Ncq
2
tα

3π

(

4πµ2

m2
t

)ǫ

Γ(1 + ǫ)
1

ǫ
, (C.3)

ΠW
γγ(0) = − α

4π

(

4πµ2

m2
W

)ǫ

Γ(1 + ǫ)

[

7

ǫ
+

2

3
+O(ǫ)

]

, (C.4)
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are, respectively, the lowest order expressions of the top quark and W

boson contributions to the (dimensionless) photon vacuum polarization

function at zero momentum transfer. In the mh0 ≪ 2mt, 2mW regime,

the effective Lagrangian of the h0γγ coupling reduces to

Lh0γγ =
α

2π
FµνFµν

h0

v

(

Nc
q2t
3

− 7

4

)

. (C.5)

The H0γγ effective Lagrangian is very similar to the SM Lagrangian,

except that it lacks the W boson contribution, since H0 is vectophobic,

and it has a different factor due to its different Yukawa couplings to

fermions (mainly top quarks):

LH0γγ =
α

2π
FµνFµν

H0

v
Rt

H0Nc
q2t
3

with Rt
H0 = υ0 + υ1

2m2
t

v2
. (C.6)

The pseudoscalar nature of the A0 boson gives a slightly different expres-

sion for the Aγγ effective Lagrangian [124]:

LA0γγ = Ncq
2
t

α

8π
Fµν F̃µνR

t
A0

A0

v
with Rt

A0 = υ0 + υ1
2m2

t

v2
. (C.7)

• In order to compute the h0 gluon-gluon fusion production cross section,

we proceed in a way similar to the h0γγ case. The derivation of the

effective h0gg Lagrangian starts from

Lh0

gg = −1

4
GaµνGa

µν

[

1 + Πt
gg(0)

]

, (C.8)

where

Πt
gg(0) =

α

6π

(

4πµ2

m2
t

)ǫ

Γ(1 + ǫ)
1

ǫ
, (C.9)

and yields to the h0gg coupling Lagrangian

Lh0gg =
α

12π
GaµνGa

µν

h0

v
, (C.10)

in the mh0 ≪ 2mt, 2mW regime. The H0 case is very similar since only

one additional factor, (Rt
H0 ), due to its different Yukawa couplings to top

quarks, should be taken into account. In the pseudoscalar case, however,

the effective Lagrangian is

LA0gg =
α

8π
GaµνG̃a

µνR
t
A0

A0

v
with Rt

A0 = υ0 + υ1
2m2

t

v2
. (C.11)
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• Concerning the total decay widths, since we consider they are all domi-

nated by bb̄ decays, we have the following relations:

ΓA0 = ΓH0 = (Rb
A0,H0 )2Γh0 with Rb

A0,H0 = δ0 + δ1
2m2

t

v2
. (C.12)

After computation of the decay widths and cross-sections associated to the

different effective Lagrangians, we are now able to compute the ratio R for

both A0 and H0:

RA0 =
σA0 × B(A0 → γγ)

σSM × B(h0 → γγ)SM
= 9

Rt
A0 |IA(τt)|2

Rb
A0 |IS(τt)|2

|Ncq
2
tR

t
A0IA(τt)|2

|Ncq2t
4
3IS(τt)|2 + IW (τW )

,

(C.13)

RH0 =
σH0 × B(H0 → γγ)

σSM × B(h0 → γγ)SM
=

Rt
A0

Rb
A0

|Ncq
2
tR

t
H0

4
3IS(τt)|2

|Ncq2t
4
3IS(τt)|2 + IW (τW )

, (C.14)

where the Ii(τ) functions have the form

IS(τ) =
3

2
τ [1 + (1− τ)f(τ)], (C.15)

IA(τ) = τf(τ), (C.16)

IW (τ) = 2 + 3τ + 3τ(2 − τ)f(τ), (C.17)

with

τi =

(

2mi

mH

)2

and f(τ)











(

arcsin
√

1
τ

)2

if τ > 1

− 1
4

(

log
[

1+
√
1−τ

1−
√
1−τ

]

− iπ
)2

if τ 6 1
. (C.18)

In Fig.C.1 we plot the ratios RA0 and RH0 as functions of mA0 and mH0 for

values of the masses below 200 GeV. The MFV are equal to one. The ratio

becomes important for light values of the pseudoscalar mass mA0 . However,

we have already seen in the ∆MBs
analysis (see Tab.3.1), that for the highest

values of the MFV coefficients the pseudoscalar is not expected to be that

light. As we have mentioned previously, the light H0 case is already very much

unfavoured by all the data and this is confirmed by the missing events necessary

to reproduce the data.
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Figure C.1: The ratio R defined in eq. (C.1) as a function of the H0 and A0 masses

if the MFV coefficients are equal to one. The upper (black) curve corresponds to

the case where A0 is the lightest non-SM Higgs boson while the lower (blue) curve

corresponds to the case where H0 is the lightest non-SM Higgs boson.
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